
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

2009

One More Decidable Class of Finitely Ground Programs One More Decidable Class of Finitely Ground Programs

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Vladimir Lifschitz
University of Texas at Austin

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Lierler, Yuliya and Lifschitz, Vladimir, "One More Decidable Class of Finitely Ground Programs" (2009).
Computer Science Faculty Proceedings & Presentations. 7.
https://digitalcommons.unomaha.edu/compsicfacproc/7

This Conference Proceeding is brought to you for free
and open access by the Department of Computer Science
at DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of
DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compsicfacproc/7?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

One More Decidable Class

of Finitely Ground Programs

Yuliya Lierler and Vladimir Lifschitz

Department of Computer Sciences, University of Texas at Austin
{yuliya,vl}@cs.utexas.edu

Abstract. When a logic program is processed by an answer set solver,
the first task is to generate its instantiation. In a recent paper, Calimeri
et el. made the idea of efficient instantiation precise for the case of
disjunctive programs with function symbols, and introduced the class
of “finitely ground” programs that can be efficiently instantiated. Since
that class is undecidable, it is important to find its large decidable
subsets. In this paper, we introduce such a subset—the class of argument-
restricted programs. It includes, in particular, all finite domain programs,
ω-restricted programs, and λ-restricted programs.

1 Introduction

When an answer set solver, such as Smodels1 or dlv2, starts processing
a logic program Π , the first task is to generate an instantiation of Π—a
program without variables that has the same answer sets as Π . In the course of
instantiation, the rules of Π are grounded and simplified. Efficient instantiation
algorithms expect that each rule of the input program is safe, in the sense that
every variable occurring in the rule occurs in the positive part of its body. Some
solvers impose stronger restrictions and expect that the given program is ω-
restricted [1] or, more generally, λ-restricted [2].

For a program containing function symbols, however, even safety does not
guarantee the possibility of instantiating the program efficiently. In fact, a safe
program with functions can have infinite answer sets as, for instance, the program

p(0)
p(f(X)) ← p(X).

(1)

Such a program cannot be instantiated in a computationally meaningful way.
In [3], the idea of efficient (or “intelligent”) instantiation is made precise
for disjunctive programs with function symbols. Efficient instantiation, as
understood in that paper, is applicable to the logic programs that the authors
call finitely ground. A program without function symbols is finitely ground if
and only if it is safe. The program

p(0)
q(f(X)) ← p(X)

(2)

1
lparse+smodels: http://www.tcs.hut.fi/Software/smodels/ .

2
dlv: http://www.dbai.tuwien.ac.at/proj/dlv/ .

2 Yuliya Lierler and Vladimir Lifschitz

is finitely ground, but program (1) is not. Every finitely ground program has
finitely many answer sets, and each of them is finite [3, Corollary 1]. Furthermore,
there exists an algorithm for computing the answer sets of an arbitrary finitely
ground program [3, Theorem 2].

It appears then that “finitely ground” is a property that a reasonable answer
set solver can expect of its input. Unfortunately, the class of finitely ground
programs is not decidable [3, Theorem 5]. This fact led the authors to the
problem of describing large decidable subclasses of that class. As a step in this
direction, they defined a decidable class of “finite domain” programs, and showed
that every finite domain program is finitely ground [3, Theorems 6, 7].

In this paper, we introduce another decidable class of finitely ground
programs, argument-restricted programs, which is a proper superset of the class
of finite domain programs. For instance, the program

p(f(X)) ← q(X)
q(X) ← p(X), r(X)

(3)

is argument-restricted, but not finite domain program. The new class is also a
superset of λ-restricted programs (and consequently of ω-restricted programs, in
view of Theorem 1 from [2]). For instance, the program

p(X) ← q(X)
q(X) ← p(X)

(4)

is argument-restricted (as any safe program without function symbols), but not
λ-restricted.

Figure 1 illustrates the relationships between the classes of logic programs
mentioned above. The broken line shows the boundary of the important, but
undecidable, class of finitely ground programs. In the picture, the class of finite
domain programs and the class of λ-restricted programs partially overlap: the
former contains program (4), but not (3); the latter contains (3), but not (4).

Finitely ground
 Argument restricted

restrictedλFinite domain

Safe disjunctive programs with function symbols

Fig. 1. Classes of logic programs

One More Decidable Class of Finitely Ground Programs 3

2 Argument Rankings

We consider disjunctive logic programs—finite sets of rules of the form

A1; . . . ; Al ← Al+1, . . . , Am, not Am+1, . . . , not An (5)

(n ≥ m ≥ l ≥ 0), where each Ai is an atom, possibly containing function
symbols. The positive body of a rule (5) is the list Al+1, . . . , Am. A program Π

is safe if every variable occurring in a rule of Π occurs also in the positive body
of that rule. Recall that grounding a logic program replaces each rule with all
its instances obtained by substituting ground terms, formed from the object and
function symbols occurring in the program, for all variables. The answer sets of
a program are answer sets of the result of its grounding [4].

The definition of an argument ranking below, which is the main definition
introduced in this paper, uses the following terminology and notation. For any
atom p(t1, . . . , tn), by p(t1, . . . , tn)0 we denote its predicate symbol p, and by
p(t1, . . . , tn)i, where 1 ≤ i ≤ n, we denote its argument term ti. As in [3], an
argument is an expression of the form p[i], where i is one of the argument
positions 1, . . . , n. Finally, the depth of a variable X in a term t that contains X ,
denoted by d(X, t), is defined recursively, as follows:

d(X, t) =

{
0, if t is X,

1 + max
i : ti contains X

d(X, ti), if t is f(t1, . . . , tn).

An argument ranking for a program Π is a function α from arguments to integers
such that, for every rule R of Π , every atom A occurring in the head of R, and
every variable X occurring in an argument term Ai, the positive body of R

contains an atom B such that X occurs in an argument term Bj satisfying the
condition

α
(
A0[i]

)
− α

(
B0[j]

)
≥ d(X, Ai) − d(X, Bj). (6)

A safe program is argument-restricted if it has an argument ranking.

Example 1. If a safe program Π does not contain function symbols in the
heads of rules then it is argument-restricted, because its argument ranking can
be defined by α(p[i]) = 0 for all arguments p[i]. Indeed, the right-hand side of (6)
for such a program is nonpositive, because d(X, Ai) = 0.

Example 2. Program (1) is not argument-restricted. In fact, any program
containing the second rule of (1) is not argument-restricted, because for that
rule condition (6) turns into α(p[1]) − α(p[1]) ≥ 1 − 0.

Example 3. Program (2) is argument-restricted: take α(p[1]) = 0, α(q[1]) = 1.

Example 4. Program (3) is argument-restricted: take α(p[1]) = 1, α(q[1]) =
α(r[1]) = 0.

Example 5. The one-rule program p(X, f(X)) ← p(X, X) is argument-
restricted: take α(p[1]) = 0, α(p[2]) = 1.

4 Yuliya Lierler and Vladimir Lifschitz

It is clear that adding the same number to all values of an argument ranking
produces another argument ranking for the same program. It follows that any
argument-restricted program has an argument ranking with nonnegative values.

3 Properties of Argument-Restricted Programs

Theorem 1 The set of argument-restricted programs is decidable.

The easiest proof refers to the fact that the definition of an argument ranking,
viewed as a condition on the values of α(p[i]), can be encoded in difference
logic [5]. A polynomial-time decision method for the set of argument-restricted
programs is described in the next section.

The concept of a finitely ground program is defined in [3, Section 3].

Theorem 2 Every argument-restricted program is finitely ground.

The concept of a finite domain program is defined in [3, Section 5].

Theorem 3 Every finite domain program is argument-restricted.

As mentioned in the introduction, program (3) is a counterexample showing
that the converse does not hold. The one-rule program p(f(X)) ← p(g(X)) and
the program from Example 5 provide counterexamples as well: they are not finite
domain programs, but they are argument-restricted.

The concept of a λ-restricted program is defined in [2, Section 2].

Theorem 4 Every λ-restricted program is argument-restricted.

As mentioned in the introduction, program (4) is a counterexample showing
that the converse does not hold. The argument-restricted program from
Example 5 is not λ-restricted either.

The definition of a λ-restricted program and the definition of an argument-
restricted program are similar to each other in the sense that each of them
refers to the existence of a number-valued function with certain properties. The
difference is that the function is defined on predicate symbols p in the first case,
and on arguments p[i] in the second case. We know from Example 5 that the
possibility of assigning different values to p[1] and p[2] is essential. Furthermore,
the definition of a λ-restricted program does not take into account the depth
of nesting of function symbols within a term. If we replace an occurrence of a
term—say, f(X)— in a λ-restricted program with another term containing the
same variables—say, X or f(f(X))—the result will be λ-restricted as well.

4 Checking whether a Program Is Argument-Restricted

Recall that the definition of an argument ranking (Section 2) involves a condition
on every

One More Decidable Class of Finitely Ground Programs 5

(i) rule R of the given program,
(ii) atom A occurring in the head of R,
(iii) argument position i of A, and
(iv) variable X occurring in Ai.

The inequality (6) in that condition can be rewritten as

α
(
A0[i]

)
≥ α

(
B0[j]

)
+ d(X, Ai) − d(X, Bj). (7)

For any R, A, i, X satisfying (i)–(iv), by DR,A,i,X(α) we denote the list of the
right-hand sides of inequalities (7) for all atoms B in the positive body of R and
the argument positions j such that X occurs in Bj . Define the operator Ω on
the set U of functions from arguments to nonnegative integers by the formula

Ω(α)(p[i]) = max

(
max

R,A,X : A0=p
(minDR,A,i,X(α)) , 0

)
.

A function α ∈ U is an argument ranking for Π iff α ≥ Ω(α).
The operator Ω is monotone. It follows that if Π is argument-restricted then

the set of its nonnegative argument rankings has the least element αmin, and
that αmin = Ωi(0) for the smallest i such that Ωi+1(0) = Ωi(0).

On the other hand, we can show that, for any argument-restricted Π , all
values of αmin do not exceed the number M defined as the product of the total
number of arguments and the largest of the numbers d(X, t) for the terms t

occurring in the heads of rules and for the variables X occurring in t.
It follows that we can determine whether Π is argument-restricted by

iterating Ω on 0 until

– Ωi+1(0) = Ωi(0) —then αmin is found, or
– one of the values of Ωi(0) exceeds M —then Π is not argument-restricted.

Acknowledgements Thanks to Martin Gebser, Tomi Janhunen, Joohyung Lee,
Nicola Leone, Ilkka Niemelä, Wanwan Ren, Fangkai Yang for useful discussions.
This research was partially supported by the NSF under Grant IIS-0712113.

References

1. Syrjänen, T.: Omega-restricted logic programs. In: Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning. (2001) 267–279

2. Gebser, M., Schaub, T., Thiele, S.: Gringo: A new grounder for answer set
programming. In: Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning. (2007) 266–271

3. Calimeri, F., Cozza, S., Ianni, G., Leone, N.: Computable functions in ASP:
theory and implementation. In: Proceedings of International Conference on Logic
Programming (ICLP). (2008) 407–424

4. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365–385

5. Mahfoudh, M., Niebert, P., Asarin, E., Maler, O.: A satisfiability checker for
difference logic. In: Proceedings of International Conference on the Theory and
Applications of Satisfiability Testing (SAT). (2002) 222–230

	One More Decidable Class of Finitely Ground Programs
	Recommended Citation

	srp1.dvi

