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Abstract
The relation between answer set programming (ASP) and
propositional satisfiability (SAT) is at the center of many re-
search papers, partly because of the tremendous performance
boost of SAT solvers during last years. Various translations
from ASP to SAT are known but the resulting SAT formula ei-
ther includes many new variables or may have an unpractical
size. There are also well known results showing a one-to-one
correspondence between the answer sets of a logic program
and the models of its completion. Unfortunately, these results
only work for specific classes of problems.
In this paper we present a SAT-based decision procedure for
answer set programming that (i) deals with any (non disjunc-
tive) logic program, (ii) works on a SAT formula without ad-
ditional variables, and (iii) is guaranteed to work in polyno-
mial space. Further, our procedure can be extended to com-
pute all the answer sets still working in polynomial space.
The experimental results of a prototypical implementation
show that the approach can pay off sometimes by orders of
magnitude.

Introduction
Propositional satisfiability (SAT) is one of the most studied
fields in Artificial Intelligence and Computer Science. Also
motivated by the availability of efficient SAT solvers various
reductions from logic programs to SAT were introduced in
the past.

Fages (1994) showed that if a program Π is “tight” then
its answer sets (or stable models) are in one-to-one corre-
spondence with the models of its completion (Clark 1978).
If the completion is converted to a set of clauses Γ, state-
of-the-art SAT solvers can be used as answer set generators.
Since the size of Γ is at most twice the size of Π, and has
at most m new variables (where m is the number of rules in
the logic program) this is considered a viable and efficient
approach. Fages’ result was then generalised to include pro-
grams with infinitely many rules (Lifschitz 1996), programs

∗We are grateful to Paolo Ferraris and Vladimir Lifschitz for
their comments related to the subject of the paper; to Esra Erdem
and Keijo Heljanko for providing us with the benchmarks; and to
Francesco Calimeri for his support on DLV. This work is partially
supported by ASI, MIUR and Texas Higher Education Coordinat-
ing Board under Grant 003658-0322-2001.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

tight “on their completion model” (Babovich, Erdem, & Lif-
schitz 2000), and programs with nested expressions in the
bodies of the rules (Erdem & Lifschitz 2003). Still these re-
sults do not apply to the whole class of logic programs. It is
well known that each answer set corresponds to a model of
its completion, but the viceversa in general is not true.

Ben-Eliyahu and Dechter (1996) gave a translation from
a class of disjunctive logic programs to SAT. However the
translation may need O(n2) new variables and O(n3) new
clauses (where n is the number of atoms in the logic pro-
gram). Janhunen (2003) presented an optimized encoding
of this translation, which behaves subquadratic in both size
and number of atoms.

A reduction to SAT which does not need extra variables
was proposed by Lin and Zhao (2002). The drawback of this
reduction is that the resulting formula may blow-up in space.
Still system ASSAT based on such reduction outperforms
state-of-the-art ASP systems like SMODELS (Niemelä 1999;
Simons 2000) and DLV (Eiter et al. 1998) on many interest-
ing problems.

In this paper the question that we positively answer is: Is
it possible to build an efficient SAT-based answer set gener-
ator that (i) deals with any (non disjunctive) logic program,
(ii) works on a SAT formula without additional variables
except for those eventually introduced by the clause form
transformation, and (iii) is guaranteed to work in polyno-
mial space? We present a procedure, called ASP-SAT, hav-
ing the above three but also other features. We integrated
ASP-SAT in CMODELS1 and ran a wide comparative analy-
sis with other state-of-the-art systems. The results show that
our procedure has a clear edge over them.

The paper is structured as follows. First we introduce
some necessary definitions and terminology. Second we
present the main ideas behind our procedure and some de-
tails for an effective implementation. We end the paper de-
scribing the integration in CMODELS, the experimental re-
sults, and the conclusions.

Formal Background
Let P be a set of atoms. A rule is an expression of the form

A0 ← A1, . . . , Am, not Am+1, . . . , not An (1)

1http://www.cs.utexas.edu/users/tag/cmodels



where A0 ∈ P ∪ {⊥} (⊥ is the logical symbol standing for
False), and {A1, . . . , An} ⊆ P (0 ≤ m ≤ n). A0 is the
head of the rule, A1, . . . , Am, not Am+1, . . . , not An is the
body. A (non disjunctive) logic program is a finite set of
rules.

In order to give the definition of an answer set we con-
sider first the special case in which the program Π does not
contain the negation as failure operator not (i.e. for each
rule (1) in Π, n = m). Let Π be such a program and let X
be a set of atoms. We say that X is closed under Π if for
every rule (1) in Π, A0 ∈ X whenever {A1, . . . , Am} ⊆ X .
We say that X is an answer set for Π if X is the smallest set
closed under Π.

Now consider an arbitrary program Π. Let X be a set of
atoms. The reduct ΠX of Π relative to X is the set of rules

A0 ← A1, . . . , Am

for all rules (1) in Π such that X ∩ {Am+1, . . . , An} = ∅.
Thus ΠX is a program without negation as failure. We say
that X is an answer set for Π if X is an answer set for ΠX .

Our next step is to introduce the relation between the an-
swer sets of Π and the models of its completion. In the fol-
lowing we represent an interpretation in the sense of propo-
sitional logic as the set of atoms True in it. With this con-
vention a set of atoms X can denote both an answer set and
an interpretation.

If A0 is an atom or the symbol ⊥, the completion of Π
relative to A0 is the formula

A0 ≡
∨

(A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An)

where the disjunction extends over all rules (1) in Π with
head A0. The completion Comp(Π) of Π consists of the
formulas Comp(Π, A0), one for each symbol A0 in P∪{⊥}.

It is well known that if X is an answer set of Π then X
satisfies Comp(Π) while the converse is not necessarily true.
Lin and Zhao (2002) proved that to have a one-to-one corre-
spondence between the answer sets of Π and the models of
its completion we have to consider the loop formulas of Π.
To state this formally we need the following definitions.

The dependency graph of a program Π is the directed
graph G such that the vertexes of G are the atoms in Π, and
G has an edge from A0 to A1, . . . , Am for each rule (1) in
Π with A0 = ⊥. A loop of Π is a set L of atoms such that
for each pair A, A′ of atoms in L there is a path from A to
A′ in the dependency graph of Π whose intermediate nodes
belong to L.

Given a loop L, we define R(L) to be the set of formulas

A1 ∧ . . . ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An

for all rules (1) in Π, with A0 ∈ L and {A1, . . . , Am}∩L =
∅. The loop formula associated with L is

∨
L ⊃

∨
R(L)

where
∨

L denotes the disjunction of the elements in L, and
similarly for

∨
R(L). For instance, the only loop formula of

the program {p← p, p← not q} is p ⊃ ¬q.

Proposition 1 (Lin & Zhao 2002) Let Π be a program,
Comp(Π) its completion, and LF (Π) be the set of loop
formulas associated with the loops in Π. For each set of
atoms X , X is an answer set of Π iff X is a model of
Comp(Π) ∪ LF (Π).

SAT-Based Answer Set Solvers
Consider a program Π. Given Proposition 1 it is clear that
if the dependency graph of Π has no cycles (in this case we
say that Π is tight) then the models of Comp(Π) are also an-
swer sets of Π. Thus for tight programs answer set systems
can use SAT solvers as “black-box” search engines. CMOD-
ELS used this approach to compute answer sets for tight pro-
grams.

If Π is non tight, Lin and Zhao (2002) presented the fol-
lowing procedure LZ(Π) which still uses SAT solver as
black-boxes:
1. Compute Comp(Π) and convert it to a set of clauses Γ.
2. Find a model X of Γ by using a SAT solver. Exit with

failure if no such model exists.
3. Compute the set of atoms X− = X −Cons(ΠX), where

Cons(ΠX) is the set of atoms derivable from the reduct
of Π relative to X .

4. If X− = ∅, then return X .
5. Otherwise, add the clauses corresponding to the loop for-

mulas of all the maximal (under subset inclusion) loops in
X− to Γ, and go to step 2.

LZ(Π) either returns an answer set for Π, or failure if Π
does not have answer sets. In their article Lin and Zhao
showed that ASSAT, a system implementing the above pro-
cedure, can outperform rival systems often by orders of mag-
nitude. Still, LZ(Π) has the following two drawbacks:
1. It is not guaranteed to work in polynomial space. In fact,

Π can have exponentially many loops: If we assume that
each loop formula is not redundant (i.e., that it is not en-
tailed by the rest of the formula under consideration), then
• If Π has an answer set then LZ(Π) blows up in space

in the worst case, while
• If Π has no answer set then LZ(Π) is bound to blow up

in space: In LZ(Π) adding and keeping loop formulas
is essential to guarantee that the SAT solver does not
return previously computed models, and ultimately to
guarantee ASSAT termination.

2. Considering two successive calls of the SAT solver, the
computation done for finding the first model is completely
discarded. Thus some branches of the search tree may get
computed many times.
These drawbacks can be eliminated if we do not use a

SAT solver as a black-box. Instead we can take advantage
that state-of-the-art complete SAT solvers are based on the
Davis-Logemann-Loveland procedure (DLL) (1962). The
basic observation is that DLL can easily work as a SAT enu-
merator. We can thus compute Comp(Π) and then
• generate models of Comp(Π), and



DLL(Γ, S)
if Γ = ∅ then return True;
if ∅ ∈ Γ then return False;
if {l} ∈ Γ then return DLL(assign(l, Γ), S ∪ {l});
A := an atom occurring in Γ;
return DLL(assign(A, Γ), S ∪ {A}) or

DLL(assign(¬A, Γ), S ∪ {¬A}).

Figure 1: The DPLL procedure

• test whether the generated models are answer sets of Π.
Consider DLL as in Figure 1, where l denotes a literal;

Γ a set of clauses; S an assignment, i.e. a consistent set
of literals. Given an atom A, assign(A, Γ) is the set of
clauses obtained from Γ by removing the clauses to which
A belongs, and by removing ¬A from the other clauses in
Γ. assign(¬A, Γ) is defined similarly. In the initial call to
DLL Γ is the set of clauses of which we compute a model
and S is the empty set. DLL(Γ, ∅) returns True whenever Γ
is satisfiable, and False otherwise.

Given DLL, we can obtain a SAT-based answer set gener-
ator for Π by
1. Modifying the first line of DLL in the figure by substitut-

ing “return True” with “return test(S, Π)”, a new func-
tion which
• prints the set atoms(S) = S ∩ P and returns True, if

atoms(S) is an answer set of Π, and
• returns False, otherwise.

2. Defining a function ASP-SAT(Π), that calls DLL(Γ, ∅)
where Γ is a set of clauses corresponding to Comp(Π). Γ
can be computed in many ways. Here, our only assump-
tions are that (i) Γ signature extends P , and (ii) for each
set X of atoms in Γ signature, X satisfies Γ iff X ∩ P
satisfies Comp(Π). Standard conversion methods satisfy
such conditions.
Notice that the set S in test(S, Π) may be non maximal

wrt P , i.e., for some atom A in P , both A and ¬A may not
belong to S. Thus, S ∪ {A} entails Comp(Π) and in princi-
ple we also need to check if atoms(S ∪ {A}) is an answer
set of Π. However, this additional check is not needed, as
established by the following proposition.
Proposition 2 Let Π be a program, X , X ′ be two sets of
atoms satisfying Comp(Π). If X ⊂ X ′ then X ′ is not an
answer set.

From the above proposition, and the fact that each answer
set is also a model of Comp(Π) it follows the correctness
and completeness of ASP-SAT(Π).
Proposition 3 Given a program Π, ASP-SAT(Π) returns
True if and only if Π has an answer set.

Moreover ASP-SAT(Π) (i) performs the search on
Comp(Π) and thus does not introduce any extra variables
except for those eventually needed by the clause form trans-
formation; (ii) is guaranteed to work in polynomial space;
(iii) can deal with both tight and non tight programs. Fur-
ther,

• In the case of tight problems each generated model
of Comp(Π) corresponds to an answer set and thus
ASP-SAT(Π) behaves as a standard SAT solver run on
Comp(Π).

• ASP-SAT(Π) can be easily modified for printing all the
answer sets of Π: It is enough to modify test(S, Π) in
order to return False also when atoms(S) is an answer
set.
Compared to ASSAT, ASP-SAT is guaranteed to work in

polynomial space and no computation is ever repeated, also
when computing all answer sets. Compared to other answer
set solvers like SMODELS and DLV, ASP-SAT has the advan-
tage of being SAT-based and thus it can leverage on the great
amount of knowledge available in SAT.

Still, most of the state-of-the-art SAT solvers based on
DLL, e.g. MCHAFF (Moskewicz et al. 2001), use learning
when backtracking. With learning, whenever False is re-
turned, a “reason” for the failure has to be computed. Intu-
itively, a reason is a subset S ′ of the assignment S such that
any assignment extending S ′ will fail. In order to use SAT
solvers with learning, it is thus not enough for test(S, Π) to
return False when S is not an answer set. Indeed, it has also
to compute a reason for such failure, i.e., a subset S ′ of S
such that for any maximal assignment S ′′ (i) extending S′
and (ii) entailing Comp(Π), atoms(S ′′) is not an answer set
of Π. One such set is S itself. However in order to try to
maximize the advantages of learning, it is important that S ′
be as small as possible. Thus, for computing such S ′, the
test(S, Π) procedure
1. computes the loop formulas associated with the loops in

atoms(S)− Cons(Πatoms(S)),
2. determines a subset of S which falsifies one of the loop

formulas computed in the previous step.
In our experiments, with such a simple procedure, we are
able to compute reasons which are often less than 1% of
the size of S. Of course, the above method for computing
reasons, cannot be applied when returning False because the
goal is to determine all the answer sets and atoms(S) is an
answer set. In this case, by Proposition 2, the set atoms(S)
can work as reason.

In the SAT literature, it is well known that learning can
produce exponential speed-ups. We now show that ASP-
SAT with learning and the method for computing reasons
based on loop formulas, may invoke test(S, Π) exponen-
tially fewer times than ASP-SAT without learning.

Assume the program Π consists of the two rules2

Ai ← Ai+1 Ai+1 ← Ai

for each i ∈ {0, 2, . . . , 2k}. Then Comp(Π) includes Ai ≡
Ai+1 (i ∈ {0, 2, . . . , 2k}) and we can assume that its clausi-
fication Γ consists of the two clauses (¬Ai ∨ Ai+1),(Ai ∨
¬Ai+1), for each i ∈ {0, 2, . . . , 2k}. Γ has 2k models while
the only answer set of Π is the empty set:

2In this paragraph for simplicity we assume that the clauses
corresponding to the reasons returned by test(S, Π) are stored and
never deleted.



• ASP-SAT without learning or with learning but in which
test(S, Π) computes atoms(S) as reason when S is not
an answer set, may generate 2k assignments entailing
Comp(Π).
• ASP-SAT with learning and in which test(S, Π) computes

as reason the subset of S falsifying one of the loop for-
mulas in atoms(S) − Cons(Πatoms(S)), may generate at
most k assignments entailing Comp(Π).

Still, for such a simple program, the generation and testing
of k assignments seems an overkill. Indeed, for programs Π
without negation as failure, we know that there exists exactly
one answer set, Cons(Π). For such programs, ASP-SAT can
be easily tuned to directly compute such answer set by first
assigning the atoms in P to False while branching. It can
be proved that with this modification and for programs Π
without negation as failure, the first invocation to test(S, Π)
has S = Cons(Π).

Integration in CMODELS
ASP-SAT was implemented on top of the SIMO sys-
tem (Giunchiglia, Maratea, & Tacchella 2003) and inte-
grated in CMODELS (Lierler & Maratea 2004) by the last two
authors. SIMO is a MCHAFF-like SAT solver (Moskewicz et
al. 2001), and features two-literal watching data structure,
1-UIP learning, and VSIDS heuristics. However, it does not
feature the low level optimizations of MCHAFF and thus it is
within a factor of 3 slower than MCHAFF. Our implementa-
tion of ASP-SAT incorporates all the techniques presented in
previous section, including the idea to assign atoms first to
False while branching.

Still, the integration of ASP-SAT in CMODELS posed some
challenges related to CMODELS expressivity. CMODELS
uses LPARSE as frontend and thus its input may contain
cardinality expressions (also called “constraint literals” in
LPARSE manual3) and choice rules, two constructs widely
used in answer set programming.4 Operationally CMODELS
performs the following steps:
1. Simplifies the given LPARSE program performing prepro-

cessing similar to those involved in SMODELS.
2. Eliminates cardinality expressions by introducing auxi-

lary atoms and rules. Eliminates choice rules in favor
of nested expressions in the sense of (Lifschitz, Tang, &
Turner 1999). This is done using a procedure defined in
(Ferraris & Lifschitz 2003).

3. Verifies that the resulting program with nested expres-
sions is tight: the definition of tightness is generalized to
such programs in (Erdem & Lifschitz 2003).

4. Forms the program’s completion (see (Lloyd & Topor
1984) for the definition of completion of a program with
nested expressions) and calls a SAT solver.

For CMODELS the integration implied calling ASP-SAT in-
stead of the SAT solver. As for ASP-SAT we had to take into

3http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz
4The input can also contain general weight expressions

(“weight literals”) However, optimize statements (see LPARSE
manual) are not allowed.

account that programs with nested expressions do not satisfy
Proposition 2. For instance, the program

A← not not A (2)

(corresponding to the translation of the choice rule
“{A} ←”) has two answer sets: ∅, {A}. The violation of
Proposition 2 implied two modifications in our procedure.
Consider a program with nested expressions Π. When we
are interested in computing all solutions, we have to guar-
antee that each set S of literals in test(S, Π) is maximal.
Assuming that the input set of clauses is satisfiable, SIMO
always returns maximal assignments but in the signature of
the set of clauses resulting after SIMO preprocessing. How-
ever SIMO removes tautological clauses in the preprocess-
ing. Tautological clauses can naturally arise during the com-
pletion process and removing them may cause the gener-
ation of non maximal (wrt the signature of the input pro-
gram) assignments. By Proposition 2, this is not a problem
if Π does not have nested expressions; it may be a problem
otherwise. For instance, the completion of the program (2)
is A ≡ ¬¬A. (A ∨ ¬A) is the tautological clause corre-
sponding to this completion. After the preprocessing, the
set of clauses corresponding to the program is empty, and
ASP-SAT would not find the answer set {A}. Therefore, we
modified ASP-SAT preprocessing in order to keep tautologi-
cal clauses. The second modification involved the function
test(S, Π). It considers loop formulas as defined in (Lee &
Lifschitz 2003) for nested programs. In the case atoms(S)
is an answer set and we are interested in finding all answer
sets of Π, test(S, Π) returns the entire set S as a reason since
any superset or subset of the atoms in S may be an answer
set of Π.

Experimental Results
CMODELS2 was comparatively tested against other state-of-
the-art systems on a variety of benchmarks. Some of the
benchmarks we considered include cardinality constraints
and choice rules, and will be called “extended”. The sys-
tems we considered are SMODELS version 2.27, ASSAT ver-
sion 1.52 running MCHAFF as SAT solver, DLV release of
2003-05-16. It worths remarking that while SMODELS, AS-
SAT and CMODELS2 use LPARSE as preprocessor, and thus
can be run on the same problems, DLV does not. This ex-
plains why DLV appears only in few tables. Further, ASSAT
cannot deal with extended programs. Finally, for DLV we
have to mention that it is a system specifically designed for
disjunctive logic programs, and that very different results
can be obtained depending on the specific encoding being
used.

All the tests were run on a Pentium IV PC, with 1.8GHz
processor, 512MB RAM DDR 266MHz, running Linux.
For SMODELS, ASSAT and CMODELS2, the time taken by
LPARSE is not counted.5 Further, each system was stopped
after 3600 seconds of CPU time on an instance, or when it
exceeded all the available memory: In the tables, these cases

5Adding the times of LPARSE will not change the picture for
DLV when compared to CMODELS2.



Standard programs Extended programs
#b #s SMODELS ASSAT CMODELS2 SMODELS CMODELS2
8 i-1 12.32 0.80 1.19 0.81 0.47
11 i-1 71.78 2.97 4.19 2.97 1.01
8 i 40.87 0.89 2.18 1.56 1.40
11 i 71.42 3.17 4.52 3.41 1.16
8 i+1 23.35 0.96 0.97 4.99 0.31
11 i+1 107.48 3.54 3.33 5.21 0.75

Table 1: Blocks world: “#b” is the number of blocks.

are denoted with “TIME” and “MEM” respectively. Other-
wise, the tables report the CPU times in seconds needed by
each solver to solve the problem, or a “−” to denote an ab-
normal exit of the program.

We start our analysis considering blocks world planning
problems, encoded as both standard and extended logic pro-
grams, the latter formulation due to Erdem (2002). The re-
sults are represented in Table 1. In the table, (i) the column
“#b” represents the number of blocks; (ii) an “i” in the “#s”
(standing for “number of steps”) column means that the in-
stance corresponds to the problem of finding a plan in “i”
steps, where “i” is the minimum integer for which a plan ex-
ists. Thus, the instances with “i” and “i+1” in the “#s” col-
umn admit at least one answer set, while those with “i− 1”
do not have answer sets. These blocks world problems are
tight on their completion models (Babovich, Erdem, & Lif-
schitz 2000), and thus every model of the completion cor-
responds to an answer set. As it could be expected, SAT-
based systems like ASSAT and CMODELS2 perform (some-
times significantly) better than SMODELS, both on standard
and extended programs. On standard programs ASSAT per-
forms slightly better than CMODELS2, and this corresponds
to the fact that, on average, MCHAFF is better than SIMO.

We also considered Hamiltonian circuit problems on
complete graphs, using both the standard encoding of
Niemela (1999), and the extended encoding in the “bench-
mark problems for answer set programming systems”6.
These problems are particularly interesting because they are
non tight and have exponentially many loops. Thus, one
would expect these problems to be difficult for ASSAT, but
also for CMODELS2 in the case it will generate and then re-
ject (exponentially) many candidate answer sets. The results
are in Table 2. As can be observed, on this test set CMOD-
ELS2 performs best, being faster (sometimes by orders of
magnitude) than all the other solvers both on standard and
extended programs.

The problems in Table 3 are real-world non tight problem
related to checking requirements in a deterministic automa-
ton, and are described in (Ştefănescu, Esparza, & Muscholl
2003).7 Two types of problems are considered and encoded
in logic programs. The first type is called IDFD and the re-
sults on such problems are reported in the first two rows of
the table. The second type of problem is called “Morin”, and
the results are shown on the last three rows. As can be seen,

6http://www.cs.engr.uky.edu/ai/benchmark-suite/ham-cyc.sm
7These benchmarks are available at http://www.fmi.uni-

stuttgart.de/szs/research/projects/synthesis/benchmarks030923.html

Standard programs Extended programs
SMODELS ASSAT DLV CMOD2 SMODELS CMOD2

np30c 11.70 1.14 22.08 0.69 0.36 0.36
np40c 62.89 41.81 97.96 1.63 2.48 0.87
np50c 219.56 14.51 314.46 3.37 8.39 1.79
np60c 594.46 48.80 770.07 5.81 20.47 3.41
np70c 1323.61 291.60 1679.12 8.22 39.41 5.87
np80c 2354.28 32.51 3407.35 14.20 75.36 9.18
np90c TIME 779.06 TIME 22.23 122.53 14.19
np100c TIME − TIME 28.63 185.52 20.76
np120c TIME − TIME 53.33 418.15 41.84

Table 2: Complete graphs. npXc corresponds to a graph
with “X” nodes. CMOD2 is CMODELS2

SMODELS ASSAT DLV CMODELS2
mutex4 33.92 (0)0.62 840.60 (0)0.68

phi4 0.24 (168)2.98 1.44 TIME
mutex2 0.09 (88)1.78 (0)0.12
mutex3 229.57 MEM (0)24.16

phi3 2.87 (704)236.91 (57)3.91

Table 3: Checking requirements in a deterministic automa-
ton. DLV was not run on the last 3 instances.

CMODELS2 times out on one instance that is easily solved by
all the other solvers. This is due to the dimension of the re-
lated propositional formula. On the other hand, for any other
solver, there are one/two instances on which CMODELS is at
least 1 order of magnitude faster. Interestingly, ASSAT blows
up in memory on one instance (and also on other instances,
on which the other systems time out).

Non tight, extended real-world problems corresponding
to the bounded model checking (BMC) of asynchronous
concurrent systems (see (Heljanko & Niemelä 2003))8 are
shown in Table 4. As for the blocks world, these problems
are about proving a certain property in a given number of
steps, represented as the last number in the instance name.
The problems in the first five rows do not have answer sets,
while the remaining (obtained by incrementing the number
of steps) do. Here the results are mixed, and sometimes
CMODELS2 performs much worse than SMODELS. On these
problems, our standard heuristic is not well suited. Given a
program Π, by changing the heuristic in order to
• first assign the atoms occurring within the negation as fail-

ure operator, the order and sign of such atoms determined
as in SIMO, and

• then assign the remaining atoms first to False, the order
determined as in SIMO,

we get the better figures represented in the last column, un-
der the label CMODELS’. The idea behind this heuristic is
that we should first get to a set of clauses corresponding to a
program Π without negation as failure, and then we should
try to satisfy the remaining set of clauses by assigning the
fewest possible atoms to true.

Summing up, the 4 tables show the performances on 45
problems. If for the Table 4 we consider the results in the

8http://www.tcs.hut.fi/˜kepa/experiments/boundsmodels/



BMC SMODELS CMODELS2 CMODELS2’
dp-10.i-02-b11 382.72 1476.72 442.14
dp-10.s-02-b8 15.24 8.20 14.22
dp-12.s-O2-b9 336.03 65.41 137.34
dp-8.i-O2-b9 8.08 12.62 10.69
dp-8.s-O2-b7 1.19 1.02 2.28

dp-10.i-O2-b12 445.47 3295.72 163.15
dp-10.s-O2-b9 28.87 16.07 15.08
dp-12.s-O2-b10 971.50 209.29 46.51
dp-8.i-O2-b10 5.05 40.01 6.44
dp-8.s-O2-b8 1.76 1.99 2.03

Table 4: Bounded Model Checking Problems.

last column, CMODELS2
• times out on 1 problem, while the other systems do not

conclude on at least 3 problems;
• performs better than all the three solvers on 30 problems,

and on 26 it has at least a factor of 2; and,
• except for the problem on which it times out, CMODELS2

is either the top performer or within a factor of 2 from it.
We also considered the problem of generating all the an-

swer sets. Here the results are less in favor to CMODELS2
when compared to SMODELS, especially on extended pro-
grams. We believe this is because of the very naive way in
which reasons are computed by test(S, Π), especially when
atoms(S) is an answer set.

Conclusions
We have presented a SAT-based procedure that (i) can deal
with any logic program (ii) works on a SAT formula with-
out additional variables, (iii) is guaranteed to work in poly-
nomial space. Further, we have evidenced that ASP-SAT
can be easily modified in order to generate all the answer
sets. We have shown how to implement ASP-SAT on top of a
MCHAFF-like solver, and discussed the modifications needed
in the case of extended programs. The experimental evalua-
tion shows that CMODELS2, can have a significant edge over
other state-of-the-art systems. Still, we believe that there is
a lot of space for improvements, especially in the heuristics,
and in the way reasons are computed.

Finally, we believe that ASP-SAT helps in closing the al-
gorithmic gap between answer set and SAT solvers, with
beneficial results especially for the former, given the very
advanced state of development of the latter.
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Niemelä, I. 1999. Logic programs with stable model se-
mantics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25:241–273.
Janhunen, T. 2003 A counter-based approach to translating
normal logic programs into sets of clauses. Proc. ASP’03
Workshop, pp. 166–180.
Simons, P. 2000. Extending and implementing the stable
model semantics. In Doctoral dissertation, 305–316.


	SAT-Based Answer Set Programming
	Recommended Citation

	04aaai.pdf

