
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

2006

Model Generation for Generalized Quantifiers via Answer Set Model Generation for Generalized Quantifiers via Answer Set

Programming Programming

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Günther Görz
Universitat Erlangen-Nurnberg

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Lierler, Yuliya and Görz, Günther, "Model Generation for Generalized Quantifiers via Answer Set
Programming" (2006). Computer Science Faculty Proceedings & Presentations. 5.
https://digitalcommons.unomaha.edu/compsicfacproc/5

This Conference Proceeding is brought to you for free
and open access by the Department of Computer Science
at DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of
DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compsicfacproc/5?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Model Generation for Generalized Quantifiers via
Answer Set Programming

Yuliya Lierler
University of Texas at Austin, Computer Science Department

yuliya@cs.utexas.edu

Günther Görz
University of Erlangen-Nürnberg, Computer Science Institute /8

goerz@informatik.uni-erlangen.de

Abstract. For the semantic evaluation of natural language sen-

tences, in particular those containing generalized quantifiers, we sub-

scribe to the generate and test methodology to produce models of

such sentences. These models are considered as means by which the

sentences can be interpreted within a natural language processing

system. The goal of this paper is to demonstrate that answer set pro-

gramming is a simple, efficient and particularly well suited model

generation technique for this purpose, leading to a straightforward

implementation.

1 Introduction
In Natural Language Processing researchers made considerable

progress in the fields of speech recognition and syntactic analysis for

practical applications. On the other hand the area of semantic analy-

sis has so far mainly concentrated on representational and semantic

construction issues. Several logical systems have been developed that

are suited for the task of discourse meaning representation and in par-

ticular for anaphora binding, e.g., Discourse Representation Theory

(DRT). At the same time the area of semantic analysis, i.e., possibil-

ity of inference based on discourse semantic information and world

knowledge, still is the area where much work remains to be done.

Inference has long been admitted as a key concern in the design

of natural language processing systems. It plays an important role in

assigning meaning to utterances as well as verifying the consistency

of an utterance within the world knowledge of the system or im-

plementing commands encoded in the utterance. [3, 7, 10, 11, 4, 5]

propose model generation as a key methodology for implementing

inference in different areas of natural language processing. At the

same time psycholinguistic studies support model-generation based

methods from a conceptual view. Their studies show that during dis-

course comprehension humans build a logical form of a text as well

as construct the state of affairs described by the discourse, i.e., mod-

els of the representation, so called mental models.

Nowadays there are two main research directions in the area of

applying inference for natural language interpretation. One of them

introduces the use of first order logic (FOL) as a metalanguage for en-

coding utterance information, world and situation knowledge as for

instance demonstrated in [4, 5]. The main advantage of using first

order logic is the availability of inference tools, such as first order

logic model builders and theorem provers. Using first order logic for

the task of inference within natural language processing brings sev-

eral problems. On one hand first order logic is unable to express such

language phenomena as generalized quantifiers like most, many. On

the other hand expressing domain knowledge in first order logic is

a very tedious task where the underlying theory is undecidable. An-

other way of applying inference for language interpretation is to de-

sign an inference engine specifically for a certain type of semantic

representation language as for instance in [7, 10, 11]. The approach

of developing specialized inference algorithms for semantic interpre-

tation are not satisfactory in the sense that they are system and logic

specific.

We see the possibility of using tools that are especially designed

for knowledge representation and reasoning for the tasks of natural

language processing inference be a compromise between two avail-

able directions of the research in semantic interpretation. We investi-

gate the potential of using a logic programming paradigm called an-
swer set programming (ASP) for model generation approach within

natural language processing. Answer set programming is a form of

the declarative programming paradigm [14, 15] related to logic pro-

gramming languages, such as Prolog, where the solutions to a prob-

lem are represented by answer sets, and not by answer substitutions

produced in response to a query as in conventional logic program-

ming. As opposed to Prolog, this programming method uses special-

ized answer set solvers, such as for example SMODELS
A [6]. This

approach is similar to propositional satisfiability checking, where a

propositional formula encodes the problem and models of the for-

mula correspond to the solutions of the problem. The model genera-

tion approach in place of query evaluation is the most characteristic

feature of answer set programming. This methodology allows new

ways of solving problems occurring in artificial intelligence. Within

this paper we argue that it is also useful in providing solutions to the

natural language processing interpretation problem. By now the an-

swer set programming paradigm was successfully applied in various

domains including space shuttle control [17], planning [12], and the

design and implementation of question answering systems [1]. We

investigate the applicability of the answer set programming method-

ology in the area of natural language processing on the task of pro-

viding the interpretation to sentences with generalized quantifiers.

We argue that the method is competitive with other available tools in

this field and may bring new insights in the area of model generation

for the semantic interpretation of sentences.

As the main goal of this paper is to advocate ASP as a new

and efficient model generation technique, having semantic evalua-

tion in mind, we will not deal with general problems of semantic

construction or problems of representing generalized quantifiers in

a DRT framework. So, research problems in the area of general-

ized quantifiers such as scope problems, vague quantification, non-

monotonicity, etc., as well as questions of scalability are beyond the

scope of the present paper. Instead, we assume an appropriate se-

mantic construction procedure as given and focus just on the model

generation aspects using ASP. To investigate our central thesis, i.e.

the feasibility of ASP for model generation and semantic evaluation

in NLP, we begin with rather simple cases. It is important to notice

that these simple examples are not meant as to provide a particular

motivation for our approach. But with their help, we will show that

ASP is in fact an appropriate approach, being simple, efficient and

of suitable expressiveness at the same time, and that it supplies good

reasons to be taken as the basis for the treatment of more complex

cases — a research task still to be done.

So, in the following we present our first results to resolve

the meaning of the natural language generalized quantifiers “all”,

“some”, “two”, and “most”. We adopt the idea proposed in [2], that

generalized quantifiers are relations between sets, where members of

the sets are given by the semantics of the sentence. Note that we use

the term set, while linguistically these sets can be seen as extensions.

Consider the simple example sentence All trains are fast . In a view

adopted from [2] the sentence expresses the relation all between set

of trains and the set of fast trains. The relation all is satisfied only if

the two sets are identical.

Of course, there are different issues within generalized quantifier

interpretation. Unsurprisingly, their interpretations are often ambigu-

ous. For example, in Discourse Representation Theory [9] several

algorithms are being proposed for constructing the representation

for the same sentence that contains a generalized quantifier. But,

as pointed out above, these questions are beyond the scope of the

present paper.

The way we approach the interpretation of generalized quanti-

fiers is by applying the generate and test methodology. First, we

encode the problem of generating prospective models by means of

logic rules in the answer set program. Intuitively, prospective mod-

els are sets that could correspond to the meaning of a sentence, i.e.

the sets that might satisfy the relation on the sentence provided by

the generalized quantifier. For example, when the domain consists of

three trains {t1, t2, t3} and the sentence to be analyzed is All trains

are fast , then the one possible and hence prospective model corre-

sponding to the sentence, i.e. the model that contains all trains, is

{t1, t2, t3} such that they are fast. The second part of the logic pro-

gram encodes the test on prospective models on their plausibility by

using pragmatic, world, or domain knowledge. Within the paper we

present only the outline of our idea on interpreting generalized quan-

tifiers. We demonstrate the approach using sample sentences with

generalized quantifiers.

The paper is organised as follows. First, we introduce the formal

concepts of the answer set programming sufficient to understand the

further encodings in the paper. Second, the specifications and encod-

ing of sample domain are given. Then, we present the analysis of

simple example sentences that contain generalized quantifiers, and

specify the details of their processing within the generate and test

framework.

2 Answer Set Programming
A rule is an expression

a0 ← a1, . . . , am, not am+1, . . . , not an (1)

where a0 is an atom or the symbol ⊥ for falsehood, and a1, . . . , an

are atoms for 0 ≤ m ≤ n. Atom a0 is called head of the rule whereas

a1, . . . , am, not am+1, . . . , not an is the body. If the head of a rule

is ⊥ then the rule is called a constraint and it is written

← a1, . . . , am, not am+1, . . . , not an.

If the body of a rule is empty then the rule is called a fact. A logic

program is a finite set of rules.

We interpret logic programs via answer set semantics [8, 16, 18].

Let Π be a logic program comprising rules with n = m (i.e. Π is a

program without any occurrence of not) and let X be a set of atoms;

we say that X is closed under Π if, for every rule in Π, a0 ∈ X
whenever {a1, . . . , am} ⊆ X . We say that X is an answer set for

Π if X is the smallest set closed under Π. Now let Π be an arbitrary

logic program and let X be a set of atoms. The reduct ΠX of Π
relative to X is the set of rules a0 ← a1, . . . , am for all rules in Π
such that X ∩ {am+1, . . . , an} = ∅. Thus ΠX is a program without

not. Set X is an answer set for Π if X is an answer set for ΠX .

We now extend the class of rules with choice rules, i.e. expressions

of the form:

{a0} ← a1, . . . , am, not am+1, . . . , not an (2)

where a0, . . . , an are atoms. For the lack of space here we do

not provide the precise definition of the semantics of logic pro-

grams with choice rules1. However, for the purpose of this presen-

tation, it suffices to give the following, informal explanation. We

say that the body of rules of the form (1) or (2) is satisfied by X
if {a1, . . . , am} ⊆ X and {am+1, . . . , an} ∩ X = ∅. On the one

hand, rule (1) prescribes that if the body is satisfied by the answer set

then its head must be in the answer set too. Choice rule (2), on the

other hand, prescribes that if its body is satisfied by the answer set,

its head may be in the answer set.

To illustrate, let us consider the program composed by the rules

a. {b} ← a. c ← b.

It has two answer sets, {a} and {a, b, c}. The body of the first rule

is satisfied by any set therefore a shall be part of all answer sets. The

body of the second choice rule is also satisfied by all answer sets

hence b may be in the answer set. The satisfaction of the body of the

last rule depends on whether b is in the answer set or not. By adding

the constraint ← c. to the example program we can eliminate the

second answer set.

We finally extend the class of rules with aggregate rules, i.e. ex-

pressions of the form:

a0 ← aggr, a1, . . . , am, not am+1, . . . , not an (3)

where a0, . . . , an are atoms, and aggr is an aggregate literal of the

form F ({X, p(X)})op V alue, F is an aggregate function (e.g.,

count, sum), op is a relational operator (e.g. =,>). Due to the lack

of space we refer the readers to [18] for a precise definition of an

answer set for logic programs with aggregate rules. However, we

1 For a precise definition of an answer set for logic programs with choice
rules please see [16].

illustrate the use of aggregate rules in the following example. Let us

consider the program composed by the rules

set(a). set(b). set(c).
twoElementsSet ← count({X, set(X)}) = 2.
threeElementsSet ← count({X, set(X)}) = 3.

It has one answer set {set(a) set(b) set(c) threeElementsSet}.

For simplicity, in the sequel we use the term rules in a broad sense so

to encompass also choice and aggregate rules.

The answer set programming system SMODELS
A accepts the pro-

grams containing rules (1), (2), and (3) produced by the grounder

LPARSE
2. LPARSE allows variables in its syntax, and makes use of

so called domain predicates in order to ground the program so that it

contains only atoms. Later in the presentation we use the rules with

variables but it shall be intuitive which ground rules they result in.

The common answer set programming style is to split the problem

specification into two subproblems: generate, and test [13], where

1. the generate part of a program defines a potential set of solutions,

2. the test part consists of the constraints which ”weed out” the an-

swer sets generated in the generate part that don’t satisfy the con-

straints.

We adopt this methodology for encoding the problem of interpreting

the sentences with generalized quantifiers in the following.

3 Generate and Test via Answer Set Programming
3.1 Domain Specification
We demonstrate our way of interpreting generalized quantifiers with

the help of examples with the assumption that a natural language pro-

cessing system has a built-in world model — the domain knowledge.

First, let us formalise our example domain knowledge and encode it

as a logic program.

Example Specification: There are three trains in the world. Con-

stants t1, t2, t3 correspond to the train instances. The trains t1, t2
have the property of being fast, t3 has the property of being slow.

The encoding of the domain follows:

num(1). num(2). num(3).
object(t1; t2; t3).
pred(train, t1). pred(train, t2). pred(train, t3).
pred(fast, t1). pred(fast, t2). pred(slow, t3).

(4)

3.2 Sentence Representation
We choose four naive sentences to demonstrate the approach:

All trains are fast. [s-1]

Some trains are fast. [s-2]

Two trains are fast. [s-3]

Most trains are fast. [s-4]

Although these are simple sentences, they are sufficient for our pre-

sentation.

Within this paper we consider duplex-DRS [9] to denote a formal

representation of a sentence. For instance, sentence [s-1] has the fol-

lowing duplex-DRS representation

x
train(x) ��

�� ��

��

∀ x fast(x) (5)

2 http://saturn.hut.fi/pub/smodels/ .

where
x

train(x)
(6)

is called a restrictor;
fast(x) (7)

is called a nuclear scope; 〈∀x〉 is the formal representation of the

relation all and is called a quantifier. Restrictor, nuclear scope and (5)

are Discourse Representation Structures (DRSs), where (5) and (7)

contain only conditions, and (6) consists of discourse referents, and

conditions listed respectively above and below the horizontal bar.

Duplex-DRS as a Logic Program. First we define constants

forall, exists, two, most to correspond to duplex-DRS quantifiers

〈∀ x〉, 〈∃ x〉, 〈two x〉, 〈most x〉 respectively. The specifications

of duplex-DRS contains logic rules specifying a restrictor, a nuclear

scope, and a quantifier. For instance duplex-DRS (5) specification

consists of

restrictor(train, x). nuclearScope(fast, x). (8)

and

quantifier(forall, x). (9)

Within a representation of duplex-DRSes for sentences [s-2,s-3,s-4]

rule (9) would be replaced by the following rules respectively:

quantifier(exists, x). (10)

quantifier(two, x). (11)

quantifier(most, x). (12)

3.3 Prospective Models
As we mentioned in the introduction we take a view at generalized

quantifiers as relations on sets. In this sense we can describe the re-

lation all between two sets A and B as follows

• All A are B whenever A ⊆ B

Additionally, it was noted by Barwise and Cooper [2] that the relation

B ⊆ A always holds in case of all natural language generalized

quantifiers. (There are exceptions as only, but we do not consider

such cases in this work). Hence the relation that correspond to natural

language quantifier all can be given as

• All A are B whenever A = B.

The generation of sentence models corresponding to its meaning pro-

ceeds as follows. First, we encode the generate part of the program

that is able to enumerate the prospective models of the sentence. By

a prospective model we identify a pair of sets 〈A, B〉 such that

i if and only if a ∈ A then a satisfies the restrictor of duplex-DRS,

i.e., A is an extension of the restrictor, e.g., for sentence [s-1]

A = {a|train(a)},
ii B ⊆ A,

iii sets A and B satisfy the quantifier condition of the duplex-DRS.

In case of all-〈∀x〉 quantifier, its condition is A ⊆ B (A = B) .

For example, there exists only one prospective model

〈{t1, t2, t3}, {t1, t2, t3}〉
for sentence [s-1] within the domain described in section 3.1. Sec-

ond, we encode the test part of the program that lists the constraints

on the solutions based on the sentence nuclear scope, domain knowl-

edge, and situation. This part of the program verifies the plausibility

of prospective models. Domain and sentence representation in logic

program syntax plus the generate and test parts produce the logic

program, whose answer sets represent the possible sentence inter-

pretations.

Prospective Models for Some. We can describe the relationship

some between two sets A and B as follows

• Some A are B whenever A ∩ B = ∅

The condition (iii) of the prospective model definition in case of the

natural language quantifier some-〈∃x〉 is B = ∅. Consider a sentence

[s-2]. There are seven prospective models that correspond to this sen-

tence and domain from section 3.1, where A is the set {t1, t2, t3},

while B may have seven corresponding assignments {t1, t2, t3},

{t1}, {t1, t2}, {t2, t3}, {t1, t3}, {t2}, {t3}.

Prospective Models for Two. First we may note the ambiguity of

the word two. In some sentences it might mean exactly two in others

at least two, or at most two. At the moment we abstract to the former

meaning of two – exactly two.

We can describe the relationship two between the sets A and B by

• Two A are B whenever |A ∩ B| = 2

The condition (iii) of the prospective model definition for the natural

language quantifier two-〈two x〉 is |B| = 2. Consider sentence [s-3].

In case of the domain described in section 3.1, and sentence [s-3]

there are three prospective models, where A is set {t1, t2, t3}, while

B may have three corresponding assignments {t1, t2}, {t2, t3},

{t1, t3}.

Prospective Models for Most. We can describe the relationship

most between two sets A and B as follows

• Most A are B whenever |A ∩ B| > |A|
2

The condition (iii) of the prospective model definition for the nat-

ural language quantifier most-〈most x〉 is |B| > |A|
2

. Consider

sentence [s-4]. In case of the domain described in section 3.1 and

sentence [s-4] there are four prospective models, where A is set

{t1, t2, t3}, while B may have four corresponding assignments

{t1, t2}, {t2, t3}, {t1, t3}, {t1, t2, t3}.

3.4 Generate

Our task now is to encode the generate part of the logic program that

is able to enumerate the prospective models of a sentence, when do-

main specification and sentence duplex-DRS representation are pro-

vided as an input. The encoding AB Generate follows:

ael(X, x) ← restrictor(Y, x), pred(Y, X).
{bel(X, x)} ← ael(X, x).

(13)

negAll ← ael(X, x), not bel(X, x).
forall ← not negAll.
← quantifier(forall, x), not forall.

(14)

exists ← bel(X, x).
← quantifier(exists, x), not exists.

(15)

two ← count({X, bel(X, x)}) = 2.
← quantifier(two, x), not two.

(16)

most ← count({X, bel(X, x)}) > K1,
assign(K1, div(K, 2)), numA(K), num(K).

numA(K) ← count({X, ael(X, x)}) = K, num(K).
← quantifier(most, x), not most.

(17)

where (13) corresponds to the code that generates the candidate

members for the sets A and B, i.e., predicates ael(X, x), bel(X, x)
state that X is a member of A, B respectively. (14,15,16,17) spec-

ify the conditions that candidate set B generated by (13) must sat-

isfy when the quantifier is all, some, two, or most respectively. Con-

sider specification (17). The first rule, most-rule, states that the num-

ber of objects that are elements of set B is greater than K1 where

K1 = |A|
2

and
|A|
2

is computed by the second rule of (17). The con-

straint ← quantifier(most, x), not most. on the other hand for-

bids solutions where quantifier(most, x) is provided by a duplex-

DRS specification, but the requirement of most-rule is not satisfied.

There exists a mapping between prospective models and answer

sets of a program consisting of the domain, a sentence duplex-DRS

specification, and AB Generate. Let us consider the domain from

section 3.1, and sentence [s-3]. The logic program corresponding to a

prospective model generator for this example is a combination of the

domain specification (4) with (8,11,13,16). There are three answer

sets for this program that correspond to prospective models

〈{t1, t2, t3}, {t1, t2}〉〈{t1, t2, t3}, {t2, t3}〉〈{t1, t2, t3}, {t1, t3}〉

At this point we are done with the generation part of our approach

and proceed to the testing of prospective models.

3.5 Test
First let us explain what do we mean by prospective model testing.

What are the criteria that would make us to accept one prospective

model and reject another? We remind ourselves that our prototypi-

cal natural language processing system works within a specific do-

main possessing concrete knowledge about the surrounding world.

The prospective models that we accept and call SAT-models are the

ones that do not conflict with the domain knowledge of the natural

language processing system. Although for some applications we ar-

gue and demonstrate by examples that prospective models might play

an important role even when they are inconsistent with the domain

knowledge.

It is easy to notice that deciding within a specific application if

the model is acceptable might depend on such factors as whether

the sentence is an imperative, a statement, or a question, or whether

the speaker is trustworthy. In this section we would like to outline the

flexibility of an answer set generate-and-test approach that may facil-

itate alternative interpretations of the sentences depending on specific

natural language applications. For instance, natural language driven

control system might evaluate a sentence differently from a question

answering system. In the previous section we provided the means to

generate prospective models that hold for the sentences with gener-

alized quantifiers in all applications, while testing of the prospective

models is application specific and often requires not only linguis-

tic data, but also background, domain, and application knowledge.

Therefore, in the following we only outline some possible scenarios

for model testing that take into account types of the sentences and

demonstrate that the answer set programming technique is sufficient

to support these scenarios. Implementation of an approach in the real

world natural language application will provide the new insights on

the approach.

Let us consider domain from section 3.1 and the sentences:

Are all trains fast? (S-1)

Make all trains fast. (S-2)

Trains are all fast. (S-3)

Are most trains fast? (S-4)

Sentences (S-1, S-2, S-3) have only one prospective model

〈{t1, t2, t3}, {t1, t2, t3}〉. For these sentences the prospective

model assumes that all trains are fast while in our sample domain

we have one slow train. On the other hand sentence (S-4) has four

prospective models

〈{t1, t2, t3}, {t1, t2}〉, 〈{t1, t2, t3}, {t2, t3}〉,
〈{t1, t2, t3}, {t1, t3}〉, 〈{t1, t2, t3}, {t1, t2, t3}〉

where, for instance, first model assumes that trains t1 and t2 are fast.

Consider question (S-1). Its only prospective model is not consis-

tent with the domain knowledge hence no SAT-model shall be gener-

ated from it. No SAT-model found corresponds to a negative answer

to the posed question. Consider question (S-4). Only one of the four

prospective models 〈{t1, t2, t3}, {t1, t2}〉 is consistent with the do-

main knowledge. Therefore there shall be only one answer set found

that corresponds to a SAT-model of (S-4) and states that indeed most

of the trains are fast, i.e., trains t1 and t2 are fast.

On the implementational level what needs to be checked is

whether the objects of B in the prospective model pair 〈A, B〉 pos-

sess the properties given in a nuclear scope of duplex-DRS corre-

sponding to the question. Prospective models that satisfy such con-

straints are accepted as SAT-models. Answer set programming con-

straint
← bel(B, x), not pred(X, B),
nuclearScope(X, x).

(18)

forbids the answer sets where within the domain knowledge, some

element of B does not possess the property specified by the nuclear

scope. Remember that some element b in B corresponds to bel(b, x)
predicate in our program.

There is no answer set for the program ΠS−1 constructed from

domain specification (4), duplex-DRS corresponding to (S-N)3: (8,

9, 14), generate (13), and test (18). This corresponds to our intu-

ition that the only prospective model of (S-1) is rejected that states a

negative answer to the question (S-1). Note that this implementation

rejects a prospective model even in case of incomplete knowledge

when the system is not aware of the speed property of some train.

The answer set program constructed from domain specifica-

tion (4), duplex-DRS corresponding to (S-4): (8, 12, 17), generate

(13), and test (18). produces one answer set that corresponds to the

SAT-model 〈{t1, t2, t3}, {t1, t2}〉. This meets our intuition that only

one prospective model of (S-4) shall be accepted as a SAT-model that

states a positive answer to the question (S-4).

In the case of the imperative sentence (S-2), its only prospective

model is inconsistent with the domain description from section 3.1.

Nevertheless rejecting the prospective model as in the case of ques-

tion (S-1) might be not the optimal solution for all natural language

processing systems. By means of answer set programming another

possibility can be easily implemented. For instance, the answer set

of a program may present a prospective model together with the list

of objects in the domain required to possess some properties in order

for prospective model to be consistent with the domain knowledge.

Consider our sample domain and imperative sentence (S-2): train t3
shall possess a property of being fast in order for prospective model

be consistent with the domain.

3 S-N denotes S-1,S-2,S-3 due to the fact that duplex-DRS specifications cor-
responding to these sentences are identical.

The answer set program ΠS−2 constructed from domain specifica-

tion (4), the duplex-DRS corresponding to (S-N): (8, 9, 14), generate

(13), and test rule

bPosses(B, X) ← bel(B, x), not pred(X, B),
nuclearScope(X, x).

(19)

produces one answer set that contains the predi-

cate bPosses(t3, fast) and the prospective model

〈{t1, t2, t3}, {t1, t2, t3}〉. Such an answer set on the applica-

tion level provides the information that in order to satisfy the

requests of the imperative sentence, train t3 shall possess the

property of being fast.

At the same time the answer set programming paradigm can easily

encode such information as whether it is in general possible for a

train from being slow to become fast. For instance, constraint

← pred(slow, X), pred(fast, X). (20)

states that if a train is slow, it in no way may be fast, i.e., the

only prospective model for (S-2) can be rejected based on such a

constraint of the domain knowledge. Intuitively, program ΠS−2 ex-

tended with constraint (20) has no answer sets.

Consider statement (S-3). Its only prospective model assumes that

all trains are fast while in our sample domain we have one slow train.

Based on domain knowledge of a system and statement (S-3) incon-

sistency, for some natural language processing applications it might

be expected a behaviour as in case of question (S-1) where no answer

set is produced for a program ΠS−1. The natural language system

may then conclude that newly received information is inconsistent

with its knowledge and act upon that.

For some other applications, behaviour as in the case of the im-

perative sentence (S-2) might be more appropriate, where the answer

set of ΠS−2 conveys to a natural language processing system that

the received information encoded by a statement differs from the do-

main knowledge w.r.t. certain information. For instance, for the case

of our sample domain and statement (S-3), the answer set of ΠS−2

states that domain object train t3 shall possess a property of being

fast in order for statement (S-3) be consistent with the domain.

Here we conclude the presentation of some possible test scenarios.

It is important to underline that the flexibility of the proposed an-

swer set programming methodology allows more sophisticated test-

ing mechanisms that may take into account such information as, e.g.,

background knowledge and system requirements.

4 Conclusions
We proposed the application of the generate and test methodology

for finding the interpretations for sentences with generalized quan-

tifiers. We see the generate part of the approach as the procedure

that can be defined based on the generalized quantifier, the domain

knowledge, and the sentence duplex-DRS. The test part is more so-

phisticated in a sense that also the type of the speech act, domain and

situation knowledge, and further natural language processing system

requirements may need to be taken into account in order to evaluate

the meaning of the sentence.

We demonstrated a way of using the answer set programming

paradigm for generating and testing the models corresponding to the

meaning of sentences with generalized quantifiers. The encoding is

modular and allows for flexible extensions. We see this feature of the

approach as its biggest advantage, that may allow quick and sophis-

ticated encoding of different strategies for testing the models with

respect to the domain knowledge, the type of the speech acts, and

further natural language processing system requirements.

Acknowledgements
We are grateful to Bernd Ludwig, Peter Reiss, Bernhard Schiemann,

and Iman Thabet for discussions on the topic of this work, and

Vladimir Lifschitz for the comments on a first draft of this paper.

REFERENCES
[1] Chitta Baral, Michael Gelfond, and Richard Scherl, ‘Using answer set

programming to answer complex queries’, in Workshop on Pragmatics
of Question Answering at HLT-NAAC2004, (2004).

[2] J. Barwise and R. Cooper, ‘Generalized quantifiers and natural lan-
guage’, Linguistics and philosophy, (1981).

[3] Peter Baumgartner and Michael Kühn, ‘Abductive Coreference by
Model Construction’, Technical Report 6–99, Universität Koblenz-
Landau, Institut für Informatik, Rheinau 1, D-56075 Koblenz, (1999).

[4] P. Blackburn and J. Bos, Representation and inference for natural lan-
guage, CSLI Publicatiosn, 2005.

[5] J. Bos, ‘Exploring model building for natural language understanding’,
in Proc. ICOS’4, (2003).

[6] I. Elkabani, E. Pontelli, and T.C. Son, ‘SMODELSA

— a system for computing answer sets of logic pro-
grams’, in Proc. LPNMR-8, (2005). Available under
http://www.cs.nmsu.edu/ ielkaban/asp-aggr.html.

[7] C. Gardent and K. Konrad, ‘Interpreting definites using model genera-
tion’, Language and Computation, 1, 193–209, (2000).

[8] Michael Gelfond and Vladimir Lifschitz, ‘The stable model seman-
tics for logic programming’, in Logic Programming: Proc. Fifth Int’l
Conf. and Symp., eds., Robert Kowalski and Kenneth Bowen, pp. 1070–
1080, (1988).

[9] H. Kamp and U. Reyle, From discourse to logic, volume 1,2, Kluwer,
1993.

[10] M. Kohlhase, ‘Model generation for discourse representation theory’,
in Proc. 14th ECAI, (2000).

[11] K. Konrad, Model generation for natural language interpretation and
analyses, Ph.D. dissertation, University of Saarbruecken, 2000.

[12] Vladimir Lifschitz, ‘Answer set planning’, in Proc. ICLP-99, pp. 23–
37, (1999).

[13] Vladimir Lifschitz, ‘Answer set programming and plan generation’, Ar-
tificial Intelligence, 138, 39–54, (2002).

[14] V. Marek and M. Truszczyński, ‘Stable models and an alternative logic
programming paradigm’, in The Logic Programming Paradigm: a 25-
Year Perspective, 375–398, (1999).

[15] I. Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 241–273, (1999).

[16] Ilkka Niemelä and Patrik Simons, ‘Extending the Smodels system with
cardinality and weight constraints’, in Logic-Based Artificial Intelli-
gence, ed., Jack Minker, 491–521, Kluwer, (2000).

[17] Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard
Watson, and Matthew Barry, ‘An A-Prolog decision support system for
the space shuttle’, in Working Notes of the AAAI Spring Symposium on
Answer Set Programming, (2001).

[18] T.C. Son, E. Pontelli, and I. Elkabani, ‘A translational semantics for
aggregates in logic programming’, Technical Report NMSU-CS-2005-
005, New Mexico State University, (2005).

	Model Generation for Generalized Quantifiers via Answer Set Programming
	Recommended Citation

	viewcontent.cgi

