Abstract Answer Set Solvers with Backjumping and Learning

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Follow this and additional works at: http://digitalcommons.unomaha.edu/compscifacpub

Part of the Computer Sciences Commons

Recommended Citation
http://digitalcommons.unomaha.edu/compscifacpub/4
Abstract Answer Set Solvers with Backjumping and Learning (long version)

YULIYA LIERLER
Department of Computer Science
University of Texas at Austin
1 University Station C0500
Taylor Hall 2.124
Austin, USA
E-mail: yuliya@cs.utexas.edu

Abstract
Nieuwenhuis, Oliveras, and Tinelli (2006) showed how to describe enhancements of the Davis-Putnam-Logemann-Loveland algorithm using transition systems, instead of pseudocode. We design a similar framework for several algorithms that generate answer sets for logic programs: SMODELS, SMODELSCC, ASP-SAT with Learning (CMODELS), and a newly designed and implemented algorithm SUP. This approach to describing answer set solvers makes it easier to prove their correctness, to compare them, and to design new systems.

KEYWORDS: answer set programming, inference, learning

1 Introduction
Answer Set Programming (ASP) is a methodology commonly used for solving combinatorial search problems (Lifschitz 2008). In the development of ASP solvers, computational ideas behind SAT solvers (Gomes et al. 2008) play an important role. Influence of SAT solvers development on ASP systems is twofold. On the one hand, such ASP solvers as ASSAT\(^1\) and CMODELS\(^2\) follow the so called SAT-based approach where a SAT solver is invoked for search, possibly multiple times. On the other hand, “native” ASP solvers that implement search procedures specifically suited for logic programs often adopt computational techniques from SAT solvers. For instance, DLV\(^3\) implements backjumping (Ricca et al. 2006), and SMODELSCC\(^4\) (Ward and Schlipf 2004) extends the answer set solver SMODELSS\(^5\) by introducing restarts, conflict-driven

\(^1\) http://assat.cs.ust.hk/.
\(^2\) http://www.cs.utexas.edu/users/tag/cmodes.
\(^3\) http://www.dbai.tuwien.ac.at/proj/dlv/.
\(^4\) http://www.nku.edu/~wardj1/Research/smodels_cc.html.
\(^5\) http://www.tcs.hut.fi/Software/smodels/.
backjumping, learning, and forgetting – techniques widely used in SAT solvers. The ASP solver \textsc{sup}6 (Lierler 2008) implements these features also.

In this paper our main goal is to show how the “abstract” approach to describing SAT solvers proposed in (Nieuwenhuis et al. 2006) can be extended to ASP solvers that use these sophisticated features. Usually computation procedures are described in terms of pseudocode. In (Nieuwenhuis et al. 2006), the authors proposed an alternative approach to describing \textsc{dpll}-like procedures. They introduced an abstract framework that captures what "states of computation" are, and what transitions between states are allowed. In this way, it defines a directed graph such that every execution of the \textsc{dpll} procedure corresponds to a path in this graph. Some edges may correspond to unit propagation steps, some to branching, some to backtracking. This allows the authors to model a \textsc{dpll}-like algorithm by a mathematically simple and elegant object, graph, rather than a collection of pseudocode statements. In (Lierler 2008), we extended this framework for describing such ASP algorithms as \textsc{smodels}, \textsc{asp-sat} with Backtracking, and \textsc{sup} without Learning. In this paper, we expand our previous work on abstract answer set solvers to cover such features as backjumping and learning (and also forgetting and restart). We start by introducing an abstract framework that captures a general mechanism of these sophisticated features in ASP solvers. For instance, this framework provides the transition underlying the process of learning a clause, but it does not suggest which clause shall be learned. Similarly, it provides a general description of backjumping but it does not supply the means for computing a “backjump clause” necessary for an answer set solver to perform backjumping. We then enhance this abstract framework to capture enough information about a state of computation for deriving a backjump clause.

Usually, \textsc{dpll}-like procedures implement conflict-driven backjumping and learning where a particular learning schema such as, for instance, \textit{Decision} or \textit{FirstUIP} (Mitchell 2005) is applied for computing a special kind of a backjump clause. There are two common methods for describing a backjump clause construction. One employs the implication graph (Marques-Silva and Sakallah 1996) and the other employs resolution (Mitchell 2005). Ward and Schlipf (2004) extended the notion of an implication graph to the \textsc{smodels} algorithm. They then defined an algorithm for computing \textit{FirstUIP} backjump clauses utilized by \textsc{smodelscc} to implement conflict-driven backjumping and learning. In this paper we introduce the algorithms \textit{BackjumpClause} and \textit{BackjumpClauseFirstUIP} based on resolution and the enhanced abstract framework that compute \textit{Decision} and \textit{FirstUIP}7 backjump clauses respectively.

In (Lierler 2008), we introduced the basic algorithm underlining the system \textsc{sup} but neglected some of its features: conflict-driven backjumping, learning, forgetting, and restarts. Here we account for these techniques and use an abstract framework designed in this paper for describing system \textsc{sup}. We emphasize that the work on this abstract framework helped us to develop ASP solver \textsc{sup}, to incorporate

6 http://www.cs.utexas.edu/users/tag/sup.

7 The names of the backjump clauses follow (Mitchell 2005).
Abstract Answer Set Solvers with Backjumping and Learning (long version)

We analyzed performance of SUP against such answer set solvers as CMODELS, SMODELS, SMODELScc, and CLASP\(^8\). Overall, SUP performs well against these rival systems.

We start the paper with Section 2 that reviews the abstract DPLL framework introduced in (Nieuwenhuis et al. 2006) and some logic programming concepts. In Section 3, we define a graph representing the application of the algorithm for finding supporting models of a logic program. This paves the way to defining a graph representing the application of the SMODELS algorithm to a program in Section 4. Section 4.2 elaborates on the relationship between previously defined abstract frameworks. Section 5 extends the abstract DPLL framework by introducing an additional inference rule so that the generate and test algorithm of the SAT-based ASP system CMODELS may be characterized by this graph. In Section 6, we review the abstract framework that describes DPLL enhanced by backjumping and learning. In Section 7, we define a general abstract framework for describing ASP algorithms that implement such phenomena as backjumping and learning. In Section 7.2 we describe the algorithms of systems SMODELSCc and SUP by means of this framework. In Section 8 we extend the abstract generate and test framework to accommodate backjumping and learning, and in Section 8.2 we use these findings to describe the CMODELS algorithm. Section 9 extends the framework to capture additional information about a computation state of a solver, states the correctness results, and describes how the frameworks are related to each other. Section 10 provides the proofs for these results. In Section 10.3 and 11 we introduce the algorithms based on the extended framework for computing a backjump clause that are important in implementing conflict-driven backjumping and learning. In Section 12 we introduce the concept of an extended graph for the generate and test abstract framework and state the correctness results. Section 13 provides the proofs for these results. At last, in Section 14 we provide the experimental analysis that compares performance of SUP with other answer set solvers.

2 Review: Abstract DPLL and Logic Programs

2.1 Abstract Classical DPLL

For a set \(\sigma\) of atoms, a record \(M\) relative to \(\sigma\) is a list of literals over \(\sigma\) where

(i) some literals in \(M\) are annotated by \(\Delta\) that marks them as decision literals,
(ii) \(M\) contains no repetitions.

The concatenation of two such lists is denoted by juxtaposition. Frequently, we consider a record as a set of literals, ignoring both the annotations and the order between its elements. A literal \(l\) is unassigned by a record if neither \(l\) nor its complement \(\overline{l}\) belongs to it.

\(^8\) http://www.cs.uni-potsdam.de/clasp/ .
Unit Propagate:
\[M \implies M \lor l \text{ if } \left\{ \begin{array}{l} C \lor l \in F \text{ and } \\ \overline{C} \subseteq M \end{array} \right. \]

Decide:
\[M \implies M \Delta l \text{ if } \left\{ \begin{array}{l} M \text{ is consistent and } \\ l \text{ is unassigned by } M \end{array} \right. \]

Fail:
\[M \implies \text{FailState} \text{ if } \left\{ \begin{array}{l} M \text{ is inconsistent and } \\ M \text{ contains no decision literals} \end{array} \right. \]

Backtrack:
\[P \lor \Delta Q \implies P \lor P \text{ if } \left\{ \begin{array}{l} P \lor \Delta Q \text{ is inconsistent, and } \\ Q \text{ contains no decision literals} \end{array} \right. \]

Fig. 1. The transition rules of the graph DP_F.

A state relative to σ is either a distinguished state FailState or a record relative to σ. For instance, the states relative to a singleton set $\{a\}$ of atoms are

\[
\text{FailState}, \ \emptyset, \ a, \ \neg a, \ a\Delta, \ \neg a\Delta, \ a\neg a, \ a\Delta\neg a, \\
a\neg a\Delta, \ a\Delta\neg a\Delta, \ a\neg a\Delta, \ a\Delta a, \ a\Delta a\Delta, \\
\neg a\Delta a, \ \neg a\Delta a\Delta, \ \neg a\Delta a\Delta, \\
\neg a\Delta a\Delta,
\]

where by \emptyset we denote the empty list.

If C is a disjunction (conjunction) of literals then by \overline{C} we understand the conjunction (disjunction) of the complements of the literals occurring in C. We will sometimes identify C with the multi-set of its elements.

For any CNF formula F (a finite set of clauses), we will define its DPLL graph DP_F. The nodes of DP_F are the states relative to the set of atoms occurring in F. We use the terms “state” and “node” interchangeably. Recall that a node is called terminal in a graph if there is no edge leaving this node in the graph. If a state is consistent and complete then it represents a truth assignment for F.

The set of edges of DP_F is described by a set of “transition rules.” Each transition rule is an expression $M \implies M'$ followed by a condition, where M and M' are nodes of DP_F. Whenever the condition is satisfied, the graph contains an edge from node M to M'. Generally, an edge in the graph may be justified by several transition rules. Figure 1 presents four transition rules that characterize the edges of DP_F.

This graph can be used for deciding the satisfiability of a formula F simply by constructing an arbitrary path leading from node \emptyset until a terminal node M is reached. The following proposition shows that this process always terminates, that F is unsatisfiable if M is FailState, and that M is a model of F otherwise.

Proposition 1
For any CNF formula F,

(a) graph DP_F is finite and acyclic,
(b) any terminal state of DP_F other than FailState is a model of F,
(c) FailState is reachable from \emptyset in DP_F if and only if F is unsatisfiable.

For instance, let F be the set consisting of the clauses

$$a \lor b$$

$$\neg a \lor c.$$

Here is a path in DP_F:

$$\emptyset \quad \implies (\text{Decide})$$
$$a^\Delta \quad \implies (\text{Unit Propagate})$$
$$a^\Delta c \quad \implies (\text{Decide})$$
$$a^\Delta cb^\Delta$$

Path (1) corresponds to an execution of dpll in the sense of (Davis et al. 1962); path (2) does not, because it applies Decide to a^Δ even though Unit Propagate could be applied in this state.

Note that the graph DP_F is a modification of the classical DPLL graph defined in (Nieuwenhuis et al. 2006, Section 2.3). It is different in three ways. First, its states are pairs $M || F$ for all CNF formulas F. For the purposes of this section, it is not necessary to include F. Second, the description of the classical DPLL graph involves a “PureLiteral” transition rule. We dropped this rule because it does not correspond to any of the propagation rules used in answer set solvers whose algorithms we will model in this paper. Third, in the definition of that graph, each M is required to be consistent. In case of DPLL, due to the simple structure of a clause, it is possible to characterize the applicability of Backtrack in a simple manner: when some of the clauses become inconsistent with the current partial assignment, Backtrack is applicable. In ASP, it is not easy to describe the applicability of Backtrack if only consistent states are taken into account. We introduced inconsistent states in the graph DP_F to facilitate our work on extending this graph to model algorithms of answer set solvers.

In the rest of this section we give a proof of Proposition 1.

Lemma 1

For any CNF formula F and any state $l_1 \ldots l_n$ reachable from \emptyset in DP_F, every model X of F satisfies l_i if it satisfies all decision literals l_j^Δ with $j \leq i$.

Proof

By induction on the path from \(\emptyset \) to \(l_1 \ldots l_n \). The property of \(X \) that we need to prove trivially holds in the initial state \(\emptyset \), and we will prove that all transition rules of \(\text{DP}_F \) preserve it.

Take a model \(X \) of \(F \), and consider an edge \(M \rightarrow M' \) where \(M \) is a list \(l_1 \ldots l_k \) such that \(X \) satisfies \(l_i \) if it satisfies all decision literals \(l_j^\Delta \) with \(j \leq i \).

It is clear that the rule justifying the transition from \(M \) to \(M' \) is different from \text{Fail}. For each of the other three rules, \(M' \) is obtained from a prefix of \(M \) by appending a list of literals containing at most one decision literal. Due to the inductive hypothesis, it is sufficient to show that if \(X \) satisfies all decision literals in \(M' \) then \(X \) satisfies all \(M' \).

Unit Propagate: \(M' \) is \(M \, \rightarrow \, l \). By the inductive hypothesis, for every literal in \(M \) the property in question holds. We need to show that \(X \models l \). From the definition of Unit Propagate, for some clause \(C \lor l \in F \), \(\overline{C} \subseteq M \). Consequently, \(M \models \neg C \). From the inductive hypothesis and the assumption that \(X \) satisfies all decision literals in \(M' \) and hence in \(M \), it follows that \(X \models M \). Since \(X \) is a model of \(F \), we conclude that \(X \models l \).

Decide: \(M' \) is \(M \, \rightarrow \, \Delta \). Obvious.

Backtrack: \(M \) has the form \(P \, \rightarrow \, \Delta \, Q \) where \(Q \) contains no decision literals. \(M' \) is \(P \, \rightarrow \, \Delta \). By the inductive hypothesis, it trivially follows that for every literal in \(P \) the property in question holds. We need to show that \(X \models \Delta \). Assume that \(X \models l \).

Since \(Q \) does not contain decision literals, and the assumption that \(X \) satisfies all decision literals in \(M' \) and hence in \(P \), \(X \) satisfies all decision literals in \(P \, \rightarrow \, \Delta \, Q \), that is \(M \). By the inductive hypothesis, it follows that \(X \) satisfies \(M \). This is impossible because \(M \) is inconsistent. \(\square \)

Proof of Proposition 1

(a) The finiteness of \(\text{DP}_F \) is obvious. For any list \(N \) of literals by \(|N|\) we denote the length of \(N \). Any state \(M \) other than \text{FailState} has the form \(M_0 \, \rightarrow \, M_1 \ldots \rightarrow \, M_p \), where \(l_0^\Delta \ldots l_p^\Delta \) are all decision literals of \(M \); we define \(\alpha(M) \) as the sequence of nonnegative integers \(|M_0|, |M_1|, \ldots, |M_p|\), and \(\alpha(\text{FailState}) = \infty \). By the definition of the transition rules defining the edges of \(\text{DP}_F \), if there is an edge from a state \(M \) to \(M' \) in \(\text{DP}_F \) then \(\alpha(M) < \alpha(M') \), where \(<\) is understood as the lexicographical order. It follows that if a state \(M' \) is reachable from \(M \) then \(\alpha(M) < \alpha(M') \). Consequently the graph is acyclic.

(b) Consider any terminal state \(M \) other than \text{FailState}. From the fact that \text{Decide} is not applicable, we conclude that \(M \) has no unassigned literals. Since neither \text{Backtrack} nor \text{Fail} is applicable, \(M \) is consistent. Consequently \(M \) is an assignment. It follows that for any clause \(C \lor l \in F \) if \(\overline{C} \not\subseteq M \) then \(C \cap M \neq \emptyset \). Furthermore, since \text{Unit Propagate} is not applicable, we conclude that if \(\overline{C} \subseteq M \) then \(l \in M \). Consequently, \(M \models C \lor l \). Hence \(M \) is a model of \(F \).

(c) Left-to-right: Since \text{FailState} is reachable from \(\emptyset \), there is an inconsistent state \(M \) without decision literals that is reachable from \(\emptyset \). By Lemma 1, any model of \(F \) satisfies \(M \). Since \(M \) is inconsistent we conclude that \(F \) has no models.
Right-to-left: From (a) it follows that there is a path from \emptyset to some terminal state. By (b), this state cannot be different from FailState, because F is unsatisfiable. \(\square\)

2.2 Logic Programs

We consider programs consisting of finitely many rules of the form

$$a \leftarrow b_1, \ldots, b_l, \neg b_{l+1}, \ldots, \neg b_m$$

where a is an atom or symbol \perp, and each b_i ($1 \leq i \leq m$) is an atom. We will identify the body of (3) with the conjunction

$$b_1 \land \ldots \land b_l \land \neg b_{l+1} \land \ldots \land \neg \land b_m$$

and also with the set of its conjunctive terms. If the head a of a rule (3) is an atom then we will identify (3) with the clause

$$a \lor \neg b_1 \lor \ldots \lor \neg b_l \lor b_{l+1} \lor \ldots \lor b_m. \quad (5)$$

If a is \perp then we call rule (3) a constraint and identify (3) with the clause

$$\neg b_1 \lor \ldots \lor \neg b_l \lor b_{l+1} \lor \ldots \lor b_m. \quad (6)$$

We will often omit the symbol \perp when referring to a constraint.

We will use two abbreviated forms for a rule (3): The first is

$$a \leftarrow B$$

where B stands for $b_1, \ldots, b_l, \neg b_{l+1}, \ldots, \neg b_m$. The second abbreviation is

$$a \leftarrow D, F \quad (7)$$

where D stands for the positive part of the body b_1, \ldots, b_l, and F stands for the negative part of the body $\neg b_{l+1}, \ldots, \neg b_m$.

The reduct Π^X of a program Π with respect to a set X of atoms is obtained from Π by

- removing each rule (7) such that $\overline{F} \cap X \neq \emptyset$, and
- replacing each remaining rule (7) by $a \leftarrow D$.

A set X of atoms is an answer set for a program Π if X is minimal (with respect to set inclusion) among the sets of atoms that satisfy the reduct Π^X (Gelfond and Lifschitz 1988).

For example, let Π be the program

$$a \leftarrow \neg b$$
$$b \leftarrow \neg a$$
$$c \leftarrow a$$
$$d \leftarrow d. \quad (8)$$

Consider set $\{a, c\}$. Reduct $\Pi^{\{a, c\}}$ is

$$a \leftarrow$$
$$c \leftarrow a$$
$$d \leftarrow d. \quad (9)$$
Set \(\{a, c\} \) satisfies the reduct and is minimal, hence \(\{a, c\} \) is an answer set of \(\Pi \). Consider set \(\{a, c, d\} \). The reduct \(\Pi^{\{a,c,d\}} \) is (9). Set \(\{a, c, d\} \) satisfies the reduct but is not minimal and hence it is not an answer set of \(\Pi \).

By \(\text{Bodies}(\Pi, a) \) we denote the set of the bodies of all rules of \(\Pi \) with head \(a \). For any set \(M \) of literals, by \(M^+ \) we denote the set of positive literals from \(M \). For any consistent and complete set \(M \) of literals (that is, an assignment), if \(M^+ \) is an answer set for a program \(\Pi \), then \(M \) is a model of \(\Pi \). Moreover, in this case \(M \) is a supported model of \(\Pi \), in the sense that for every atom \(a \in M \), \(M \models B \) for some \(B \in \text{Bodies}(\Pi, a) \).

A set \(U \) of atoms occurring in a program \(\Pi \) is said to be unfounded (Van Gelder et al. 1991) on a consistent set \(M \) of literals w.r.t. \(\Pi \) if for every \(a \in U \) and every \(B \in \text{Bodies}(\Pi, a) \), \(B \cap M \neq \emptyset \) or \(U \cap B^+ \neq \emptyset \). There is a tight relation between unfounded sets and answer sets: For any model \(M \) of a program \(\Pi \), \(M^+ \) is an answer set for \(\Pi \) if and only if \(M \) contains no non-empty subsets unfounded on \(M \) w.r.t. \(\Pi \) (Corollary 2 from (Saccá and Zaniolo 1990))\(^9\).

For instance, let \(\Pi \) be program (8) and let \(M \) be a consistent set \(\{a, \neg b, c, d\} \) of literals. We already demonstrated that \(M^+ = \{a, c, d\} \) is not an answer set of \(\Pi \). Accordingly, its subset \(\{d\} \) is unfounded on \(\{a, \neg b, c, d\} \) w.r.t. \(\Pi \), because the only rule in \(\Pi \) with \(d \) in the head

\[
d \leftarrow d
\]

is such that \(U \cap B^+ = \{d\} \cap \{d\} \neq \emptyset \).

We say that a program \(\Pi \) entails a formula \(F \) when for any consistent and complete set \(M \) of literals, if \(M^+ \) is an answer set for \(\Pi \), then \(M \models F \). For instance, any program \(\Pi \) entails each rule occurring in \(\Pi \).

3 Generating Supported Models

In Section 4 we will define, for an arbitrary program \(\Pi \), a graph \(\text{SM}_\Pi \) representing the application of the \text{smodels} algorithm to \(\Pi \); the terminal nodes of \(\text{SM}_\Pi \) are answer sets of \(\Pi \). As a step in this direction, we describe here a simpler graph \(\text{ATLEAST}_\Pi \).

3.1 Graph \(\text{ATLEAST}_\Pi \)

The terminal nodes of \(\text{ATLEAST}_\Pi \) are supported models of \(\Pi \). The transition rules defining \(\text{ATLEAST}_\Pi \) are closely related to procedure \text{Atleast} (Simons 2000, Sections 4.1), which is one of the core procedures of the \text{smodels} algorithm.

The nodes of \(\text{ATLEAST}_\Pi \) are the states relative to the set of atoms occurring in \(\Pi \). The edges of the graph \(\text{ATLEAST}_\Pi \) are described by the transition rules \text{Decide}, \text{Fail}, \text{Backtrack} introduced in Section 2.1 and the additional transition rules\(^{10}\) presented

\(^9\) The Corollary 2 from (Saccá and Zaniolo 1990) refers to "assumption sets" rather than unfounded sets. But as the authors noted, in the context of this corollary the two concepts are equivalent.

\(^{10}\) The names of some of these rules follow (Ward 2004).
Abstract Answer Set Solvers with Backjumping and Learning (long version)

Unit Propagate LP:
\[M \rightarrow M \ a \ \text{if} \ \begin{cases} a \leftarrow B \in \Pi \text{ and} \\ B \subseteq M \end{cases} \]

All Rules Cancelled:
\[M \rightarrow M \neg a \ \text{if} \ \overline{B} \cap M \neq \emptyset \text{ for all } B \in Bodies(\Pi, a) \]

Backchain True:
\[M \rightarrow Ml \ \text{if} \ \begin{cases} a \leftarrow B \in \Pi, \\ a \in M, \\ \overline{B} \cap M \neq \emptyset \text{ for all } B' \in Bodies(\Pi, a) \setminus \{B\}, \\ l \in B \end{cases} \]

Backchain False:
\[M \rightarrow M \overline{l} \ \text{if} \ \begin{cases} a \leftarrow l, B \in \Pi, \\ l \notin M \text{ or } a = \bot, \\ B \subseteq M \end{cases} \]

Fig. 2. The additional transition rules of the graph \textsc{atleast}_\Pi.

in Figure 2. Note that each of the rules \textit{Unit Propagate LP} and \textit{Backchain False} is similar to \textit{Unit Propagate}: the former corresponds to \textit{Unit Propagate} on \(C \lor l \) where \(l \) is the head of the rule, and the latter corresponds to \textit{Unit Propagate} on \(C \lor l \) where \(l \) is an element of the body of the rule.

This graph can be used for deciding whether program \(\Pi \) has a supported model by constructing a path from \(\emptyset \) to a terminal node:

\textit{Proposition 2}

For any program \(\Pi \),

(a) graph \textsc{atleast}_\Pi is finite and acyclic,
(b) any terminal state of \textsc{atleast}_\Pi other than \textsc{FailState} is a supported model of \(\Pi \),
(c) \textsc{FailState} is reachable from \(\emptyset \) in \textsc{atleast}_\Pi if and only if \(\Pi \) has no supported models.

For instance, let \(\Pi \) be program (8). Here is a path in \textsc{atleast}_\Pi:

\[\emptyset \rightarrow (Decide) \]
\[a^\Delta \rightarrow (Unit \ Propagate \ LP) \]
\[a^\Delta c \rightarrow (All \ Rules \ Cancelled) \]
\[a^\Delta c \neg b \rightarrow (Decide) \]
\[a^\Delta c \neg b d^\Delta \]

Since the state \(a^\Delta c \neg b d^\Delta \) is terminal, Proposition 2(b) asserts that \(\{a, c, \neg b, d\} \) is a supported model of \(\Pi \).

The assertion of Proposition 2 will remain true if we drop the transition rules \textit{Backchain True} and \textit{Backchain False} from the definition of \textsc{atleast}_\Pi.

In the rest of this section we give a proof of Proposition 2.
Lemma 2

For any program \(\Pi \) and any state \(l_1 \ldots l_n \) reachable from \(\emptyset \) in \(\text{ATLEAST}_\Pi \), every supported model \(X \) for \(\Pi \) satisfies \(l_i \) if it satisfies all decision literals \(l_j^\Delta \) with \(j \leq i \).

Proof

By induction on the path from \(\emptyset \) to \(l_1 \ldots l_n \). Similar to the proof of Lemma 1. We will show that the property in question is preserved when the transition from \(M \) to \(M' \) is justified by any of the four new rules.

Take a supported model \(X \) for \(\Pi \), and consider an edge \(M \rightarrow M' \) where \(M \) is a list \(l_1 \ldots l_k \) such that \(X \) satisfies \(l_i \) if it satisfies all decision literals \(l_j^\Delta \) with \(j \leq i \).

Assume that \(X \) satisfies all decision literals in \(M' \).

Unit Propagate LP: \(M' \) is \(M \perp a \). By the inductive hypothesis, for every literal in \(M \) the property in question holds. We need to show that \(X \models a \). By the definition of Unit Propagate LP, \(B \subseteq M \) for some rule \(a \leftarrow B \). Consequently, \(M \models B \). From the inductive hypothesis and the assumption that \(X \) satisfies all decision literals in \(M' \) and hence in \(M \), it follows that \(X \models M \). Since \(X \) is a model of \(\Pi \) we conclude that \(X \models a \).

All Rules Cancelled: \(M' \) is \(M \perp a \) and \(B \cap M \neq \emptyset \) for every \(B \in \text{Bodies}(\Pi, a) \). Consequently, \(M \models \neg B \) for every \(B \in \text{Bodies}(\Pi, a) \). By the inductive hypothesis, for every literal in \(M \) the property in question holds. We need to show that \(X \models \neg a \). By contradiction. Assume that \(X \models a \). From the inductive hypothesis and the assumption that \(X \) satisfies all decision literals in \(M' \) and hence in \(M \), it follows that \(X \models M \). Since \(M \models \neg B \) for every \(B \in \text{Bodies}(\Pi, a) \), it follows that \(X \models \neg B \). We conclude that \(X \) is not a supported model of \(\Pi \).

Backchain True: \(M' \) is \(M \perp l \). By the inductive hypothesis, for every literal in \(M \) the property in question holds. We need to show that \(X \models l \). By contradiction. Assume \(X \models \overline{l} \). Consider the rule \(a \leftarrow B \) corresponding to this application of Backchain True. Since \(l \in B \), \(X \models \neg B \). By the definition of Backchain True, \(B' \cap M \neq \emptyset \) for every \(B' \in \text{Bodies}(\Pi, a) \setminus B \). Consequently, \(M \models \neg B' \) for every \(B' \in \text{Bodies}(\Pi, a) \setminus B \). From the inductive hypothesis and the assumption that \(X \) satisfies all decision literals in \(M' \) and hence in \(M \), it follows that \(X \models M \). We conclude that \(X \models \neg B' \) for every \(B' \in \text{Bodies}(\Pi, a) \setminus B \). Hence \(X \) is not supported by \(\Pi \).

Backchain False: \(M' \) is \(M \perp \overline{l} \). By the inductive hypothesis, for every literal in \(M \) the property in question holds. We need to show that \(X \models \overline{l} \). By contradiction. Assume that \(X \models l \). By the definition of Backchain False there exists a rule \(a \leftarrow l, B \in \Pi \) such that \(\neg a \in M \) and \(B \subseteq M \). Consequently, \(M \models \neg a \) and \(M \models B \). From the inductive hypothesis and the assumption that \(X \) satisfies all decision literals in \(M' \) and hence in \(M \), it follows that \(X \models M \). We conclude that \(X \models \neg a \) and \(X \models B \). From the fact that \(X \models l \), it follows that \(X \) does not satisfy the rule \(a \leftarrow l, B \), so that it is not a model of \(\Pi \). □

Proof of Proposition 2

Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 2.

(b) Let \(M \) be a terminal state so that none of the rules are applicable. From the
fact that Decide is not applicable, we conclude that M assigns all literals. Since neither Backtrack nor Fail is applicable, M is consistent. Consequently, M is an assignment. Since Unit Propagate LP is not applicable, it follows that for every rule $a \leftarrow B \in \Pi$, if $B \subseteq M$ then $a \in M$. Consequently, if $M \models B$ then $M \models a$. We conclude that M is a model of Π. We will now show that M is a supported model of Π. By contradiction. Suppose that M is not a supported model. Then, there is an atom $a \in M$ such that $M \not\models B$ for every $B \in \text{Bodies}(\Pi, a)$. Since M is consistent, $\overline{B} \cap M \neq \emptyset$ for every $B \in \text{Bodies}(\Pi, a)$. Consequently, All Rules Cancelled is applicable. This contradicts the assumption that M is terminal. □

The fact that the assertion of Proposition 2 remains true if we drop the transition rules Backchain True and Backchain False from the definition of atleast_Π follows from the proof of Proposition 2 (b) that does not refer to those rules.

3.2 Relation between dp_F and atleast_Π

It is well known that the supported models of a program can be characterized as models of program’s completion in the sense of (Clark 1978). It turns out that the graph atleast_Π is identical to the graph dp_F, where F is the (clausified) completion of Π. To make this claim precise, we first review the notion of completion.

For any program Π, its completion consists of Π and the formulas that can be written as

$$\neg a \lor \bigvee_{B \in \text{Bodies}(\Pi, a)} B$$

(11)

for every atom a in Π. $\text{CNF} - \text{Comp}(\Pi)$ is the completion converted to CNF using straightforward equivalent transformations. In other words, $\text{CNF} - \text{Comp}(\Pi)$ consists of clauses of two kinds:

1. the rules $a \leftarrow B$ of the program written as clauses

$$a \lor \overline{B},$$

(12)

2. formulas (11) converted to CNF using the distributivity of disjunction over conjunction11.

Proposition 3

For any program Π, the graphs atleast_Π and $\text{dp}_{\text{CNF-Comp}(\Pi)}$ are equal.

For instance, let Π be the program

$$a \leftarrow b, \text{ not } c$$

$$b.$$

(13)

Its completion is

$$(a \leftrightarrow b \land \neg c) \land b \land \neg c,$$

(14)

11 It is essential that repetitions are not removed in the process of clausification. For instance, $\text{CNF} - \text{Comp}(a \leftarrow \text{not } a)$ is the formula $(a \lor a) \land (\neg a \lor \neg a)$. }
Proposition 3 asserts that ATLEAST_Π coincides with $\text{DP}_{\text{CNF-Comp}(\Pi)}$.

From Proposition 3, it follows that applying the Atleast algorithm to a program essentially amounts to applying DPLL to its completion.

In the rest of this section we give a proof of Proposition 3.

It is easy to see that the states of the graphs ATLEAST_Π and $\text{DP}_{\text{CNF-Comp}(\Pi)}$ coincide. We will now show that the edges of ATLEAST_Π and $\text{DP}_{\text{CNF-Comp}(\Pi)}$ coincide also.

It is clear that there is an edge $M \rightarrow M'$ in ATLEAST_Π justified by the rule Decide if and only if there is an edge $M \rightarrow M'$ in $\text{DP}_{\text{CNF-Comp}(\Pi)}$ justified by Decide. The same holds for the transition rules Fail and Backtrack.

We will now show that if there is an edge from a state M to a state M' in the graph $\text{DP}_{\text{CNF-Comp}(\Pi)}$ justified by the transition rule Unit Propagate then there is an edge from M to M' in ATLEAST_Π. Consider a clause $C \lor l \in \text{1CNF} - \text{Comp}(\Pi)$ such that $\overline{C} \subseteq M$. We will consider two cases, depending on whether $C \lor l$ comes from (12) or from the CNF of (11).

Case 1. $C \lor l$ is $a \lor \overline{B}$ corresponding to a rule $a \leftarrow B$.

Case 1.1. l is a. Then there is an edge from M to M' in ATLEAST_Π justified by the transition rule Unit Propagate LP.

Case 1.2. l is an element of \overline{B}. Then B has the form l, D and C is $a \lor \overline{D}$. From $\overline{C} \subseteq M$ we conclude that $D \subseteq M$ and $\neg a \in M$. There is an edge from M to M' in the graph ATLEAST_Π justified by the following instance of Backchain False:

$$
\begin{align*}
M \rightarrow M' & \text{ if } \\
\begin{cases}
 a \leftarrow l, D \in \Pi, \\
 \neg a \in M, \\
 D \subseteq M.
\end{cases}
\end{align*}
$$

Case 2. $C \lor l$ has the form $\neg a \lor D$, where D is one of the clauses of the CNF of

$$
\bigvee_{B \in \text{Bodies}(\Pi, a)} B.
$$

Then D has the form

$$
\bigvee_{B \in \text{Bodies}(\Pi, a)} f(B)
$$

where f is a function that maps every $B \in \text{Bodies}(\Pi, a)$ to an element of B.

Case 2.1. l is $\neg a$. Then C is D, so that $\overline{D} \subseteq M$. Consequently $f(B) \in \overline{B} \cap \overline{D} \subseteq \overline{B} \cap M$, so that $\overline{B} \cap M \neq \emptyset$ for every $B \in \text{Bodies}(\Pi, a)$. There is an edge from M to M' in ATLEAST_Π justified by $\text{All Rules Cancelled}$.

Case 2.2. l is an element of D. From the construction of D, it follows that $l = f(B) \in B$ for some rule $a \leftarrow B$. Then C is

$$
\neg a \lor \bigvee_{B' \in \text{Bodies}(\Pi, a) \setminus B} f(B').
$$

From $\overline{C} \subseteq M$ we conclude that $a \in M$ and that $f(B') \in M$ for every $B' \in$
Abstract Answer Set Solvers with Backjumping and Learning (long version)

Bodies(Π, a) \ B. Since \(f(B') \) is a conjunctive term of \(B' \), it follows that \(\overline{B'} \cap M \neq \emptyset \). Then there is an edge from \(M \) to \(M' \) in ATLEAST_Π justified by Backchain True.

We will now show that if there is an edge from a state \(M \) to a state \(M' \) in the graph ATLEAST_Π justified by one of the transition rules Unit Propagate LP, All Rules Cancelled, Backchain True, and Backchain False then there is an edge from \(M \) to \(M' \) in DP_{CNF-Comp(Π)}.

Case 1. The edge is justified by Unit Propagate LP. Then there is a rule \(a \leftarrow B \in Π \) where \(B \subseteq M \), and \(M' \) is \(M \lor a \). By the construction of \(iCNF - Comp(Π) \), \(a \lor \overline{B} \in 1CNF - Comp(Π) \). There is an edge from \(M \) to \(M' \) in \(DP_{CNF-Comp(Π)} \) justified by the following instance of Unit Propagate:

\[
M \implies M \lor \begin{cases}
\overline{B} \lor a \in 1CNF - Comp(Π) \\
B \subseteq M.
\end{cases}
\]

Case 2. The edge is justified by All Rules Cancelled. By the definition of All Rules Cancelled, there is an atom \(a \) such that for all \(B \in Bodies(Π, a) \), \(\overline{B} \cap M \neq \emptyset \); and \(M' \) is \(M \lor \overline{a} \). Consequently, \(M \) contains the complement of some literal in \(B \). Denote one of such literals by \(f(B) \), so that \(f(B) \in M \). From the construction of \(1CNF - Comp(Π) \),

\[
\neg a \lor \bigvee_{B \in Bodies(Π, a)} f(B)
\]

belongs to \(1CNF - Comp(Π) \). By the choice of \(f \),

\[
\bigvee_{B \in Bodies(Π, a)} f(B) \subseteq M.
\]

There is an edge from \(M \) to \(M' \) in \(DP_{CNF-Comp(Π)} \) justified by the following instance of Unit Propagate:

\[
M \implies M \lor \begin{cases}
\overline{f(B)} \lor a \in 1CNF - Comp(Π) ,
\bigvee_{B \in Bodies(Π, a)} f(B) \subseteq M.
\end{cases}
\]

Case 3. The edge is justified by Backchain True. By the definition of Backchain True, there is a rule \(a \leftarrow B \in Π \) and a literal \(l \in B \) such that \(a \in M \); for all \(B' \in Bodies(Π, a) \setminus B \), \(\overline{B'} \cap M \neq \emptyset \); and \(M' \) is \(M \lor l \). Let \(f(B') \) be an element of \(B' \) such that \(f(B') \in M \). From the construction of \(1CNF - Comp(Π) \),

\[
\neg a \lor l \lor \bigvee_{B' \in Bodies(Π, a) \setminus B} f(B')
\]

belongs to \(1CNF - Comp(Π) \). By the choice of \(f \),

\[
\bigvee_{B' \in Bodies(Π, a) \setminus B} f(B') \subseteq M.
\]

There is an edge from \(M \) to \(M' \) in \(DP_{CNF-Comp(Π)} \) justified by the following instance
of Unit Propagate:

\[
M \Rightarrow M l \text{ if } \begin{cases}
\neg a \lor l \lor \bigvee_{B' \in \text{Bodies}(\Pi, a) \setminus B} f(B') \in 1\text{CNF} - \text{Comp}(\Pi), \\
(-a \lor \bigvee_{B' \in \text{Bodies}(\Pi, a) \setminus B} f(B')) \subseteq M.
\end{cases}
\]

Case 4. The edge is justified by Backchain False. By the definition of Backchain False, there is a rule \(a \leftarrow l, B \in \Pi \) such that \(\neg a \in M, B \subseteq M \), and \(M' \) is \(M \bar{l} \). By the construction of \(1\text{CNF} - \text{Comp}(\Pi) \), \(a \lor \overline{B} \lor \bar{l} \in 1\text{CNF} - \text{Comp}(\Pi) \). There is an edge from \(M \) to \(M' \) in \(\text{dp}_{\text{CNF-Comp}}(\Pi) \) justified by the following instance of Unit Propagate:

\[
M \Rightarrow M \bar{l} \text{ if } \begin{cases}
a \lor \overline{B} \lor \bar{l} \in 1\text{CNF} - \text{Comp}(\Pi) \text{ and } \\
a \lor B \subseteq M.
\end{cases}
\]

\(\square \)

4 Answer Set Solver Smodels

4.1 Abstract Smodels

We now describe the graph \(\text{sm}_\Pi \) that represents the application of the SMODELS algorithm to program \(\Pi \). \(\text{sm}_\Pi \) is a graph whose nodes are the same as the nodes of the graph \(\text{atleast}_\Pi \). The edges of \(\text{sm}_\Pi \) are described by the transition rules of \(\text{atleast}_\Pi \) and the additional transition rule:

\textbf{Unfounded:}

\[
M \Rightarrow M \neg a \text{ if } \begin{cases}
M \text{ is consistent, and } \\
a \in U \text{ for a set } U \text{ unfounded on } M \text{ w.r.t. } \Pi.
\end{cases}
\]

This transition rule of \(\text{sm}_\Pi \) is closely related to procedure \(\text{Atmost} \) (Simons 2000, Sections 4.2), which together with the procedure \(\text{Atleast} \) forms the core of the SMODELS algorithm.

The graph \(\text{sm}_\Pi \) can be used for deciding whether program \(\Pi \) has an answer set by constructing a path from \(\emptyset \) to a terminal node:

\textbf{Proposition 4}

For any program \(\Pi \),

(a) graph \(\text{sm}_\Pi \) is finite and acyclic,

(b) for any terminal state \(M \) of \(\text{sm}_\Pi \) other than \(\text{FailState} \), \(M^+ \) is an answer set of \(\Pi \),

(c) \(\text{FailState} \) is reachable from \(\emptyset \) in \(\text{sm}_\Pi \) if and only if \(\Pi \) has no answer sets.

To illustrate the difference between \(\text{sm}_\Pi \) and \(\text{atleast}_\Pi \), assume again that \(\Pi \) is program (8). Path (10) in the graph \(\text{atleast}_\Pi \) is also a path in \(\text{sm}_\Pi \). But state \(a^\Delta, c \neg b \neg d^\Delta \), which is terminal in \(\text{atleast}_\Pi \), is not terminal in \(\text{sm}_\Pi \). This is not
Abstract Answer Set Solvers with Backjumping and Learning (long version)

Abstract:

Answer Set Solvers with Backjumping and Learning (long version)

15

surprising, since \{a, c, \neg b, d\}^+ = \{a, c, d\} is not an answer set of \Pi. To get to a state that is terminal in SM\Pi, we need two more steps:

\begin{align*}
\vdash & a^\Delta \neg b^\Delta c^\Delta d^\Delta \implies (Unfounded, U = \{d\}) \\
\vdash & a^\Delta \neg b^\Delta d^\Delta \implies (Backtrack) \\
\vdash & a^\Delta c^\Delta \neg b^\Delta d^\Delta \implies (Backtrack)
\end{align*}

(16)

Proposition 4(b) asserts that \{a, c\} is an answer set of \Pi.

The assertion of Proposition 4 will remain true if we drop the transition rules All Rules Cancelled, Backchain True, and Backchain False from the definition of SM\Pi.

In the rest of this section we give a proof of Proposition 4.

We say that a model \M of a program \Pi is unfounded-free if no non-empty subset of \M is unfounded on \M w.r.t \Pi.

Lemma 3 (Corollary 2 from (Saccá and Zaniolo 1990))

For any model \M of a program \Pi, \M^+ is an answer set for \Pi if and only if \M is unfounded-free.

Lemma 4

For any unfounded set \U on a consistent set \M of literals w.r.t. a program \Pi, and any assignment \X, if \X \models \Pi and \X \cap \U \neq \emptyset, then \X^+ is not an answer set for \Pi.

Proof

Assume that \X^+ is an answer set for \Pi. Then \X is a model of \Pi. By Lemma 3, it follows that \X is unfounded-free. Hence any non-empty subset of \X including \X \cap \U is not unfounded on \X. This means that for some rule \(a \leftarrow B\) in \Pi such that \(a \in X \cap U\), \(\overline{B} \cap X = \emptyset\) and \(X \cap U \cap B^+ = \emptyset\). From \(X \models M (M \subseteq X)\) and \(\overline{B} \cap X = \emptyset\) we conclude that \(\overline{B} \cap M = \emptyset\). Since \(\overline{B} \cap X = \emptyset\) and \X is an assignment, \(B \subseteq X\). It follows that \(B^+ \subseteq X\). Consequently \(U \cap B^+ = X \cap U \cap B^+ = \emptyset\). This contradicts the assumption that \U is an unfounded set on \M.

Lemma 5

For any program \Pi, any state \(l_1 \ldots l_n\) reachable from \emptyset in SM\Pi, and any assignment \X, if \X^+ is an answer set for \Pi then \X satisfies \(l_i\) if it satisfies all decision literals \(l_j^\Delta\) with \(j \leq i\).

Proof

By induction on the path from \emptyset to \(l_1 \ldots l_n\). Recall that for any assignment \X, if \X^+ is an answer set for \Pi, then \X is a supported model of \Pi, and that the transition system SM\Pi extends ATLEAST\Pi only by the transition rule Unfounded. Given our proof of Lemma 2, we only need to demonstrate that application of Unfounded preserves the property.

Consider a transition \(M \Rightarrow M'\) justified by Unfounded, where \M is a sequence \(l_1 \ldots l_k\), \(M'\) is \(M \leftarrow a\), such that \(a \in U\), where \U is an unfounded set on \M w.r.t \Pi.

Take any assignment \X such that \X^+ is an answer set for \Pi and \X satisfies all
decision literals l_j^Δ with $j \leq k$. By the inductive hypothesis, $X \models M$. Then $X \models \neg a$. Indeed, otherwise a would be a common element of X and U, and $X \cap U$ would be non-empty, which contradicts Lemma 4.

Proof of Proposition 4

Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 5. (b) As in the proof of Proposition 2(b) we conclude that M is a model of Π. Assume that M^+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded set U on M w.r.t. Π such that $U \subseteq M$. It follows that $\textit{Unfounded}$ is applicable (with an arbitrary $a \in U$). This contradicts the assumption that M is terminal.

The fact that the assertion of Proposition 4 remains true if we drop the transition rules $\textit{All Rules Cancelled}, \textit{Backchain True}$, and $\textit{Backchain False}$ from the definition of \textit{SM}_Π follows from the proof of Proposition 4 (b) that does not refer to those rules.

4.2 Smodels Algorithm

We can view a path in the graph \textit{SM}_Π as a description of a process of search for an answer set for a program Π by applying inference rules. Therefore, we can characterize the algorithm of an answer set solver that utilizes the inference rules of \textit{SM}_Π by describing a strategy for choosing a path in \textit{SM}_Π. A strategy can be based, in particular, on assigning priorities to some or all inference rules of \textit{SM}_Π, so that a solver will never apply a transition rule in a state if a rule with higher priority is applicable to the same state.

We use this method to describe the $\textit{Smodels}$ algorithm. System $\textit{Smodels}$ assigns priorities to the inference rules of \textit{SM}_Π as follows:

- $\textit{Backtrack}, \textit{Fail} \gg$
- $\textit{Unit Propagate LP}, \textit{All Rules Cancelled}, \textit{Backchain True}, \textit{Backchain False} \gg$
- $\textit{Unfounded} \gg$
- \textit{Decide}

For example, let Π be program (8). The $\textit{Smodels}$ algorithm may follow a path

$\emptyset \quad \Rightarrow \quad (\textit{Decide})$

$a^\Delta \quad \Rightarrow \quad (\textit{Unit Propagate LP})$

$a^\Delta c \quad \Rightarrow \quad (\textit{All Rules Cancelled})$

$a^\Delta c \neg b \quad \Rightarrow \quad (\textit{Unfounded})$

in the graph \textit{SM}_Π, whereas it may never follow path (10), because $\textit{Unfounded}$ has a higher priority than \textit{Decide}.

4.3 Tight Programs

We will now review the definitions of a positive dependency graph and a tight program. The $\textit{positive dependency graph}$ of a program Π is the directed graph G such that
Abstract Answer Set Solvers with Backjumping and Learning (long version)

- the nodes of G are the atoms occurring in Π, and
- G contains the edges from a to b_i ($1 \leq i \leq l$) for each rule

\[
a \leftarrow b_1, \ldots, b_i, \text{not } b_{i+1}, \ldots, \text{not } b_m
\]

in Π where a is an atom.

A program is tight if its positive dependency graph is acyclic. For instance, program (8) is not tight since its positive dependency graph has a cycle due to the rule $d \leftarrow d$. On the other hand, the program constructed from (8) by removing this rule is tight.

Recall that for any program Π and any assignment M, if M^+ is an answer set of Π then M is a supported model of Π. For the case of tight programs, the converse holds also: M^+ is an answer set for Π if and only if M is a supported model of Π (Fages 1994) or, in other words, is a model of the completion of Π. It turns out that for tight programs the graph smodels is “almost identical” to the graph dp_F, where F is the clausified completion of Π. To make this claim precise, we need the following terminology.

We say that an edge $M \implies M'$ in the graph smodels is singular if

- the only transition rule justifying this edge is Unfounded, and
- some edge $M \implies M''$ can be justified by a transition rule other than Unfounded or Decide.

For instance, let Π be the program

\[
a \leftarrow b \\
b \leftarrow c.
\]

The edge

\[
a \Delta b \Delta c \Delta \implies (\text{Unfounded}, \ U = \{a, b\})
\]

in the graph smodels is singular, because the edge

\[
a \Delta b \Delta c \Delta \implies (\text{All Rules Cancelled})
\]

belongs to smodels also.

With respect to the actual smo algorithm (Simons 2000), singular edges of the graph smodels are inessential: in view of priorities for choosing a path in smodels described in Section 4.2 smo never follows a singular edge. Indeed, the transition rule Unfounded has the lower priority than any other transition rule but Decide. By smodels we denote the graph obtained from smodels by removing all singular edges.

Proposition 5

For any tight program Π, the graph smodels is equal to each of the graphs atleast_Π and $\text{dp}_\text{CNF-Comp}(\Pi)$.

For instance, let Π be the program (13). This program is tight, its completion is (14), and $\text{CNF - Comp}(\Pi)$ is formula (15). Proposition 5 asserts that, smodels coincides with $\text{dp}_\text{CNF-Comp}(\Pi)$ and with atleast_Π.

From Proposition 5, it follows that applying the smodels algorithm to a tight program essentially amounts to applying DPLL to its completion. A similar relationship, in terms of pseudocode representations of smodels and DPLL, is established in (Giunchiglia and Maratea 2005).

In the rest of this section we give a proof of Proposition 5.

Lemma 6
For any tight program Π and any non-empty unfounded set U on a consistent set M of literals w.r.t. Π there is an atom a ∈ U such that for every B ∈ Bodies(Π, a), \(\overline{B} \cap M \neq \emptyset \).

Proof
By contradiction. Assume that, for every a ∈ U there exists B ∈ Bodies(Π, a) such that \(\overline{B} \cap M = \emptyset \). By the definition of an unfounded set it follows that for every atom a ∈ U there is B ∈ Bodies(Π, a) such that \(U \cap B^+ \neq \emptyset \). Consequently the subgraph of the positive dependency graph of Π induced by U has no terminal nodes. Then, the program Π is not tight.

Proof of Proposition 5
In view of Proposition 3, it is sufficient to prove that sm\(\Pi \) equals atleast\(\Pi \); or, in other words, that every edge of sm\(\Pi \) justified by the rule Unfounded only is singular. Consider such an edge M \(\implies \) M'. We need to show that some transition rule other than Unfounded or Decide is applicable to M. By the definition of Unfounded, M is consistent and there exists a non-empty set U unfounded on M w.r.t. Π. By Lemma 6, it follows that there is an atom a ∈ U such that for every B ∈ Bodies(Π, a), \(\overline{B} \cap M \neq \emptyset \). Therefore, the transition rule All Rules Cancelled is applicable to M.

5 Generate and Test
In this section, we present a modification of the graph DP\(F \) (Section 2.1) that includes testing “partial” assignments of \(F \) found by DPLL.

Let \(F \) be a CNF formula, and let \(G \) be a formula formed from atoms occurring in \(F \). The terminal nodes of the graph GT\(F,G \) defined below are models of formula \(F \land G \).

This modification of the graph DP\(F \) is of interest, for example, in connection with the fact that answer sets of a program Π can be characterized as models of its completion extended by so called loop formulas of Π (Lin and Zhao 2002). If \(1CNF - Comp(\Pi) \), as above, is the completion converted to CNF, and LF(Π) is the conjunction of all loop formulas of Π, then for any assignment \(M, M^+ \) is an answer set of Π iff \(M \) is a model of \(1CNF - Comp(\Pi) \land LF(\Pi) \). Hence, the terminal nodes of the graph GT\(CNF-Comp(\Pi),LF(\Pi) \) will correspond to answer sets of Π.

The nodes of the graph GT\(F,G \) are the same as the nodes of the graph DP\(F \). The edges of GT\(F,G \) are described by the transition rules of DP\(F \) and the additional
Abstract Answer Set Solvers with Backjumping and Learning (long version)

transition rule:

\[\text{Test}: \]
\[M \implies M^l_\bot \text{ if } \begin{cases} M \text{ is consistent}, \\ G \models \overline{M}, \\ l \in M \end{cases} \]

It is easy to see that the graph \(DP_F \) is a subgraph of \(GT_{F,G} \). The latter graph can be used for deciding whether a formula \(F \land G \) has a model by constructing a path from \(\emptyset \) to a terminal node:

Proposition 6

For any CNF formula \(F \) and a formula \(G \) formed from atoms occurring in \(F \),

(a) graph \(GT_{F,G} \) is finite and acyclic,

(b) any terminal state of \(GT_{F,G} \) other than \(\text{FailState} \) is a model of \(F \land G \),

(c) \(\text{FailState} \) is reachable from \(\emptyset \) in \(GT_{F,G} \) if and only if \(F \land G \) is unsatisfiable.

Note that to verify the applicability of the new transition rule \(\text{Test} \) we need a procedure for testing whether \(G \) entails a clause, but there is no need to explicitly write out \(G \). This is important because \(LF(\Pi) \) can be very long (Lin and Zhao 2002).

For instance, let \(\Pi \) be the nontight program

\[d \leftarrow d. \]

Its completion is

\[d \leftrightarrow d, \]

and \(\text{CNF} - \text{Comp}(\Pi) \) is

\[(d \lor \lnot d). \]

This program has one loop formula

\[d \rightarrow \bot. \]

Proposition 6 asserts that a terminal state \(\lnot d \) of \(GT_{\text{CNF-Comp}(\Pi),d \rightarrow \bot} \) is a model of \(\text{CNF} - \text{Comp}(\Pi) \land LF(\Pi) \). It follows that \(\{ \lnot d \}^+ = \emptyset \) is an answer set of \(\Pi \). To compare with the graph \(DP_{\text{CNF-Comp}(\Pi)}: \) state \(d \) is a terminal state in \(DP_{\text{CNF-Comp}(\Pi)} \) whereas \(d \) is not a terminal state in \(GT_{\text{CNF-Comp}(\Pi),d \rightarrow \bot} \) because the transition rule \(\text{Test} \) is applicable to this state.

\textsc{asp-sat} with Backtracking (Giunchiglia et al. 2006) is a procedure that computes models of the completion of the given program using \(\text{dpll} \), and tests them until an answer set is found. The application of this procedure to a program \(\Pi \) can be viewed as constructing a path from \(\emptyset \) to a terminal node in the graph \(GT_{\text{CNF-Comp}(\Pi),LF(\Pi)} \) by adopting a strategy that \(\text{Test} \) is applied to a state \(M \) only when \(M \) is an assignment.

In the rest of this section we give a proof of Proposition 6.

Lemma 7

For any CNF formula \(F \), a formula \(G \) formed from atoms occurring in \(F \), and a path from \(\emptyset \) to a state \(l_1 \ldots l_n \) in \(GT_{F,G} \), any model \(X \) of \(F \land G \) satisfies \(l_i \) if it satisfies all decision literals \(l_j^\Delta \) with \(j \leq i \).
Proof
By induction on the path from \emptyset to $l_1 \ldots l_n$. Similar to the proof of Lemma 1. We will show that the property in question is preserved by the transition rule Test.

Take a model X of $F \land G$ and consider an edge $M \rightarrow M'$ where M is a list $l_1 \ldots l_k$ such that X satisfies l_i if it satisfies all decision literals l_j^Δ with $j \leq i$.

Assume that X satisfies all decision literals from M. By the inductive hypothesis, $X \models M$. We will show that the rule justifying the transition from M to M' is different from Test. By contradiction, M' is M^\uparrow. By the definition of Test, $G \models \overline{M}$. Since X is a model of $F \land G$ it follows that $X \models \overline{M}$. This contradicts the fact that $X \models M$. \square

Proof of Proposition 6
Part (a) and part (c) Right-to-left are proved as in the proof of Proposition 1.

(b) Let M be any terminal state other than FailState. As in the proof of Proposition 1(b) it follows that M is a model of F. The transition rule Test is not applicable. Hence $G \not\models \overline{M}$. In other words M is a model of G. We conclude that M is a model of $F \land G$.

(c) Left-to-right: Since FailState is reachable from \emptyset, there is a state M without decision literals such that M is reachable from \emptyset and the transition rule Fail is applicable in M. Then, M is inconsistent. By Lemma 7, any model of $F \land G$ satisfies M. Since M is inconsistent we conclude $F \land G$ is unsatisfiable. \square

6 Review: Abstract DPLL with Learning
Most modern SAT solvers implement such sophisticated techniques as backjumping and learning:

Backjumping: Chronological Backtracking (used in classical dpll) can be seen as a prototype of Backjumping. Unlike Backtracking that undoes only the previously made decision, Backjumping is generally able to backtrack further in the search tree by undoing several decisions at once.

Learning: Most modern SAT solvers implement so called conflict-driven backjumping and learning: whenever backjumping is performed they add (learn) a “backjump clause” to the clause database of a solver. Learning backjump clauses prevents a solver from reaching “similar” inconsistent states.

In this section we will extend the graph D_P_F to capture the ideas behind backjumping and learning. The new graph will be closely related to the DPLL System with Learning graph introduced in (Nieuwenhuis et al. 2006, Section 2.4).

We first note that the graph D_P_F is not adequate to capture such technique as learning since it is incapable to reflect a change in a state of computation related to newly learned clauses. We start by redefining a state so that it incorporates information about changes performed on a clause database.

For a CNF formula F, an augmented state relative to F is either a distinguished state FailState or a pair $M[|\Gamma$ where M is a record relative to the set of atoms occurring in F, and Γ is a (multi-)set of clauses over atoms of F that are entailed by F.

Abstract Answer Set Solvers with Backjumping and Learning (long version)

Unit Propagate λ:

$M || \Gamma \Rightarrow M l || \Gamma$ if \quad $\{ C \lor l \in F \cup \Gamma$ and $\overline{C} \subseteq M \}$

Backjump:

$Pl \Delta Q || \Gamma \Rightarrow Pl' || \Gamma$ if \quad $\{ Pl \Delta Q$ is inconsistent and $F \models l' \lor \overline{P} \}$

Learn:

$M || \Gamma \Rightarrow M || C, \Gamma$ if \quad $\{ \text{every atom in } C \text{ occurs in } F \text{ and } F \models C \}$

Fig. 3. The additional transition rules of the graph dpl_F.

We now define a graph dpl_F for any CNF formula F. Its nodes are the augmented states relative to F. The transition rules $Decide$ and $Fail$ of dp_F are extended to dpl_F as follows: $M || \Gamma \Rightarrow M' || \Gamma$ ($M || \Gamma \Rightarrow FailState$) is an edge in dpl_F justified by $Decide$ ($Fail$) if and only if $M \Rightarrow M'$ ($M \Rightarrow FailState$) is an edge in dp_F justified by $Decide$ ($Fail$). Figure 3 presents the other transition rules of dpl_F. We refer to the transition rules $Unit Propagate \lambda$, $Backjump$, $Decide$, and $Fail$ of the graph dpl_F as $Basic$. We say that a node in the graph is semi-terminal if no rule other than $Learn$ is applicable to it.

We will omit the word “augmented” before “state” when this is clear from a context.

The graph dpl_F can be used for deciding the satisfiability of a formula F simply by constructing an arbitrary path from node $\emptyset || \emptyset$ to a semi-terminal node:

Proposition 7

For any CNF formula F,

(a) every path in dpl_F contains only finitely many edges justified by Basic transition rules,

(b) for any semi-terminal state $M || \Gamma$ of dpl_F reachable from $\emptyset || \emptyset$, M is a model of F,

(c) $FailState$ is reachable from $\emptyset || \emptyset$ in dpl_F if and only if F is unsatisfiable.

On the one hand, Proposition 7 (a) asserts that if we construct a path from $\emptyset || \emptyset$ so that Basic transition rules periodically appear in it then some semi-terminal state will be eventually reached. On the other hand, Proposition 7 (b) and (c) assert that as soon as a semi-terminal state is reached the problem of deciding whether formula F is satisfiable is solved. The proof of this proposition is similar to the proof of Theorem 2.12 from (Nieuwenhuis et al. 2006).

For instance, let F be the formula

$$a \lor b$$

$$\neg a \lor c.$$
Here is a path in DPL_F:

$$
\begin{align*}
\emptyset||\emptyset & \quad \Rightarrow \quad \text{(Learn)} \\
\emptyset||b \lor c & \quad \Rightarrow \quad \text{(Decide)} \\
\neg b^\Delta||b \lor c & \quad \Rightarrow \quad \text{(Unit Propagate λ)} \\
\neg b^\Delta c||b \lor c & \quad \Rightarrow \quad \text{(Unit Propagate λ)} \\
\neg b^\Delta c a||b \lor c &
\end{align*}
$$

(17)

Since the state $\neg b^\Delta c a$ is semi-terminal, Proposition 7 (b) asserts that $\{\neg b, c, a\}$ is a model of F.

Recall that the transition rule Backtrack of the graph DP_F – a prototype of Backjump – is applicable in any inconsistent state with a decision literal in DP_F. The transition rule Backjump, on the other hand, is applicable in any inconsistent state with a decision literal that is reachable from $\emptyset||\emptyset$ (the proof of this statement is similar to the proof of Lemma 2.8 from (Nieuwenhuis et al. 2006)). The application of Backjump where l^Δ is the last decision literal and l' is \bar{t} can be seen as an application of Backtrack. This fact shows that Backjump is essentially a generalization of Backtrack. The subgraph of DP_F induced by the nodes reachable from \emptyset is basically a subgraph of DPL_F.

7 Answer Set Solver with Learning

In this section we will extend the graph SML_Π to capture backjumping and learning. As a result we will be able to model the algorithms of systems SMODELS_{cc} and SUP.

7.1 Graph SML_Π

An (augmented) state relative to a program Π is either a distinguished state FailState or a pair of the form $M||\Gamma$ where M is a record relative to the set of atoms occurring in Π, and Γ is a (multi-)set of constraints formed from atoms occurring in Π that are entailed by Π.

For any program Π, we will define a graph SML_Π. Its nodes are the augmented states relative to Π. The transition rules Unit Propagate LP, $\text{All Rules Cancelled}$, Backchain True, Backchain False λ, Unfounded, Decide, and Fail of SML_Π are extended to SML_Π as follows: $M||\Gamma \Rightarrow M'||\Gamma$ ($M||\Gamma \Rightarrow \text{FailState}$) is an edge in SML_Π justified by a transition rule T if and only if $M \Rightarrow M'$ ($M \Rightarrow \text{FailState}$) is an edge in SML_Π justified by T. Figure 4 presents the other transition rules of SML_Π.

We refer to the transition rules Unit Propagate LP, $\text{All Rules Cancelled}$, Backchain True, Backchain False λ, Unfounded, Backjump LP, Decide, and Fail of the graph SML_Π as Basic. We say that a node in the graph is semi-terminal if no rule other than Learn LP is applicable to it.

The graph SML_Π can be used for deciding whether a program Π has an answer set by constructing a path from $\emptyset||\emptyset$ to a semi-terminal node:

Proposition 8

For any program Π,
Backchain False λ:

\[M \parallel \Gamma \Rightarrow M \parallel \Gamma \quad \text{if} \quad \begin{cases} \text{a} \leftarrow \lambda, B \in \Pi \cup \Gamma, \\ \neg \text{a} \in M \text{ or } a = \bot, \\ B \subseteq M \end{cases} \]

Backjump LP:

\[P \Delta Q \parallel \Gamma \Rightarrow P' \parallel \Gamma \quad \text{if} \quad \begin{cases} P \Delta Q \text{ is inconsistent and} \\ \Pi \text{ entails } P' \lor \overline{\mathcal{F}} \end{cases} \]

Learn LP:

\[M \parallel \Gamma \Rightarrow M \parallel B, \Gamma \quad \text{if} \quad \Pi \text{ entails } \overline{\mathcal{F}} \]

Fig. 4. The additional transition rules of the graph SML_{II}.

(a) every path in SML_{II} contains only finitely many edges labeled by Basic transition rules,

(b) for any semi-terminal state \(M \parallel \Gamma \) of SML_{II} reachable from \(\emptyset \parallel \emptyset \), \(M^+ \) is an answer set of \(\Pi \),

(c) FailState is reachable from \(\emptyset \parallel \emptyset \) in SML_{II} if and only if \(\Pi \) has no answer sets.

Thus if we construct a path from \(\emptyset \parallel \emptyset \) so that Basic transition rules periodically appear in it then some semi-terminal state will be eventually reached; as soon as a semi-terminal state is reached the problem of finding an answer set is solved.

For instance, let \(\Pi \) be program (8). Here is a path in SML_{II} with every edge annotated by the name of a transition rule that justifies the presence of this edge in the graph:

\[
\begin{align*}
\emptyset \parallel \emptyset & \Rightarrow (\text{Decide}) \\
\Delta \emptyset \parallel \emptyset & \Rightarrow (\text{Unit Propagate LP}) \\
\Delta \emptyset \parallel \emptyset & \Rightarrow (\text{All Rules Cancelled}) \\
\Delta \emptyset \parallel \emptyset & \Rightarrow (\text{Decide}) \\
\Delta \emptyset \parallel \emptyset & \Rightarrow (\text{Unfounded}) \\
\Delta \emptyset \parallel \emptyset & \Rightarrow (\text{Backjump LP}) \\
\Delta \emptyset \parallel \emptyset & \Rightarrow (\text{Learn LP})
\end{align*}
\]

Since the state \(\Delta \emptyset \parallel \emptyset \) is semi-terminal, Proposition 8 (b) asserts that

\[\{ a, c, \neg b, \neg d \}^+ = \{ a, c \} \]

is an answer set for \(\Pi \).

Proof of Proposition 8 is in Section 10.

As in case of the graphs DPF and DPLP, Backjump LP is applicable in any inconsistent state with a decision literal that is reachable from \(\emptyset \parallel \emptyset \) (Proposition 11 from Section 9), and is essentially a generalization of the transition rule Backtrack of the graph SML_{II}.

Modern SAT solvers often implement such sophisticated techniques as restart and forgetting in addition to backjumping and learning:
Restart: A solver restarts the DPLL procedure whenever the search is not making “enough” progress. The idea is that upon a restart a solver will explore a new part of the search space using the clauses that have been learned.

Forgetting: This technique is usually implemented in relation with conflict-driven backjumping and learning. When a solver “notes” that earlier learned clauses are not helpful anymore it removes (forgets) them from the clause database. Forgetting allows a solver to avoid a possible exponential space blow-up introduced by learning.

We may extend the graph SMLΠ with the following transition rules that capture the ideas behind these technique:

\[
\text{Restart:} \quad M||\Gamma \Rightarrow \emptyset||\Gamma
\]

\[
\text{Forget LP:} \quad M|| \leftarrow B, \Gamma \Rightarrow M||\Gamma.
\]

The transition rules Restart and Forget LP are similar to the analogous rules in (Nieuwenhuis et al. 2006) for extending DPLL procedure with restart and forgetting techniques. It is easy to prove a result similar to Proposition 8 for the graph SMLΠ with Restart and Forget LP (for such graph a state is semi-terminal if no rule other than Learn LP, Restart, Forget LP is applicable to it.)

7.2 Smodelscc and Sup Algorithms

In Section 4.2 we demonstrated a method for specifying the algorithm of an answer set solver by means of the graph SML. In particular, we described the SMODELS algorithm by assigning priorities to transition rules of SML. In this section we use this method to describe the SMODELScc (Ward and Schlipf 2004) and SUP (Lierler 2008) algorithms by means of SMLΠ.

System SMODELScc enhances the SMODELS algorithm with conflict-driven backjumping and learning. Its strategy for choosing a path in the graph SMLΠ is similar to that of SMODELS. System SMODELScc assigns priorities to inference rules of SMLΠ as follows:

- Backjump LP, Fail \gg
- Unit Propagate LP, All Rules Cancelled, Backchain True, Backchain False \lambda \gg
- Unfounded \gg
- Decide.

Also, SMODELScc always applies the transition rule Learn LP in a non-semi-terminal state reached by an application of Backjump LP, because it implements conflict-driven backjumping and learning.\(^\text{12}\) In Section 11 we discuss details on which clause is being learned during the application of Learn LP.

\(^{12}\) System SMODELScc (SUP) also implements restarts and forgetting that may be modeled by the transition rules Restart and Forget LP. An application of these transition rules in SMLΠ relies on particular heuristics implemented by the solver.
In (Lierler 2008), we introduced the simplified SUP algorithm that relies on backtracking rather than conflict-driven backjumping and learning that are actually implemented in the system. We now present the SUP algorithm that takes these sophisticated techniques into account.

System SUP assigns priorities to inference rules of SMLΠ as follows:

- **Backjump LP, Fail** \(\gg\)**
- **Unit Propagate LP, All Rules Cancelled, Backchain True, Backchain False** \(\lambda \gg\)
- **Decide** \(\gg\)**
- **Unfounded**.

Similarly to SMODELScc, SUP always applies the transition rule **Learn LP** in a non-semi-terminal state reached by an application of **Backjump LP**.

For example, let II be program (8). Path (18) corresponds to an execution of system SUP, but does not correspond to any execution of SMODELScc because for the latter **Unfounded** is a rule of higher priority than **Decide**. Here is another path in SMLΠ from \(\emptyset||\emptyset\) to the same semi-terminal node:

\[
\emptyset||\emptyset \quad \Rightarrow \quad (\text{Decide}) \\
a\wedge ||\emptyset \quad \Rightarrow \quad (\text{Unit Propagate LP}) \\
a\wedge c||\emptyset \quad \Rightarrow \quad (\text{All Rules Cancelled}) \\
a\wedge c\neg b||\emptyset \quad \Rightarrow \quad (\text{Unfounded}) \\
a\wedge c\neg b\neg d||\emptyset
\]

Path (19) corresponds to an execution of system SMODELScc, but does not correspond to any execution of system SUP because for the latter **Decide** is a rule of higher priority than **Unfounded**.

The strategy of SUP of assigning the transition rule **Unfounded** the lowest priority may be reasonable for many problems. For instance, it is easy to see that transition rule **Unfounded** is redundant for tight programs. The SUP algorithm is similar to SAT-based answer set solvers such as ASSAT (Lin and Zhao 2004) and CMODELS (Giunchiglia et al. 2006) (see Section 8.2) in the fact that it will first compute a supported model of a program and only then will test whether this model is indeed an answer set, i.e., whether **Unfounded** is applicable in this state.

8 Generate and Test with Learning

In this section we model backjumping and learning for the generate and test procedure by defining a graph \(\text{GTL}_{F,G}\) that extends \(\text{GT}_{F,G}\) (Section 5) in a similar manner as \(\text{DPL}_F\) (Section 6) extends \(\text{DP}_F\).

8.1 Graph \(\text{GTL}_{F,G}\)

An (augmented) state relative to a CNF formula \(F\) and a formula \(G\) formed from atoms occurring in \(F\) is either a distinguished state **FailState** or a pair of the form \(M||\Gamma\), where \(M\) is a record (Section 2.1) relative to the set of atoms occurring in \(F\), and \(\Gamma\) is a (multi-)set of clauses formed from atoms occurring in \(F\) that are entailed by \(F \land G\).
The nodes of the graph $\text{gtl}_{F,G}$ are the augmented states relative to a CNF formula F and a formula G formed from atoms occurring in F. The edges of $\text{gtl}_{F,G}$ are described by the transition rules $\text{Unit Propagate } \lambda$, Decide, Fail of dpl_F, the transition rules Backjump GT:

\[
\text{Backjump GT : }
\begin{align*}
P l^\Delta Q || \Gamma & \Rightarrow P l'|| \Gamma & \text{if } & \begin{cases}
P l^\Delta Q \text{ is inconsistent and} \\
F \land G \models l' \lor \overline{\mathcal{P}}
\end{cases} \\
\text{Learn GT :} \\
M || \Gamma & \Rightarrow M || C, \Gamma & \text{if } & \begin{cases}
every atom in C occurs in F and \\
F \land G \models C
\end{cases}
\]

and the transition rule Test of gt_F that is extended to $\text{gtl}_{F,G}$ as follows: $M || \Gamma \Rightarrow M'|| \Gamma$ is an edge in $\text{gtl}_{F,G}$ justified by Test if and only if $M \Rightarrow M'$ is an edge in $\text{gt}_{F,G}$ justified by $Test$.

We refer to the transition rules $\text{Unit Propagate } \lambda$, Test, Decide, Fail, Backjump GT of the graph $\text{gtl}_{F,G}$ as Basic. We say that a node in the graph is semi-terminal if no rule other than Learn GT is applicable to it.

The graph $\text{gtl}_{F,G}$ can be used for deciding whether a formula $F \land G$ has a model by constructing a path from $\emptyset || \emptyset$ to a terminal node:

Proposition 9

For any CNF formula F and a formula G formed from atoms occurring in F,

(a) every path in $\text{gtl}_{F,G}$ contains only finitely many edges labeled by Basic transition rules,

(b) for any semi-terminal state $M || \Gamma$ of $\text{gtl}_{F,G}$ reachable from $\emptyset || \emptyset$, M is a model of $F \land G$,

(c) FailState is reachable from $\emptyset || \emptyset$ in $\text{gtl}_{F,G}$ if and only if $F \land G$ is unsatisfiable.

As in case of the graph dpl_F, the transition rule Backjump GT is applicable in any inconsistent state with a decision literal that is reachable from $\emptyset || \emptyset$. We call such states backjump states.

Proposition 10

For any CNF formula F and a formula G formed from atoms occurring in F, the transition rule Backjump GT is applicable in any backjump state in $\text{gtl}_{F,G}$.

Proofs of Propositions 9 and 10 are given in Section 13.

8.2 Cmodels Algorithm

System cmodels implements an algorithm called asp-sat with Learning (Giunchiglia et al. 2006) that extends asp-sat with Backtracking by backjumping and learning.

The application of cmodels to a program Π can be viewed as constructing a path from $\emptyset || \emptyset$ to a terminal node in the graph $\text{gtl}_{F,G}$, where

- F is the completion of Π converted to conjunctive normal form, and
- G is $\text{LF}(\Pi)$.
In Sections 4.2 we demonstrated a method for specifying the algorithm of an answer set solver by means of the graph sm_Π. We use this method to describe the cmodels algorithm using the graph $\text{gtl}_{F,G}$. System cmodels assigns priorities to the inference rules of $\text{gtl}_{F,G}$ as follows:

\[\text{Backjump GT, Fail } \gg \]
\[\text{Unit Propagate } \lambda \gg \]
\[\text{Decide } \gg \]
\[\text{Test}. \]

Also, cmodels always applies the transition rule Learn GT in a non-semi-terminal state reached by an application of Backjump GT.

The priorities imposed on the rules by cmodels guarantee that the transition rule Test is applied to a model of $F \cup \Gamma$ (clausified completion F extended by learned clauses Γ). This allows cmodels to proceed with its search in case if a found model is not an answer set. Furthermore, the cmodels strategy guarantees that in a state reached by an application of Test, first Backjump GT will be applied and then in the resulting state Learn GT will be applied. The clause learned due to this application of Learn GT is derived by means of loop formulas (see (Giunchiglia et al. 2006)). In this sense cmodels uses loop formulas to guide its search.

Systems sag (Lin et al. 2006) and clasp (Gebser et al. 2007) are answer set solvers that are enhancements of cmodels. First, they compute and clausify program’s completion and then use unit propagate on resulting propositional formula as an inference mechanism. Second, they guide their search by means of loop formulas. Third, they implement conflict-driven backjumping and learning. Also, sag uses SAT solvers for search. The systems differ from cmodels in the following:

- they maintain the data structure representing an input logic program throughout the whole computation,
- in addition to implementing inference rules of the graph $\text{gtl}_{F,G}$ they also implement the inference rule Unfounded of sm_Π. A hybrid graph combining the inference rule Unfounded of sm_Π and the inference rules of $\text{gtl}_{F,G}$ may be used to describe the sag and clasp algorithms.

System sag assigns the same priorities to the inference rules of the hybrid graph as cmodels. Also, sag at random decides whether to apply the inference rule Unfounded in a state.

On the other hand, system clasp assigns priorities to the inference rules of the hybrid graph as follows:

\[\text{Backjump GT, Fail } \gg \]
\[\text{Unit Propagate } \lambda, \text{Unfounded } \gg \]
\[\text{Decide}. \]

Like cmodels, both sag and clasp always apply the transition rule Learn GT in a non-semi-terminal state reached by an application of Backjump GT.
9 Backjumping and Extended Graph

Recall the transition rule Backjump LP of SML$_\Pi$

\[
\text{Backjump LP:} \\
P l^\Delta Q \| \Gamma \longrightarrow P l'^\Delta \| \Gamma \quad \text{if} \\
\begin{cases}
P l^\Delta Q \text{ is inconsistent and} \\
P \text{entails } l' \lor \overline{P}.
\end{cases}
\]

A state in the graph SML$_\Pi$ is a backjump state if it is inconsistent, contains a decision literal, and is reachable from $\emptyset \| \emptyset$. Note that it may be not clear a priori whether Backjump LP is applicable to a backjump state and if so to which state the edge due to the application of Backjump LP leads. These questions are important if we want to base an algorithm on this framework. It turns out that Backjump LP is always applicable to a backjump state:

Proposition 11
For a program Π, the transition rule Backjump LP is applicable to any backjump state in SML$_\Pi$.

Proposition 11 guarantees that a backjump state in SML$_\Pi$ is never semi-terminal. In the end of this section we show how Proposition 11 can be derived from the results proved later in this paper. Next question to answer is how to continue choosing a path in the graph after reaching a backjump state. To answer this question we introduce the notions of reason and extended graph.

For a program Π, we say that a clause $l \lor C$ is a reason for l to be in a list of literals $P l Q$ w.r.t Π if Π entails $l \lor C$ and $C \subseteq P$. We can equivalently restate the second condition of Backjump LP “Π entails $l' \lor \overline{P}$” as “there exists a reason for l' to be in $P l'$ w.r.t. Π” (note that $l' \lor \overline{P}$ is a reason for l' to be in $P l'$). We call a reason for l' to be in $P l'$ a backjump clause. Note that Proposition 11 asserts that a backjump clause always exists for a backjump state. It is clear that we may continue choosing a path in the graph after reaching a backjump state if we know how to compute a backjump clause for this state. We now define a graph SML$_\Pi^\uparrow$ that shares many properties of SML$_\Pi$ but allows us to give a simpler procedure for computing a backjump clause.

An extended record M relative to a program Π is a list of literals over the set of atoms occurring in Π where

(i) each literal l in M is annotated either by Δ or by a reason for l to be in M w.r.t. Π,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M its last literal is annotated by a reason.

For instance, let Π be the program

\[
a \leftarrow \text{not } b
\]
\[
c.
\]

The list of literals

\[
b^\Delta \quad a^\Delta \quad b b v a
\]
is an extended record relative to Π. On the other hand, the lists of literals
\[\Delta \neg a \Delta \neg b \lor \neg c \Delta - \neg a \Delta - b \lor \neg a \Delta \]
are not extended records.

An extended state relative to a program Π is either a distinguished state \(\text{FailState}\) or a pair of the form \(M||\Gamma\) where \(M\) is an extended record relative to Π, and \(\Gamma\) is the same as in the definition of an augmented state (i.e., \(\Gamma\) is a (multi-)set of constraints formed from atoms occurring in Π that are entailed by Π.) It is easy to see that for any extended state \(S\) relative to a program Π, the result of removing annotations from all nondecision literals of \(S\) is a state of \(\text{sml}_\Pi\): we will denote this state by \(S^\downarrow\).

For instance, consider program \(a \leftarrow \neg b\). All pairs
\[\text{FailState} \emptyset||\emptyset a \Delta \neg b \lor \neg a \Delta - \neg a \Delta b \lor \neg a \Delta \]
are among valid extended states relative to this program. The corresponding states \(S^\downarrow\) are
\[\text{FailState} \emptyset||\emptyset a \Delta \neg b ||\emptyset - \neg a \Delta b ||\emptyset.\]

We now define a graph \(\text{sml}_\Pi^\uparrow\) for any program Π. Its nodes are the extended states relative to Π. The transition rules of \(\text{sml}_\Pi\) are extended to \(\text{sml}_\Pi^\uparrow\) as follows: \(S_1 \Rightarrow S_2\) is an edge in \(\text{sml}_\Pi^\uparrow\) justified by a transition rule \(T\) if and only if \(S_1^\downarrow \Rightarrow S_2^\downarrow\) is an edge in \(\text{sml}_\Pi\) justified by \(T\).

We will omit the word “extended” before “record” and “state” when this is clear from a context.

The following lemma formally states the relationship between nodes of the graphs \(\text{sml}_\Pi\) and \(\text{sml}_\Pi^\uparrow\):

Lemma 8

For any program Π, if \(S'\) is a state reachable from \(\emptyset||\emptyset\) in the graph \(\text{sml}_\Pi\) then there is a state \(S\) in the graph \(\text{sml}_\Pi^\uparrow\) such that \(S^\downarrow = S'\).

The definitions of Basic transition rules and semi-terminal states in \(\text{sml}_\Pi^\uparrow\) are similar to their definitions for \(\text{sml}_\Pi\).

Proposition 8\(^{\uparrow}\)

For any program Π,

(a) every path in \(\text{sml}_\Pi^\uparrow\) contains only finitely many edges labeled by Basic transition rules,

(b) for any semi-terminal state \(M||\Gamma\) of \(\text{sml}_\Pi^\uparrow\), \(M^+\) is an answer set of Π,

(c) \(\text{sml}_\Pi^\uparrow\) contains an edge leading to \(\text{FailState}\) if and only if Π has no answer sets.

Note that Proposition 8\(^{\uparrow}\) (b), unlike Proposition 8 (b), is not limited to semi-terminal states that are reachable from \(\emptyset||\emptyset\). As in the case of the graph \(\text{sml}_\Pi\), \(\text{sml}_\Pi^\uparrow\) can be used for deciding whether a program Π has an answer set. Furthermore, the new graph provides the means for computing a backjump clause that permits practical application of the transition rule *Backjump LP*: Sections 10.3
and 11 describe the BackjumpClause (Algorithm 1) and BackjumpClauseFirstUIP (Algorithm 2) procedures that compute Decision and FirstUIP backjump clauses respectively.

We say that a state in the graph $\text{SML}_{\Pi}^\uparrow$ is a backjump state if its record is inconsistent and contains a decision literal. Unlike the definition of a backjump state in SML_{Π}, this definition does not require a backjump state to be reachable from $\emptyset||\emptyset$ in $\text{SML}_{\Pi}^\uparrow$. As in case of the graph SML_{Π}, any backjump state in $\text{SML}_{\Pi}^\uparrow$ is not semi-terminal:

Proposition 11↑

For a program Π, the transition rule Backjump LP is applicable to any backjump state in $\text{SML}_{\Pi}^\uparrow$.

Proposition 8 (b), (c) and Proposition 11 easily follow from Lemma 8 and Proposition 8↑ (b), (c) and Proposition 11↑ respectively. Proof of Proposition 8 (a) is similar to the proof of Proposition 8↑ (a).

Next section will present the proofs for Proposition 8↑, Lemma 8, and Proposition 11↑. It is interesting to note that the proofs of Lemma 8 and Proposition 11↑ implicitly provide the means for choosing a path in the graph $\text{SML}_{\Pi}^\uparrow$:

- given a state $M||\Gamma$ and a transition rule Unit Propagate LP, All Rules Cancelled, Backchain True, Backchain False λ, or Unfounded applicable to $M||\Gamma$, the proof of Lemma 8 describes a clause that may be used to construct a record M' so that there is an edge $M||\Gamma \Rightarrow M'||\Gamma$ due to this transition rule,
- given a backjump state $M||\Gamma$, the proof of Proposition 11↑ describes a backjump clause that can be used to construct a record M' so that there is an edge $M||\Gamma \Rightarrow M'||\Gamma$ due to Backjump LP.

Furthermore, the construction of the proof of Proposition 11↑ paves the way for procedure BackjumpClause presented in Algorithm 1.

10 Proofs of Proposition 8↑, Lemma 8, Proposition 11↑

10.1 Proof of Proposition 8↑

Lemma 9

For any program Π, an extended record M relative to Π, and every assignment X such that X^+ is an answer set for Π, if X satisfies all decision literals in M then $X \models M$.

Proof

By induction on the length of M. The property trivially holds for \emptyset. We assume that the property holds for any state with n elements. Consider any state M with $n+1$ elements. Let X be an assignment such that X^+ is an answer set for Π and X satisfies all decision literals in M. We will now show that $X \models M$.

Case 1. M has the form Pl^Δ. By the inductive hypothesis, $X \models P$. Since X satisfies all decision literals in M, $X \models l$.

Case 2. M has the form $P \lor C$. By the inductive hypothesis, $X \models P$. By the definition of a reason, (i) Π entails $l \lor C$ and (ii) $\Gamma \subseteq P$. From (ii) it follows that $P \models \neg C$. Consequently, $X \models \neg C$. From (i) it follows that for any assignment X such that X^+ is an answer set, $X \models l \lor C$. Consequently, $X \models l$. □

The proof of Proposition 8↑ assumes the correctness of Proposition 11↑ that we demonstrate in Section 10.3.

Proposition 8↑

For any program Π,

(a) every path in $\text{SML}^\uparrow_{\Pi}$ contains only finitely many edges labeled by Basic transition rules,

(b) for any semi-terminal state $M||\Gamma$ of $\text{SML}^\uparrow_{\Pi}$, M^+ is an answer set of Π,

(c) $\text{SML}^\uparrow_{\Pi}$ contains an edge leading to FailState if and only if Π has no answer sets.

Proof

(a) For any list N of literals by $|N|$ we denote the length of N. Any state $M||\Gamma$ has the form $M_0 |l^\Delta M_1 \ldots |l^\Delta M_p||\Gamma$, where $l^\Delta \ldots l^\Delta_p$ are all decision literals of M; we define $\alpha(M||\Gamma)$ as the sequence of nonnegative integers $|M_0|, |M_1|, \ldots, |M_p|$, and $\alpha(\text{FailState}) = \infty$. For any states S and S' of $\text{SML}^\uparrow_{\Pi}$, we understand $\alpha(S) < \alpha(S')$ as the lexicographical order. We first note that for any state $M||\Gamma$, value of α is based only on the first component M of the state. Second, there is a finite number of distinct values of α due to the fact that there is a finite number of distinct Ms over Π. We conclude that there is a finite number of distinct values of α for the states of $\text{SML}^\uparrow_{\Pi}$, even though the number of distinct states in $\text{SML}^\uparrow_{\Pi}$ is infinite.

By the definition of the transition rules of $\text{SML}^\uparrow_{\Pi}$, if there is an edge from $M||\Gamma$ to $M'||\Gamma'$ in $\text{SML}^\uparrow_{\Pi}$ formed by any Basic transition rule then $\alpha(M||\Gamma) < \alpha(M'||\Gamma')$. Then, due to the fact that there is a finite number of distinct values of α, it follows that there is only a finite number of edges due to the application of Basic rules possible in any path.

(b) Let $M||\Gamma$ be a semi-terminal state so that none of the Basic rules are applicable. From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore, M is consistent. Indeed, assume that M is inconsistent. Then, since Fail is not applicable, M contains a decision literal. Consequently, $M||\Gamma$ is a backjump state. By Proposition 11↑, the transition rule Backjump LP is applicable in $M||\Gamma$. This contradicts our assumption that $M||\Gamma$ is semi-terminal.

Also, M is a model of Π: since Unit Propagate LP is not applicable in $M||\Gamma$, it follows that for every rule $a \leftarrow b \in \Pi$, if $b \subseteq M$ then $a \in M$.

Assume that M^+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded set U on M w.r.t. Π such that $U \subseteq M$. It follows that Unfounded is applicable (with an arbitrary $a \in U$) in $M||\Gamma$. This contradicts the assumption that $M||\Gamma$ is semi-terminal.

(c) Left-to-right: There is a state $M||\Gamma$ in $\text{SML}^\uparrow_{\Pi}$ such that there is an edge between $M||\Gamma$ and FailState. By the definition of $\text{SML}^\uparrow_{\Pi}$, this edge is due to the transition rule Fail. Consequently, state $M||\Gamma$ is such that M is inconsistent and contains
no decision literals. By Lemma 9, for every assignment \(X \) such that \(X^+ \) is an answer set for \(\Pi \), \(X \) satisfies \(M \). Since \(M \) is inconsistent we conclude that \(\Pi \) has no answer sets.

Right-to-left: Consider the process of constructing a path consisting only of edges due to Basic transition rules. By (a), it follows that this path will eventually reach a semi-terminal state. By (b), this semi-terminal state cannot be different from \(\text{FailState} \), because \(\Pi \) has no answer sets. We conclude that there is an edge leading to \(\text{FailState} \). □

10.2 Proof of Lemma 8

The proof uses the notion of loop formula (Lin and Zhao 2004).

Given a set \(A \) of atoms by \(\text{Bodies}(\Pi, A) \) we denote the set that consists of the elements of \(\text{Bodies}(\Pi, a) \) for all \(a \) in \(A \). Let \(\Pi \) be a program. For any set \(Y \) of atoms, the external support formula (Lee 2005) for \(Y \) is

\[
\bigvee_{B \in \text{Bodies}(\Pi, Y), B \cap Y = \emptyset} B. \tag{20}
\]

We will denote the external support formula by \(\text{ES}_{\Pi, Y} \). For any set \(Y \) of atoms, the loop formula for \(Y \) is the implication

\[
\bigvee_{a \in Y} a \rightarrow \text{ES}_{\Pi, Y}.
\]

We can rewrite this formula as the disjunction

\[
\bigwedge_{a \in Y} \neg a \lor \text{ES}_{\Pi, Y}. \tag{21}
\]

From the Main Theorem in (Lee 2005) we conclude:

Lemma on Loop Formulas

For any program \(\Pi \), \(\Pi \) entails loop formulas (21) for all sets \(Y \) of atoms that occur in \(\Pi \).

For a state \(S \) in the graph \(\text{SML}^\uparrow_{\Pi} \), we say that \(S^\downarrow \) in \(\text{SML}\Pi \) is the image of \(S \).

Lemma 8

For any program \(\Pi \), if \(S' \) is a state reachable from \(\emptyset \| \emptyset \) in the graph \(\text{SML}\Pi \) then there is a state \(S \) in the graph \(\text{SML}^\uparrow_{\Pi} \) such that \(S^\downarrow = S' \).

Proof

Since the property trivially holds for the initial state \(\emptyset \| \emptyset \), we only need to prove that all transition rules of \(\text{SML}\Pi \) preserve it.

Consider an edge \(M\|\Gamma \rightarrow M'\|\Gamma' \) in the graph \(\text{SML}\Pi \) such that there is a state \(M_1\|\Gamma \) in the graph \(\text{SML}^\uparrow_{\Pi} \) satisfying the condition \((M_1\|\Gamma)^\downarrow = M\|\Gamma \). We need to show that there is a state in the graph \(\text{SML}^\uparrow_{\Pi} \) such that \(M'\|\Gamma' \) is its image in \(\text{SML}\Pi \). Consider several cases that correspond to a transition rule leading from \(M\|\Gamma \) to \(M'\|\Gamma' \).
Abstract Answer Set Solvers with Backjumping and Learning (long version)

Unit Propagate LP:

\[M \parallel \Gamma \Rightarrow M \parallel a \parallel \Gamma \text{ if } \begin{cases} a \leftarrow B \in \Pi, \text{ and} \\ B \subseteq M. \end{cases} \]

\(M' \parallel \Gamma' \) is \(M \parallel a \parallel \Gamma \). It is sufficient to prove that \(M_1 a \vee B \parallel \Gamma \) is a state of \(\text{smLP}^f \). It is enough to show that a clause \(a \vee B \) is a reason for \(a \) to be in \(M a \). By applicability conditions of \(\text{Unit Propagate LP} \), \(B \subseteq M \). Since \(\Pi \) entails its rule \(a \leftarrow B \), \(\Pi \) entails \(a \vee B \).

All Rules Cancelled:

\[M \parallel \Gamma \Rightarrow M \neg a \parallel \Gamma \text{ if } \overline{B} \cap M \neq \emptyset \text{ for all } B \in \text{Bodies}(\Pi, a). \]

\(M' \parallel \Gamma' \) is \(M \neg a \parallel \Gamma \). Consider any \(B \in \text{Bodies}(\Pi, a) \). Since \(\overline{B} \cap M \neq \emptyset \), \(B \) contains a literal from \(\overline{M} \); call it \(f(B) \). It is sufficient to show that

\[\neg a \vee \bigvee_{B \in \text{Bodies}(\Pi, a)} f(B) \]

is a reason for \(\neg a \) to be in \(M \neg a \).

First, by the choice of \(f(B) \), \(f(B) \in M \); consequently,

\[\bigvee_{B \in \text{Bodies}(\Pi, a)} f(B) \subseteq M. \]

Second, since \(f(B) \in B \), the loop formula \(\neg a \vee ES_{\Pi, \{a\}} \) entails (22). By Lemma on Loop Formulas, it follows that \(\Pi \) entails (22).

Backchain True:

\[M \parallel \Gamma \Rightarrow M l \parallel \Gamma \text{ if } \begin{cases} a \leftarrow B \in \Pi, \\ a \in M, \\ \overline{B} \cap M \neq \emptyset \text{ for all } B' \in \text{Bodies}(\Pi, a) \setminus \{B\}, \\ l \in B. \end{cases} \]

\(M' \parallel \Gamma' \) is \(M l \parallel \Gamma \). Consider any \(B' \in \text{Bodies}(\Pi, a) \setminus B \). Since \(\overline{B} \cap M \neq \emptyset \), \(B' \) contains a literal from \(\overline{M} \); call it \(f(B') \). A clause

\[l \vee \neg a \vee \bigvee_{B' \in \text{Bodies}(\Pi, a) \setminus B} f(B') \]

is a reason for \(l \) to be in \(M l \). The proof of this statement is similar to the case of All Rules Cancelled.

Backchain False \(\lambda \):

\[M \parallel \Gamma \Rightarrow M \overline{l} \parallel \Gamma \text{ if } \begin{cases} a \leftarrow l, B \in \Pi \cup \Gamma, \\ \neg a \in M \text{ or } a = \bot, \\ B \subseteq M. \end{cases} \]

\(M' \parallel \Gamma' \) is \(M \overline{l} \parallel \Gamma \). A clause \(\overline{l} \vee \overline{B} \vee a \) is a reason for \(\overline{l} \) to be in \(M \overline{l} \). The proof of this statement is similar to the case of Unit Propagate LP.

Unfounded:

\[M \parallel \Gamma \Rightarrow M \neg a \parallel \Gamma \text{ if } \begin{cases} M \text{ is consistent and} \\ a \in U \text{ for a set } U \text{ unfounded on } M \text{ w.r.t. } \Pi. \end{cases} \]
$M' || \Gamma'$ is $M \non a || \Gamma$. Consider any $B \in \text{Bodies}(\Pi, U)$ such that $U \cap B^+ = \emptyset$. By the definition of an unfounded set, it follows that $B \cap M \neq \emptyset$. Consequently, B contains a literal from M: call it $f(B)$. The clause

$$\neg a \lor \bigvee_{\text{Bodies}(\Pi, U), B \cap U = \emptyset} f(B)$$

is a reason for $\neg a$ to be in $M \neg a$. The proof of this statement is similar to the case of All Rules Cancelled.

Backjump LP, Decide, Fail, and Learn LP: obvious. □

The process of turning a state of SML_Π reachable from $\emptyset || \emptyset$ into a corresponding state of SML_Π^+ can be illustrated by the following example: Consider a program Π

$$a \leftarrow \text{not } b$$
$$b \leftarrow \text{not } a, \text{ not } c$$
$$c \leftarrow \text{not } f$$
$$\leftarrow k, d$$
$$k \leftarrow l, \text{not } b$$
$$\leftarrow m, \text{not } l, \text{ not } b$$
$$m \leftarrow \text{not } k, \text{not } l$$

and a path in SML_Π

$$\emptyset || \emptyset \implies (\text{Decide})$$
$$a^\Delta || \emptyset \implies (\text{All Rules Cancelled})$$
$$a^\Delta \neg b || \emptyset \implies (\text{Decide})$$
$$a^\Delta \neg b \neg c^\Delta || \emptyset \implies (\text{Backchain True})$$
$$a^\Delta \neg b \neg f^\Delta || \emptyset \implies (\text{Decide})$$
$$a^\Delta \neg b \neg e^\Delta \neg f^\Delta ^\Delta || \emptyset \implies (\text{Backchain False } \lambda)$$
$$a^\Delta \neg b \neg e^\Delta \neg f^\Delta \neg k^\Delta || \emptyset \implies (\text{Backchain False } \lambda)$$
$$a^\Delta \neg b \neg e^\Delta \neg f^\Delta \neg k^\Delta \neg l^\Delta || \emptyset \implies (\text{Backchain False } \lambda)$$
$$a^\Delta \neg b \neg e^\Delta \neg f^\Delta \neg k^\Delta \neg l^\Delta \neg m^\Delta || \emptyset \implies (\text{Unit Propagate LP})$$
$$a^\Delta \neg b \neg e^\Delta \neg f^\Delta \neg k^\Delta \neg l^\Delta \neg m^\Delta || \emptyset$$

The construction in the proof of Lemma 8 applied to the nodes in this path gives following states of SML_Π^+:

$$\emptyset || \emptyset$$
$$a^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta \neg c^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta \neg c^\Delta \neg f^\Delta \neg \lor c^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta \neg c^\Delta \neg f^\Delta \neg \lor c^\Delta \neg d^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta \neg c^\Delta \neg f^\Delta \neg \lor c^\Delta \neg d^\Delta \neg k^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta \neg c^\Delta \neg f^\Delta \neg \lor c^\Delta \neg d^\Delta \neg k^\Delta \neg l^\Delta || \emptyset$$
$$a^\Delta \neg b^\Delta \neg b \neg \lor a^\Delta \neg c^\Delta \neg f^\Delta \neg \lor c^\Delta \neg d^\Delta \neg k^\Delta \neg l^\Delta \neg m^\Delta || \emptyset$$

It is clear that these nodes form a path in SML_Π^+ with every edge justified by the same transition rule as the corresponding edge in path (26) in SML_Π.
10.3 Proof of Proposition 11

In this section \(\Pi \) is an arbitrary and fixed logic program.

For a record \(M \), by \(\text{lcp}(M) \) we denote its largest consistent prefix. We say that a clause \(C \) is conflicting on a list \(M \) of literals if \(\Pi \) entails \(C \), and \(\overline{\text{C}} \subseteq \text{lcp}(M) \). For example, let \(M \) be the first component of the last state in (27):

\[
a \Delta \neg b \land \neg e \Delta \neg f \land \neg c \Delta \neg k \land \neg d \neg l \land f \lor \neg k \lor \neg m \lor l \lor b \lor f \lor m \lor k \lor l.
\]

(28)

Then, \(\text{lcp}(M) \) is obtained by dropping the last element \(m \lor k \lor l \) of \(M \). It is clear that the reason \(m \lor k \lor l \) for \(m \) to be in \(M \) is a conflicting clause on \(M \).

Lemma 10

The literal that immediately follows \(\text{lcp}(M) \) in an inconsistent record \(M \), has the form \(l^C \) where \(C \) is a conflicting clause on \(M \).

Proof

By the requirement (iii) of the definition of an extended record, the literal that immediately follows \(\text{lcp}(M) \) may not be annotated by \(\Delta \). Consequently, the literal has the form \(l^C \). We now show that \(C \) is a conflicting clause on \(M \). Since \(C \) is a reason for \(l \) to be in \(\text{lcp}(M) \), it immediately follows that \(\Pi \) entails \(C \), \(C \) can be written as \(l \lor C' \), and \(\overline{C'} \subseteq \text{lcp}(M) \). Since \(l \) immediately follows the largest consistent prefix of \(M \), \(l \in \text{lcp}(M) \). Consequently, \(\overline{C} \subseteq \text{lcp}(M) \). We conclude that \(C \) is indeed a conflicting clause on \(M \). \(\square \)

For any inconsistent record \(l_1 \cdots l_n \) and any conflicting clause \(C \) on this record, by \(\beta_{l_1 \cdots l_n}(C) \) we denote the set of numbers \(i \) such that \(l_i \in \overline{C} \). (It is clear that every element from \(\overline{C} \) equals to one of the literals in \(l_1 \cdots l_n \).) The relation \(I < J \) between subsets \(I, J \) of \(\{1 \cdots n\} \) is understood here as the lexicographical order between \(I \) and \(J \) sorted in descending order. For instance, \(\{2 \ 6 \ 7\} < \{6 \ 7 \ 8\} \) because \(\{7 \ 6 \ 2\} < \{8 \ 7 \ 6\} \) in lexicographical order.

Recall that the resolution rule can be applied to clauses \(C \lor l \) and \(C' \lor \neg l \) and produces the clause \(C \lor C' \), called the resolvent of \(C \lor l \) and \(C' \lor \neg l \) on \(l \).

Lemma 11

Let \(M \) be a record and let \(l^B \) be a nondecision literal from \(\text{lcp}(M) \). If clause \(D \) is the resolvent of \(B \) and a clause \(C \) conflicting on \(M \) then

(i) \(D \) is a clause conflicting on \(M \),
(ii) \(\beta_M(D) < \beta_M(C) \).

For instance, let \(M \) be (28), let reason \(\neg m \lor l \lor b \) for \(\neg m \) in \(\text{lcp}(M) \) be \(B \), and let conflicting clause \(m \lor k \lor l \) on \(M \) be \(C \). Then \(D \), the result of resolving \(B \) together with \(C \), is clause \(k \lor l \lor b \). Lemma 11 asserts that \(k \lor l \lor b \) is a conflicting clause on \(M \) and that \(\beta_M(D) < \beta_M(C) \). Indeed, \(\beta_M(D) = \{2 \ 6 \ 7\} \) and \(\beta_M(C) = \{6 \ 7 \ 8\} \).
Proof

(i) Clause D is a resolvent of B and C on some literal l'. Then, for some literal $l' \in B, \overline{C} \in C$. The clause C can be written as $\overline{C} \lor C'$.

In order to demonstrate that D is a conflicting clause we need to show that $\overline{C} \subseteq lcp(M)$ and Π entails D.

Since B is a reason for l to be in $lcp(M)$, Π entails B and B has the form $l \lor B'$ where $\overline{B}' \subseteq lcp(M)$. Since C is a conflicting clause on M, $\overline{C} \subseteq lcp(M)$ and Π entails C. From the fact that $lcp(M)$ is consistent, it follows that there is no literal in B' such that its complement occurs in C. Consequently, $l' \notin B'$ so that l' is l and D is $B' \lor C'$. We conclude that $\overline{C} \subseteq lcp(M)$. From the fact that Π entails B, Π entails C, and the construction of D, it follows that Π entails D.

(ii) From the proof of (i) it follows that D is a resolvent of B and C on l where B has the form $l \lor B'$.

Since B is a reason for l to be in $lcp(M)$, every literal in \overline{B}' precedes l in $lcp(M)$. Since D is derived by replacing \overline{I} in C with B', $\beta_M(D) < \beta_M(B)$. □

Let record M be $l_1 \cdots l_k$, the decision level of a literal l_i is the number of decision literals in $l_1 \cdots l_i$; we denote it by $dec_M(l_i)$. We will also use this notation to denote the decision level of a set of literals: For a set $P \subseteq M$ of literals, $dec_M(P)$ is the decision level of the literal in P that occurs latest in M. For record M and a decision level j by M^j we denote the prefix of M that consists of the literals in M that belong to decision level less than j and by M^j we denote the prefix of M that consists of the literals in M that belong to decision level less than or equal to j.

For instance, let M be record (28) then $dec_M(\neg k) = 3$, $dec_M(\neg b \lor \neg k) = 3$, M^3 is $a \Delta \neg b \lor \neg c \lor c \Delta \neg f \lor \neg c$, and M^3 is M itself.

Lemma 12

For an inconsistent record M and a conflicting clause $l \lor C$ on M, if $dec_M(\overline{I}) > dec_M(\overline{\tau})$ for all $c \in C$ then $lcp(M)^{dec_M(\overline{\tau})}[l \lor C$ is a record.

Proof

We need to show that (i) $l \notin lcp(M)^{dec_M(\overline{\tau})}$ and (ii) $l \lor C$ is a reason for l to be in $lcp(M)^{dec_M(\overline{\tau})}$, i.e., Π entails $l \lor C$ and $\overline{C} \subseteq lcp(M)^{dec_M(\overline{\tau})}$.

Since $l \lor C$ is conflicting on M, $l \lor C \subseteq lcp(M)$. From the consistency of $lcp(M)$ and the fact that $\overline{I} \in lcp(M)$, it follows that $l \notin lcp(M)$. Consequently, $l \notin lcp(M)^{dec_M(\overline{\tau})}$.

Since $l \lor C$ is conflicting on M, Π entails $l \lor C$ and $l \lor C \subseteq lcp(M)$. Consequently, $\overline{C} \subseteq lcp(M)$. From the definition of $dec_M(\overline{\tau})$, it follows that $dec_M(\overline{\tau})$ is the decision level of the literal in $\overline{\tau}$ that occurs latest in $lcp(M)$. By the definition of a decision level, $\overline{C} \subseteq lcp(M)^{dec_M(\overline{\tau})}$. □

Proposition 11

For a program Π, the transition rule Backjump LP is applicable to any backjump state in $sml_1 \Pi$.

Proof
Let $M \models \Gamma$ be a backjump state in SML_R^\perp. Let R be the list of reasons that are assigned to the nondecision literals in $\text{lcp}(M)$.

Consider the process of building a sequence C_1, C_2, \ldots of clauses so that

- C_1 is the reason of the member of M that immediately follows $\text{lcp}(M)$, and
- C_j ($j > 1$) is a resolvent of C_{j-1} and some clause in R

while derivation of new clauses is possible. From Lemma 11 (i) and the choice of C_1 and R, it follows that any clause in C_1, C_2, \ldots is conflicting. By Lemma 11 (ii) we conclude that $\beta_M(C_j) < \beta_M(C_{j-1})$ ($j > 1$). It is clear that this process will terminate after deriving some clause C_m, since the number of conflicting clauses on M is finite. It is clear that clause C_m cannot be resolved against any clause in R.

Case 1. C_m is the empty clause. Since $M \models \Gamma$ is a backjump state, M contains a decision literal l^Δ. By part (iii) of the definition of a record, l belongs to $\text{lcp}(M)$. Consequently, M can be represented in the form $\text{lcp}(M)^{\text{dec}_M(l)} l^\Delta Q$.

By the choice of C_1, C_1 is a reason and must consist of at least one literal. Consequently, $m > 1$. Clause C_m is derived from clauses C_{m-1} and some clause in R. Since C_m is empty, C_{m-1} is a unit clause l'. We will show that

$$\text{lcp}(M)^{\text{dec}_M(l)} l^\Delta Q \models \Gamma \Rightarrow \text{lcp}(M)^{\text{dec}_M(l)} l'^\perp \models \Gamma$$

is an application of Backjump LP. It is sufficient to demonstrate that $\text{lcp}(M)^{\text{dec}_M(l)} l'^\perp$ is a record. Since $\text{lcp}(M)^{\text{dec}_M(l)} l^\Delta Q$ is a record, we only need to show that $l' \notin \text{lcp}(M)^{\text{dec}_M(l)}$ and clause l' is a reason for l' to be in $\text{lcp}(M)^{\text{dec}_M(l)} l'$. Recall that C_{m-1}, i.e., l', is a conflicting clause. Consequently, Π entails l' and $\overline{l'} \in \text{lcp}(M)$. Since $\text{lcp}(M)$ is consistent, $l' \notin \text{lcp}(M)$ so that $l' \notin \text{lcp}(M)^{\text{dec}_M(l)}$. On the other hand, from the fact that Π entails l' it immediately follows that clause l' is a reason for l' to be in $\text{lcp}(M)^{\text{dec}_M(l)} l'$.

Case 2. C_m is not empty. Since C_m is a conflicting clause on M, the complement of any literal in C_m belongs to $\text{lcp}(M)$. Furthermore, every such complement is a decision literal in $\text{lcp}(M)$. Indeed, if this complement is $\overline{\overline{l} \lor B} \in \text{lcp}(M)$ then $\overline{l} \lor B$ is one of the clauses B_i, and it can be resolved against C_m.

By the definition of a decision level, there is at most one decision literal that belongs to any decision level. It follows that C_m can be written as $l \lor C'_m$ so that $\text{dec}_M(\overline{l}) > \text{dec}_M(\overline{c})$ for any $c \in C'_m$. Consequently, M can be written as $\text{lcp}(M)^{\text{dec}_M(\overline{l})} l^\Delta Q$. Note that

$$\text{lcp}(M)^{\text{dec}_M(\overline{l})} l^\Delta Q \models \Gamma \Rightarrow \text{lcp}(M)^{\text{dec}_M(\overline{c})} l C_m \models \Gamma$$

is an application of Backjump LP. Indeed, by Lemma 12 $\text{lcp}(M)^{\text{dec}_M(\overline{c})} l C_m$ is a record.

Algorithm 1 presents procedure BackjumpClause that computes a backjump clause for any backjump state in the graph SML_R^\perp. The algorithm follows from the construction of the proof of Proposition 11. It is based on the iterative application of the resolution rule on reasons of the smallest inconsistent prefix of a state. The
proof of Proposition 11 allows to conclude the termination of BackjumpClause and asserts that a clause returned by the procedure is a backjump clause on a backjump state.

For instance, let \(\Pi \) be (25). Consider an execution of BackjumpClause on \(\Pi \) and backjump state (28). The table below gives the values of \(\text{lcp}(M) \), \(C \), \(N \), and \(R \) during the execution of the BackjumpClause algorithm. By \(C_i \) we denote a value of \(C \) before the \(i \)-th iteration of the while loop.

\[
\begin{array}{c|c}
\text{lcp}(M) & a \Delta b \lor \neg a, c \Delta \neg f \lor \neg c, d \Delta \neg k \lor \neg d \lor l \lor k \lor m \lor l \lor b \\
C_1 & m \lor k \lor l \\
N & \neg b \lor \neg a, \neg f \lor \neg c, \neg k \lor \neg d, \neg l \lor b \lor k, \neg m \lor l \lor b \\
R & \neg b \lor \neg a, \neg f \lor \neg c, \neg k \lor \neg d, \neg l \lor b \lor k, \neg m \lor l \lor b \\
\end{array}
\]

(29)

The algorithm will terminate with the clause \(\neg d \lor \neg a \). Proof of Proposition 11 asserts that (i) this clause is a backjump clause such that \(d \) and \(a \) are decision literals in \(M \) and (ii) the transition

\[
a \Delta \neg b \lor \neg a, c \Delta \neg f \lor \neg c, d \Delta \neg k \lor \neg d \lor l \lor b \lor k \lor m \lor l \lor b \lor m \lor l \lor k \lor l \lor b || \emptyset \Rightarrow
\]

\[
a \Delta \neg b \lor \neg a, \neg d \lor \neg a || \emptyset
\]

in \(\text{SM}_{\Pi} \) is an application of Backjump LP. Indeed, by Lemma 12 \(\text{lcp}(M)^{\text{dec}(\neg a)} \lor \neg d \lor \neg a \), in other words \(a \Delta \neg b \lor \neg a, \neg d \lor \neg a \), is a record.

Note that a backjump clause may be derived in other ways than captured by BackjumpClause algorithm: the transition rule Backjump LP is applicable with an arbitrary backjump clause. Usually, DPLL-like procedures implement conflict-driven backjumping and learning where a particular learning schema such as, for
instance, Decision or FirstUIP (Mitchell 2005) is applied for computing a special kind of a backjump clause. It turns out that the BackjumpClause algorithm captures the Decision learning schema for ASP. Typically, SAT solvers impose an order for resolving the literals during the process of Decision backjump clause derivation. We can impose similar order by replacing the line

\[l \leftarrow \text{a literal in } \overline{C} \cap N \]

in the algorithm BackjumpClause with

\[l \leftarrow \text{a literal in } \overline{C} \cap N \text{ that occurs latest in } lcp(M). \]

In fact, the sample application of BackjumpClause algorithm described in (29) follows this ordering.

This section introduced BackjumpClause algorithm that derives a Decision backjump clause for an arbitrary backjump state. In the next section we will introduce an algorithm that will compute an ASP counterpart of FirstUIP backjump clause.

11 FirstUIP Conflict-Driven Backjumping and Learning

Conflict-driven backjumping and learning proved to be a highly successful technique in modern SAT solving. Furthermore, in (Zhang et al. 2001) the authors investigated the performance of various learning schemes and established experimentally that FirstUIP clause is the most useful single clause to learn. Success of conflict-driven learning led to the implementation of its ASP counterpart in systems smodels, clasp, and sup. There are two common methods for describing a backjump clause construction in the SAT literature. The first one employs the implication graph (Marques-Silva and Sakallah 1996) and the second one employs resolution (Mitchell 2005). Ward and Schlipf (Ward and Schlipf 2004) extended the definition of an implication graph to the smodels algorithm and implemented FirstUIP learning schema in answer set solver smodels. In the previous section we used sml^1Π formalism and resolution to describe the BackjumpClause algorithm for computing an ASP counterpart of a Decision backjump clause. In (Gebser et al. 2007) the authors used the concepts from constraint processing to implement FirstUIP learning schema in answer set solver clasp.

This section presents the BackjumpClauseFirstUIP algorithm for computing an ASP counterpart of a FirstUIP backjump clause by means of sml^1Π formalism and resolution. The BackjumpClauseFirstUIP algorithm is employed by the system sup in its implementation of conflict-driven backjumping and learning.

The Algorithm 2 presents procedure BackjumpClauseFirstUIP that computes a FirstUIP backjump clause for any backjump state in the graph sml^1Π.

We now state the correctness of the algorithm BackjumpClauseFirstUIP. We start by showing its termination. By \(C_1 \) we will denote the initial value assigned to clause \(C \). From Lemma 11 (i) and the choice of \(C_1 \) we conclude that at any point of computation clause \(C \) is conflicting on \(M \). By Lemma 11 (ii), the value of \(\beta_M(C) \) decreases with each new assignment of clause \(C \) in the while loop. It follows that the while loop will terminate since the number of conflicting clauses \(C \) on \(M \) such
BackjumpClauseFirstUIP \((M \parallel \Gamma) \);

Arguments : \(M \parallel \Gamma \) is a backjump state in \(\text{SML}_H \)

Return Value : \(C \) is a backjump clause

begin
 \(C \leftarrow \) the reason of the member of \(M \) that immediately follows \(\text{lc}(M) \);
 \(l \leftarrow \) the literal in \(\overline{C} \) that occurs latest in \(\text{lc}(M) \);
 \(P \leftarrow \) the sublist of \(\text{lc}(M) \) that consists of the literals that belong to the decision level \(\text{dec}(l) \);
 \(R \leftarrow \) the list of the reasons that are assigned to the literals in \(P \);
 while \(|C \cap P| > 1\) do
 \(l \leftarrow \) the literal in \(\overline{C} \) that occurs latest in \(P \);
 \(B \leftarrow \) the clause in \(R \) that contains \(l \);
 \(C \leftarrow \) the resolvent of \(C \) and \(B \) on \(l \);
 return \(C \);
end

Algorithm 2: A procedure for generating a FirstUIP backjump clause.

that \(|C \cap P| > 1\) is finite. By \(C_m \) we will denote the clause \(C \) with which the **while** loop terminates. In other words BackjumpClauseFirstUIP returns \(C_m \). We now show that \(C_m \) is indeed a backjump clause. We already concluded that \(C_m \) is a conflicting clause on \(M \). Furthermore, from the termination condition of the **while** loop \(|C \cap P| \leq 1\). From the choice of \(C_1 \) and \(P \) it follows that \(|C \cap P| = 1\). Consequently, \(C_m \) can be written as \(l \lor C_m' \) where \(l \) is in singleton \(C_m \cap P \). By Lemma 11 (ii), \(\beta(C_m) \leq \beta(C_1) \). From the definition of \(\beta \) and the choice of \(P \) it follows that \(\text{dec}_M(l) > \text{dec}_M(l) \) for all \(c \in C_m \). By Lemma 12, \(\text{lc}(M) \mid \text{dec}_M(l) \), \(l \in C_m \) is a record. In other words, transition

\[
M \parallel \Gamma \Rightarrow \text{lc}(M) \mid \text{dec}_M(l) \mid l \in C_m \parallel \Gamma
\]

is an application of Backjump LP. Consequently, \(C_m \) is a backjump clause.

For instance, let \(\Pi \) be (25). Consider an execution of BackjumpClauseFirstUIP on \(\Pi \) and a backjump state (28). The table below gives the values of \(\text{lc}(M) \), \(C \), \(P \), and \(R \) during the execution of BackjumpClauseFirstUIP. By \(C \), we denote a value of \(C \) before the \(i \)-th iteration of the **while** loop.

\(\text{lc}(M) \)	\(a \lor b \lor \neg a \lor c \lor \neg f \lor \neg c \lor d \lor \neg k \lor \neg d \lor \neg l \lor \neg b \lor k \lor \neg m \lor \neg l \lor b \)
\(C_1 \)	\(m \lor k \lor l \)
\(P \)	\(d \lor k \lor \neg d \lor \neg l \lor \neg b \lor k \lor \neg m \lor \neg l \lor b \)
\(R \)	\(\neg k \lor \neg d \lor \neg l \lor \neg b \lor k \lor \neg m \lor \neg l \lor b \)
\(C_2 \)	\(k \lor l \lor b \) is the resolvent of \(C_1 \) and \(\neg m \lor l \lor b \)
\(C_3 \)	\(k \lor b \) is the resolvent of \(C_2 \) and \(\neg l \lor b \lor k \).

The BackjumpClauseFirstUIP algorithm will terminate with the clause \(k \lor b \). The proof of the correctness of BackjumpClauseFirstUIP asserts that \(k \lor b \) is a backjump clause and the transition

\[
a \lor b \lor \neg a \lor c \lor \neg f \lor \neg c \lor d \lor \neg k \lor \neg d \lor \neg l \lor \neg b \lor k \lor \neg m \lor \neg l \lor b \lor m \lor \neg k \lor l \Rightarrow a \lor b \lor \neg a \lor k \lor b \mid \emptyset
\]
12 Extended Graph: Generate and Test

In this section we introduce an extended graph $\text{gtl}_{F,G}^\uparrow$ for the generate and test abstract framework $\text{gtl}_{F,G}$ similar as in Section 9 we introduced sml_{H}^\uparrow for sml_H.

For a formula H, we say that a clause $l \lor C$ is a reason for l to be in a list $P \cup \overline{Q}$ of literals w.r.t. H if $H \models l \lor C$ and $\overline{C} \subseteq P$.

An (extended) record M relative to a formula H is a list of literals over the set of atoms occurring in H where

(i) each literal l in M is annotated either by Δ or by a reason for l to be in M w.r.t. H,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M its last literal is annotated by a reason.

An (extended) state relative to a CNF formula F, and a formula G formed from atoms occurring in F, is either a distinguished state FailState or a pair of the form $M || \Gamma$, where M is an extended record relative to $F \land G$, and Γ is the same as in the definition of an augmented state (i.e., Γ is a (multi-)set of clauses formed from atoms occurring in F that are entailed by $F \land G$.) For any extended state S relative to F and G, the result of removing annotations from all nondecision literals of S is a state of $\text{gtl}_{F,G}$: we will denote this state by S^\downarrow.

For any CNF formula F and a formula G formed from atoms occurring in F, we will define a graph $\text{gtl}_{F,G}^\uparrow$. The set of the nodes of $\text{gtl}_{F,G}^\uparrow$ consists of the extended states relative to F and G. The transition rules of $\text{gtl}_{F,G}$ are extended to $\text{gtl}_{F,G}^\uparrow$ as follows: $S_1 \Rightarrow S_2$ is an edge in $\text{gtl}_{F,G}^\uparrow$ justified by a transition rule T if and only if $S_1^\downarrow \Rightarrow S_2^\downarrow$ is an edge in $\text{gtl}_{F,G}$ justified by T.

The lemma below formally states the relationship between nodes of the graphs $\text{gtl}_{F,G}$ and $\text{gtl}_{F,G}^\uparrow$:

Lemma 13

For any CNF formula F and a formula G formed from atoms occurring in F, if S' is a state reachable from $\emptyset || \emptyset$ in the graph $\text{gtl}_{F,G}$ then there is a state S in the graph $\text{gtl}_{F,G}^\uparrow$ such that $S^\downarrow = S'$.

The definitions of Basic transition rules and semi-terminal states in $\text{gtl}_{F,G}^\uparrow$ are similar to their definitions for $\text{gtl}_{F,G}$.

Proposition 9

For any CNF formula F and a formula G formed from atoms occurring in F,

(a) every path in $\text{gtl}_{F,G}^\uparrow$ contains only finitely many edges labeled by Basic transition rules,

(b) for any semi-terminal state $M || \Gamma$ of $\text{gtl}_{F,G}^\uparrow$, M is a model of $F \land G$,

(c) $\text{gtl}_{F,G}^\uparrow$ contains an edge leading to FailState if and only if $F \land G$ is unsatisfiable.
We say that a state in the graph gtl^F_G is a backjump state if its record is inconsistent and contains a decision literal. As in case of the graph gtl_F, any backjump state in gtl^F_G is not semi-terminal:

Proposition 10

For any CNF formula F and a formula G formed from atoms occurring in F, the transition rule Backjump GT is applicable in any backjump state in gtl^F_G.

Proposition 9 (b), (c) and Proposition 10 easily follow from Lemma 13 and Proposition 9 (b), (c) and Proposition 10 respectively. Proof of Proposition 9 (a) is similar to the proof of Proposition 9 (a).

13 Proofs of Proposition 9†, Lemma 13, Proposition 10†

13.1 Proof of Proposition 9†

Lemma 14

For any CNF formula F, a formula G formed from atoms occurring in F, an extended record M relative to $F \land G$, and any model X of $F \land G$, if X satisfies all decision literals in M then $X \models M$.

Proof

By induction on the length of M. The property trivially holds for \emptyset. We assume that the property holds for any state with n elements. Consider any state M with $n+1$ elements. Let X be a model of $F \land G$ such that X satisfies all decision literals in M.

Case 1. M has the form $Pl\Delta$. By the inductive hypothesis, $X \models P$. Since X satisfies all decision literals in M, $X \models \Delta$.

Case 2. M has the form $Pl \lor C$. By the inductive hypothesis, $X \models P$. By the definition of a reason (i) $F \land G$ entails $l \lor C$ and (ii) $\overline{C} \subseteq P$. From (ii) it follows that $P \models \neg C$. Consequently, $X \models \neg C$. From (i) it follows that $X \models l \lor C$. We conclude that $X \models l$.

The proof of Proposition 9† assumes the correctness of Proposition 10† that we demonstrate in Section 13.3.

Proof of Proposition 9†

Parts (a) and (c) are proved as in the proof of Proposition 8†, using Lemma 14. From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore, M is consistent. Indeed, assume that M is inconsistent. Then, since Fail is not applicable, M contains a decision literal. Consequently, $M \models \Gamma$ is a backjump state. By Proposition 10†, the transition rule Backjump GT is applicable in $M \models \Gamma$. This contradicts our assumption that $M \models \Gamma$ is semi-terminal.

Also, M is a model of F: since Unit Propagate λ is not applicable, it follows that for every clause $C \lor l \in F \cup \Gamma$ if $\overline{C} \subseteq M$ then $l \in M$. Consequently, $M \models C \lor l$.

Furthermore, M is a model of G: since Test is not applicable, then $G \not\models \overline{M}$. We conclude that $M \models G$. Consequently, M is a model of $F \land G$. □
13.2 Proof of Lemma 13

For a state S in the graph $\text{GT}^\uparrow_{F,G}$, we say that S^\downarrow in $\text{GT}_{F,G}$ is the image of S.

Lemma 13

For any CNF formula F and a formula G formed from atoms occurring in F, if S' is a state reachable from $\emptyset||\emptyset$ in the graph $\text{GT}_{F,G}$ then there is a state S in the graph $\text{GT}^\uparrow_{F,G}$ such that $S^\downarrow = S'$.

Proof

Since the property trivially holds for the initial state $\emptyset||\emptyset$, we only need to prove that all transition rules of $\text{GT}_{F,G}$ preserve it.

Consider an edge $M||\Gamma \Rightarrow M'||\Gamma'$ in the graph $\text{GT}_{F,G}$ such that there is a state $M_l||\Gamma$ in the graph $\text{GT}^\uparrow_{F,G}$ satisfying the condition $(M_l||\Gamma)^\downarrow = M||\Gamma$. We need to show that there is a state in the graph $\text{GT}^\uparrow_{F,G}$ such that $M'||\Gamma'$ is its image in $\text{GT}_{F,G}$. Consider several cases that correspond to a transition rule leading from $M||\Gamma$ to $M'||\Gamma'$:

Unit Propagate λ:

$$ M||\Gamma \Rightarrow M \text{tl}||\Gamma \text{ if } \left\{ \begin{array}{l} C \lor l \in F \cup \Gamma \text{ and } C \subseteq M \end{array} \right\} $$

$M'||\Gamma'$ is $M \text{ tl}||\Gamma'$. It is sufficient to prove that $M_l ||\Gamma$ is a state of $\text{GT}^\uparrow_{F,G}$. It is enough to show that a clause $C \lor l$ is a reason for l to be in $M \text{ tl}$ w.r.t. $F \land G$, i.e, $F \land G \models C \lor l$ and $C \subseteq M$. By applicability conditions of Unit Propagate λ, $C \subseteq M$.

By the definition of a state $F \land G$ entails Γ. Since $C \lor l \in F \land \Gamma$, $F \land G \models C \lor l$. Test:

$$ M||\Gamma \Rightarrow M \overline{\text{tl}}||\Gamma \text{ if } \left\{ \begin{array}{l} M \text{ is consistent, } \text{G} \models \overline{M}, \text{ l} \in M. \end{array} \right\} $$

$M'||\Gamma'$ is $M \overline{\text{tl}}||\Gamma$. It is sufficient to prove that $M_l \overline{\text{tl}}||\Gamma$ is a state of $\text{GT}^\uparrow_{F,G}$. \overline{M} has the form $\overline{7} \lor C$. It is enough to show that a clause $\overline{7} \lor C$ is a reason for $\overline{7}$ to be in $M \overline{\text{tl}}$ w.r.t. $F \land G$. It is trivial that $\overline{C} \subseteq M$. By applicability condition of the rule, $G \models \overline{7} \lor C$.

Backjump GT, Decide, Fail, and Learn GT: obvious.

13.3 Proof of Proposition 10^\dagger

For a state $M_l ||\Gamma$, we say that a reason C is a backjump clause if there is a transition Backjump GT leading to $M_l ||\Gamma$ in $\text{GT}_{F,G}$.

In this section F is an arbitrary and fixed CNF formula and G is an arbitrary and fixed formula formed from atoms occurring in F.

For a record M, by $\text{lcp}(M)$ we denote its largest consistent prefix. We say that a clause C is conflicting on a list M of literals if $F \land G$ entails C, and $C \subseteq \text{lcp}(M)$.

Lemmas 10, 11, 12 hold for the case of extended record relative to a formula. The proofs of the lemmas have to be modified only by replacing Π with $F \land G$.

Proposition 10^\dagger is proved as Proposition 11^\dagger.

\[\square \]
Algorithms BackjumpClause and BackjumpClauseFirstUIP are applicable to the backjump states of the graph gtl^+_F.

14 Experiments with Sup

Here we present experimental analysis that compares performance of the system SUP versus CMODELS, CLASP, SMODELS, and SMODELScc. We start by describing the implementation details of SUP.

The implementation of SUP utilizes

- the interface of SAT-solver MINISAT (v1.12b) that supports non-clausal constraints described in (Een and Sörensson 2003) in order to introduce additional inference possibilities, but unit propagation. In particular, SUP implements Backchain True and All Rules Cancelled by means of non-clausal constraints and it uses the unit propagate of MINISAT to capture Unit Propagate LP and Backchain False.
- parts of CMODELS code that eliminate weight and choice rules; perform model verification; and compute loop formulas. In particular, SUP uses the latter two parts of CMODELS code to capture Unfounded.

In the experiments we used the following versions of the systems: SUP v. 0.1, SUP v. 0.2, CMODELS v. 3.77 using MINISAT v. 1.12b, CLASP v. 1.0.5, SMODELS v. 2.32, SMODELScc v. 1.08 (implemented on top of SMODELS v. 2.26). System SUP (v. 0.1 and v. 0.2) extends the implementation of MINISAT v. 1.12b. Therefore, we compare SUP performance against CMODELS that uses MINISAT 1.12b for its inference. System SUP v. 0.1 stands for a version of SUP that implements Unit Propagate LP, All Rules Cancelled, and Backchain False λ propagation rules, and does not implement Backchain True. System SUP v 0.2, on the other hand, also implements Backchain True.

All considered solvers use preprocessor lparse (see Footnote 5) to ground the problems so that the systems are run on identical ground instances. Grounding time is not accounted for in solving time. All times are reported in seconds. Symbol tout stands for the fact that a system did not terminate with a solution after 10 minutes. Sup 0.1, Sup, Cm, Cl, Sm, and Sm stand for SUP v. 0.1, SUP v. 0.2, CMODELS, CLASP, SMODELScc, and SMODELS respectively. The symbol $-t$ abbreviates the flag $-\text{temp}$ that allows SUP to forget learnt clauses due to loop formulas (by default SUP adds these clauses into permanent clause database). The symbol $-a$ abbreviates the flag $-\text{atomreason}$ that forces CMODELS, like SUP, to add only a clause implied by some loop formula and unsatisfied by a current model rather than the complete loop formula unsatisfied by the model. By default, CMODELS adds a complete loop formula unsatisfied by the model. All experiments were run on Intel(R) Pentium(R) D CPU 3.00GHz, 2 cpu cores, cache size 1024 KB, running Linux.

Table 1 presents the experiments run on tight programs. Recall that for tight programs (i) the transition rule Unfounded of SUP is never used for inference and (ii) the transition rule Test of CMODELS is never used for inference.
Table 1: Experiments: Tight problems.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Sup 0.1</th>
<th>Sup 0.1</th>
<th>Cl 0.1</th>
<th>Sm 0.1</th>
<th>Cm 0.1</th>
<th>Cl 0.1</th>
<th>Sm 0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towers of Hanoi:</td>
<td>http://asparagus.cs.uni-potsdam.de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.35</td>
<td>43.68</td>
<td>73.54</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.36</td>
<td>38.57</td>
<td>78.45</td>
<td>36.98</td>
<td>23.65</td>
<td>112.44</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.37</td>
<td>43.62</td>
<td>73.54</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.38</td>
<td>46.59</td>
<td>76.54</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.40</td>
<td>46.59</td>
<td>76.54</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.41</td>
<td>49.65</td>
<td>79.65</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.42</td>
<td>38.57</td>
<td>73.54</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.43</td>
<td>49.65</td>
<td>79.65</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
<tr>
<td>towers-hanoi.44</td>
<td>50.50</td>
<td>80.50</td>
<td>37.03</td>
<td>23.86</td>
<td>115.83</td>
<td>168.85</td>
<td></td>
</tr>
</tbody>
</table>

Pigeon Holes with 10 holes: pgh#pigeons

pgh7	0.18	0.22	0.14	0.10	20.98	1.67
pgh8	0.75	1.10	0.68	1.00	tout	tout
pgh9	7.60	9.30	4.03	5.73	tout	tout

Queens Normal Encoding: q.lp.#queens

q.lp.18	0.14	0.14	0.08	155.62	7.84
q.lp.22	0.28	0.27	0.14	tout	tout
q.lp.24	0.35	0.35	0.20	tout	tout
q.lp.30	0.70	0.75	0.44	tout	tout

Queens Cardinality Constraint Encoding: q.lp2.#queens

q.lp2.18	0.06	0.06	0.04	147.88	2.24
q.lp2.22	0.11	0.12	0.08	tout	191.76
q.lp2.24	0.15	0.14	0.11	tout	267.27
q.lp2.30	0.30	0.32	0.21	tout	tout

TOAST: http://asparagus.cs.uni-potsdam.de

sequence3-ss2-Plain	138.08	49.69	78.45	10.51	444.41	tout
sequence4-ss2-Plain	14.86	14.68	24.50	9.56	99.85	71.42
sequence4-ss3-Plain	408.99	468.25	tout	294.27	tout	tout
sequence3-ss2	8.11	9.00	8.34	5.75	tout	46.07
sequence3-ss3	137.37	49.84	78.45	10.39	444.16	tout
sequence4-ss2	16.13	1.68	13.38	8.96	102.98	74.85
sequence4-ss3	103.33	207.21	16.74	233.09	tout	tout

Vertex Cover vcx.# minimum size vertex cover:
http://www.cs.egr.uky.edu/ai/benchmarks.html

vc1.5	8.30	3.23	19.81	tout	tout	218.59
vc2.5	11.55	6.76	13.32	94.43	tout	11.73
vc3.5	0.65	4.09	64.44	512.56	tout	10.59
vc4.5	6.49	10.19	23.05	tout	tout	tout

Table 2 presents the experiments run on nontight programs:
Table 2: Experiments: Nontight problems.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Sup</th>
<th>Sup -t</th>
<th>Cm</th>
<th>Cm -a</th>
<th>Cl</th>
<th>Smcc</th>
<th>Sm</th>
</tr>
</thead>
<tbody>
<tr>
<td>mutex3Morin</td>
<td>15.30</td>
<td>15.25</td>
<td>15.68</td>
<td>15.68</td>
<td>15.45</td>
<td>306.30</td>
<td>153.60</td>
</tr>
<tr>
<td>mutex4IDFD</td>
<td>0.80</td>
<td>0.74</td>
<td>0.66</td>
<td>0.64</td>
<td>0.80</td>
<td>35.53</td>
<td>13.46</td>
</tr>
<tr>
<td>phi3Morin</td>
<td>0.96</td>
<td>0.95</td>
<td>0.62</td>
<td>0.72</td>
<td>0.37</td>
<td>2.50</td>
<td>2.80</td>
</tr>
<tr>
<td>phi4IDFD</td>
<td>12.11</td>
<td>14.85</td>
<td>0.39</td>
<td>2.98</td>
<td>0.02</td>
<td>0.31</td>
<td>0.16</td>
</tr>
<tr>
<td>phi4Morin</td>
<td>tout</td>
<td>448.82</td>
<td>105.54</td>
<td>tout</td>
<td>95.50</td>
<td>tout</td>
<td>tout</td>
</tr>
<tr>
<td>phi5IDFD</td>
<td>tout</td>
<td>tout</td>
<td>67.14</td>
<td>tout</td>
<td>138.56</td>
<td>tout</td>
<td>tout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instance</th>
<th>Sup</th>
<th>Sup -t</th>
<th>Cm</th>
<th>Cm -a</th>
<th>Cl</th>
<th>Smcc</th>
<th>Sm</th>
</tr>
</thead>
<tbody>
<tr>
<td>dp10.i.O2.b12</td>
<td>30.88</td>
<td>3.51</td>
<td>10.14</td>
<td>22.29</td>
<td>0.20</td>
<td>tout</td>
<td>63.11</td>
</tr>
<tr>
<td>dp10.s.O2.b9</td>
<td>0.54</td>
<td>0.42</td>
<td>0.78</td>
<td>0.68</td>
<td>0.14</td>
<td>26.18</td>
<td>13.04</td>
</tr>
<tr>
<td>dp12.i.O2.b14</td>
<td>254.79</td>
<td>88.18</td>
<td>188.89</td>
<td>272.55</td>
<td>7.17</td>
<td>tout</td>
<td>tout</td>
</tr>
<tr>
<td>dp12.s.O2.b10</td>
<td>5.89</td>
<td>2.01</td>
<td>0.76</td>
<td>2.05</td>
<td>0.72</td>
<td>tout</td>
<td>337.28</td>
</tr>
<tr>
<td>dp6.i.O2.b8</td>
<td>0.20</td>
<td>0.20</td>
<td>0.18</td>
<td>0.16</td>
<td>0.02</td>
<td>0.93</td>
<td>0.32</td>
</tr>
<tr>
<td>dp8.i.O2.b10</td>
<td>0.98</td>
<td>0.77</td>
<td>1.53</td>
<td>2.60</td>
<td>0.03</td>
<td>12.97</td>
<td>4.12</td>
</tr>
<tr>
<td>dp8.s.O2.b8</td>
<td>0.12</td>
<td>0.20</td>
<td>0.15</td>
<td>0.10</td>
<td>0.02</td>
<td>2.58</td>
<td>1.18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instance</th>
<th>Sup</th>
<th>Sup -t</th>
<th>Cm</th>
<th>Cm -a</th>
<th>Cl</th>
<th>Smcc</th>
<th>Sm</th>
</tr>
</thead>
<tbody>
<tr>
<td>hc_1S</td>
<td>tout</td>
<td>2.82</td>
<td>tout</td>
<td>tout</td>
<td>tout</td>
<td>tout</td>
<td>tout</td>
</tr>
<tr>
<td>hc_2S</td>
<td>0.29</td>
<td>5.37</td>
<td>13.50</td>
<td>8.60</td>
<td>0.38</td>
<td>153.44</td>
<td>tout</td>
</tr>
<tr>
<td>hc_3S</td>
<td>1.28</td>
<td>8.15</td>
<td>5.94</td>
<td>3.10</td>
<td>tout</td>
<td>tout</td>
<td>tout</td>
</tr>
<tr>
<td>hc_4S</td>
<td>7.08</td>
<td>2.81</td>
<td>tout</td>
<td>0.94</td>
<td>2.18</td>
<td>14.92</td>
<td>tout</td>
</tr>
</tbody>
</table>

Overall the results demonstrated by SUP place the system in the class of highly efficient answer set solvers.

15 Related Work

Simons (2000) and Ward (2004) described the SMODELS and SMODELScc algorithms, respectively, by means of pseudocode and demonstrated their correctness. In this paper we designed an abstract framework that was used as an alternative method for describing these algorithms and demonstrating their correctness.

Gebser and Schaub (2006) provided a deductive system for describing inferences involved in computing answer sets by tableau methods. The abstract framework presented here can be viewed as a deductive system also, but of a very different kind. First, it accounts for phenomena such as backjumping and learning (and also forgetting and restart) whereas the Gebser-Schaub system does not. Second, we describe backtracking by an inference rule, and the Gebser-Schaub system does not. Accordingly, the derivations considered in this paper describe search process, and derivations in the Gebser-Schaub system do not. Also, the abstract framework
discussed here does not have any inference rule similar to Cut; this is why its derivations are paths, rather than trees.

16 Conclusions

In this paper we showed how to model advanced algorithms for computing answer sets of a program by means of simple mathematical objects, graphs. We extended the abstract frameworks proposed in (Lierler 2008) for describing native and SAT-based ASP algorithms to capture such sophisticated features as backjumping and learning. We characterized the algorithms of systems SMODELS\textsubscript{cc}, SUP, and CMODELS that implement these features. We note that the work on this abstract framework suggested the implementation of answer set solver SUP and the experimental analysis presented here demonstrates that SUP is a competitive representative in the family of answer set solvers. The abstract framework simplifies the analysis of the correctness of algorithms and allows us to study the relationship between various algorithms by analyzing the differences in strategies of choosing a path in the graph. For example, the description of the SMODELS\textsubscript{cc} and SUP algorithms in this framework reflects their differences in a simple manner via distinct assignments of priorities to edges of the graph that characterize these systems. Also we used this framework to describe two algorithms for computing Decision and FirstUPI backjump clauses for the implementation of conflict-driven backjumping and learning. This formalism provided the transparent means for specifying these algorithms. We believe that the development of this abstract framework powerful enough to describe advanced features of answer set solvers in a simple manner will promote the use of these sophisticated features in more solvers. This work helped us design the new solver SUP, and we hope that in the future it will suggest designs of other systems for computing answer sets.

Acknowledgments

We are grateful to Marco Maratea for bringing to our attention the work by Nieuwenhuis et al. (2006), to Vladimir Lifschitz for the numerous discussions, to Martin Gebser, Michael Gelfond, and Miroslaw Truszczynski for valuable ideas and comments, to anonymous referees for their suggestions. The author was supported by the National Science Foundation under Grant IIS-0712113.

References

