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into Logic Programming
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Abstract. In this paper we show how protocol insecurity problems expressed in a
multi-set rewriting formalism can be automatically translated into logic program-
ming problems. The proposed translation paves the way to the construction of
model-checkers for security protocols based on state-of-the-art solvers for logic
programs. We have assessed the effectiveness of the approach by running the pro-
posed reduction against a selection of insecurity problems drawn from the Clark &
Jacob library of security protocols: by running state-of-the-art solvers against the
resulting logic programming problems most of the (known) attacks on the consid-
ered protocols are found in a few seconds.

1 Introduction

Security protocols are communication protocols that aim at providing secu-
rity guarantees (such as authentication of principals or secrecy of information)
through the application of cryptographic primitives. In spite of their apparent sim-
plicity security protocols are notoriously error-prone. Quite interestingly, many
attacks can be carried out without breaking cryptography. These attacks exploit
weaknesses in the protocol that are due to unexpected interleavings of differ-
ent protocol sessions as well as to the possible interference of malicious agents.
Since these weaknesses are very difficult to spot by simple inspection of the pro-
tocol specification, security protocols received growing attention by the Formal
Methods and Automated Reasoning communities as a new, challenge application
domain.

In the last decade we thus witnessed the development of a large number of
new techniques for the analysis of security protocols. While some techniques
(e.g., [21, 15, 7]) are tailored to the analysis of security protocols, others reduce

�
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the analysis of security protocols to some general purpose formalism such as CSP
[14], rewriting logic [9], logic programming [1], or propositional logic [6]. While
techniques in the first camp usually exhibit better performance, techniques in the
second camp are normally simpler to adapt in response to changes or extensions
to the underlying model.

In this paper we show how protocol insecurity problems expressed in a multi-
set rewriting formalism can be automatically translated into logic programs with
answer set semantics. The proposed translation paves the way to the construc-
tion of model-checkers for security protocols based on state-of-the-art solvers for
logic programs. We implemented our ideas within SATMC,3 a model-checker for
security protocols developed in the context of the AVISPA Project,4 a platform
that aims at supporting the development of large-scale Internet security-sensitive
protocols. We assessed the effectiveness of the approach by running the proposed
reduction against a selection of problems drawn from Clark & Jacob library of se-
curity protocols [8]. By running a state-of-the-art answer set solver (e.g. CMOD-
ELS or [13] SMODELS [17]) against the resulting logic programming problems
most of the (known) attacks on the considered protocols are found in a few sec-
onds.

Outline of the paper. We start in Section 2 by introducing security protocols
via a well-known (flawed) authentication protocol. In Section 3 and Section 4
we define the notions of protocol insecurity problems and logic programs, re-
spectively. Section 5 is devoted to the description of the proposed reduction of
protocol insecurity problems into logic programming. Experimental results are
discussed in Section 6. We conclude in Section 7 with some final remarks.

2 The Needham-Schroeder Public-Key Protocol

Let us consider the well-known Needham-Schroeder Public-Key (NSPK) authen-
tication protocol. In the common Alice&Bob notation, the NSPK protocol can be
represented as: ������� � � 	�
���
����������������� � � 	�
�����
������ ����! "��� � � 	�
����������
where

�
and

�
are the roles involved in the protocol; #

�
and #

�
are the public

keys of
�

and
�

, respectively;
���

and
���

are nonces5 generated, respectively, by�
and

�
. Step

�����
of the protocol denotes

�
sending

�
a message comprising the

identity of
�

and the nonce
���

encrypted with #
�
. Since


���
������$���
can only

3 http://www.ai.dist.unige.it/satmc
4 http://www.avispa-project.org
5 Nonces are numbers randomly generated by principals and are intended to be used only once.



be deciphered by means of the private key #
��� �

and the latter is (by assumption)
only known by

�
, then the effect of Step

���"�
is that only

�
can possibly learn

the value of
���

. In Step
�����

agent
�

proves to
�

his participation in the protocol
and, by sending

���
, asks

�
to do the same. In Step

�! ��
agent

�
concludes by

proving to
�

her own participation in the protocol. Thus successful execution of
the NSPK protocol should give evidence to

�
and

�
that they talked to each other.

The rationale is that, under the perfect cryptography assumption (see Section 3),
only

�
and

�
could compose the appropriate response to the messages issued in�����

and
��� �

, respectively.
Note that the above specification is parametric in the variables� 
�� 

#
��

#
��
�����
����

. Thus, if we denote the above protocol specifica-
tion by

� ��� # � ��
�� 
 # � 
 # ��
���� 
���� � , then
� ��� # � �����
	��$

��
�� � 
�����

� ��

���!�

and
� ��� # � ������	��$
 ��� ��
�� � 
�� ��

� ��� 

� � � denote two sessions whereby

������	��
executes the protocol with

�
(the intruder) and

��� �
respectively.6 By using

messages from one session to form messages in the other as illustrated below,
�

deceives
��� �

into believing that he is talking to
������	��

whereas he is talking to
�
:��� � ����������	�� � � 	�
�������	�� 

� ��� ������ � ����� � ������	�� � � ��� � 	�
�������	�� 

� ��� � ���� � ��� ��� � � � � ������	�� � 	�
�� ��

� ��� � ���� � ����� � ������	�� 	�
�� ��

� ��� � ���� �  "��������	�� � � 	�
�� � � ������ �  "��� � ������	�� � � ��� � 	�
�� � � � �

where
� � ������	����

indicates the intruder pretending to be
�����
	��

.

3 Protocol Insecurity Problems

We model the concurrent execution of security protocols by means of a state tran-
sition system specified in declarative language based on multi-set rewriting [2]. In
this paper we assume that the network is controlled by the very general Dolev-Yao
intruder [10]. In this model the intruder has the ability to eavesdrop, divert, com-
pose, decompose, encrypt, and decrypt messages. Furthermore we make the stan-
dard assumptions of perfect cryptography i.e. an encrypted message can be de-
crypted only with the appropriate decryption key, and of strong typing i.e. agents
accept only well-typed messages.

A protocol insecurity problem is a tuple  "!"#�$ 
&% 

'�
)( 
�*,+ where $ is a
set of atomic formulae of a sorted first-order language called facts,

%
is a set of

function symbols called rule labels, and
'

is a set of (rewrite) rules of the form

6 Here and in the rest of the paper we use capitalized identifiers for variables and lowercase iden-
tifiers for constants.



�������
, where

�
and

�
are finite subsets of $ such that the variables occurring in�

occur also in
�

, and � is an expression of the form
�������

, called rule name, where�
	 %
and

�
is the vector of variables obtained by ordering the variables occurring

in
�

lexicographically. Let
� � � �� ���

�
	 '

and
� � � �� ���

�
	 '

; we require that
� � !�� � if and only if

� � ! � � and
�

� ! � � . This additional requirement ensures
that rule names are in one-to-one relation with the rewrite rules in

'
; thus in the

sequel we will often use rule names and rewrite rules interchangeably for the sake
of brevity.

(
is a subset of $ representing the initial state. In this setting, a state

is denoted by the set of ground facts
��
 $ that are true in it. (The ground facts

that do not occur explicitly in
�

are considered to be false.) It is also possible to
denote a state by the conjunction of facts that are true in it. Finally

*
is a boolean

combination of facts in disjunctive normal form (DNF), whose disjuncts represent
the bad states of the protocol.

Let
�

be a state and
� � ����� ��	 '

. If � is a substitution such that
� � 
 �

,

then one possible next state is
��� ! � ��� � � ����� � and we indicate this with

� ����� �
. A solution to (or attack on) a protocol insecurity problem  is a sequence of

rules ����� �

 ����� 
 � � � � � � � � where � �


 ����� 
 � � � � are grounding substitutions7 such

that
� � �������� � �! � for

� !#" 
 ����� 
�� �%$ with
� � ! (

and
� �'& ! *

(where & ! denotes
entailment in classical logic).

It is convenient to relax the definition of the transition relation associated
with a protocol insecurity problem by allowing parallel executions of rules while

preserving the interleaving semantics. Let
� � � �� �(�

� and
� � � �� �(�

� be in
'

and
let � � and � � be grounding substitutions such that � � � �*)!+� � � � . We say that � � � �
conflicts with � � � � if and only if

� � � �
, � � � � � � � � � �
� )!.- or

� � � �/, � � � � � ��
� � �

� )!0- . Let
�

be a state,
� � ���� �1� � 	 '

for
� ! $ 
 ����� 
32 ,

� ! ��465�!7 � � � � � � ,� ! ��4 5�!7 �
� � � � � , and 8 ! 


� � � �

 ����� 
 � 5 � 5 � , then we define

�:9�
P

� �
if and

only if
�
� ! ��� �;� � �<�=� �

,
� � � � � , �>� � � � !?- and for each

��
�@ ! $ 
 ����� 
32
with

� )! @ , we have that � � � � does not conflicts with �BAC��A .
A partial-order solution to (or partial-order attack on) a protocol insecurity

problem  is a sequence of sets 8D�

 ����� 
 8 � � � such that

� � 9 ��
P

� �! � for
� !

"

 ����� 
�� �E$ with

� � ! (
and

� �F& ! *
. The length of a partial-order attack is

given by the number of sets in the sequence.

7 A substitution is grounding if it maps every variable of the language to a ground term.



4 Logic Programming

A literal is an expression of the form
�

or �
�

where
�

is an atom. A logic rule
(lp-rule) is an expression�

� �
�

�

 ����� 
&� 5 

� ��� � 5  �


 ����� 

� ��� � � (1)

where
�
� is a literal or the symbol � for falsehood, and

�
� , . . . ,

�
� are lit-

erals for "��
2

�
�

. The literal
�
� is called head of the lp-rule whereas�

�

 ����� 
&� 5 

� ��� � 5  �


 ����� 

� ��� � � is the body. If the head of an lp-rule is � then the
lp-rule is called constraint and it is written �

�
�

 ����� 
&� 5 

� ����� 5  �


 ����� 

� ��� � � . If
the body of an lp-rule is empty then lp-rule is called logic fact (lp-fact). A logic
program is a finite set of lp-rules.

We interpret logic programs via the answer set semantics [11, 12, 19]. Let �
be a logic program comprising lp-rules with

� ! 2 (i.e. � is a program without
any occurrence of

� ���
) and let 	 be a consistent set of literals; we say that 	 is

closed under � if, for every lp-rule in � ,
�
�
	
	 whenever


 �
�

 ����� 
&� 5 � 
 	 .

We say that 	 is an answer set for � if 	 is the smallest set closed under � .
Now let � be an arbitrary logic program and let 	 be a consistent set of literals.
The reduct ��
 of � relative to 	 is the set of rules

�
� � �

�

 ����� 
&� 5 for all

lp-rules in � such that 	 ,

 � 5  �


 ����� 
&� � � ! - . Thus ��
 is a program without� ���
. We say that 	 is an answer set for � if 	 is an answer set for � 
 .
We finally extend the class of lp-rules with choice lp-rules, i.e. expressions of

the form: 
 �
�
� � �

�

 ����� 
&� 5 

� ��� � 5  �


 ����� 

� ��� � � (2)

where
�
�

 ����� 
&� � are literals. For the lack of space here we do not provide the

precise definition of the semantics of logic programs with choice lp-rules. (For a
precise definition of an answer set for logic programs with choice lp-rules please
see [18].) However, for the purposes of the present paper, it suffice to give the
following, informal explanation. We say that the body of lp-rules of the form (1)
or (2) is satisfied by 	 if


 �
�

 ����� 
&� 5 � 
 	 and


 � 5  �

 ����� 
&� � � , 	 !.- . If, on

the one hand, an lp-rule prescribes that if the body is satisfied by the answer set
then its head must be in the answer set too. A choice lp-rule, on the other hand,
prescribes that if its body is satisfied by the answer set, its head may or may not
be in the answer set.

To illustrate, let us consider the program composed by lp-rules
� � ,


���� ��
, and

	 � �
. It has two answer sets


����
and


���
 ��
&	��
. Clearly the body of the first

rule is satisfied therefore
�

shall be part of all answer sets. The body of the second
choice lp-rule is also satisfied hence

�
may be in the answer set. The satisfaction

of the body of the last rule depends on weather
�

is in the answer set or not. By
adding the constraint �

	
to the example program we can eliminate the second

answer set.



For simplicity in the sequel we will use the term lp-rules in a broad sense so
to encompass also choice lp-rules.

5 Protocol Insecurity Problems as Logic Programs

Let  ! #�$ 
&% 

' 
)( 
�*�+ be a protocol insecurity problem with finite $ and
'

8

and let
�

be a positive integer. In this section we will show how to build a logic
program � �� such that any answer set of � �� corresponds to a partial-order attack
on  of length

�
. The basic idea of our translation is to add a time stamp

�
to rule

names and facts. Facts are thus indexed by " through
�

and rule name by " through� � $ . If � is a fact or a rule name and
�

is a time stamp in the appropriate range,
then � � is the corresponding atom. Program � �� is the union of the following lp-
rules modeling the initial state, the goal, the execution of rewrite rules, the law of
inertia, and mutual exclusion of conflicting rules.

For brevity we describe the translation by showing its application to the pro-
tocol insecurity problem  NSPK that models the two sessions of the NSPK authen-
tication protocol informally introduced in Section 2. The facts in  NSPK are:

–
�
����� �

, meaning that the intruder knows the message
�

;
– ���

����	 � ���
, meaning that the nonce

�
has not been used yet;

–
2 ��
 
 � 
 � 
�� �

, meaning that
�

supposedly sent message
�

to
�

at step



;
– 


��
 
 � 
 � 
�� � �

 ����� 
�� ��� 
�� � , meaning that

�
knows messages

�
�

 ����� 
�� � at

step



of session
�

, and—if

 )! " —also that a message from

�
to
�

is
awaited for step



of session

�
to be executed.

Initial State. The set
(

contains facts that encode the initial state. For each �
	 (

there is a corresponding lp-fact � � � . For instance, the initial state of  NSPK is:9



�
"

�� 
�� 
�� ��

��
�� � 
�� � � � 
���� � 
 $ � (3)

� 

�
"

���
�� 
�� ��
 ��
�� � 
�� � � � 
�� � � 
��$� � 
 � $ 
 ��
���
�� ��
�� 
�� ��
�� �

� � 
�� � � 
��$� (4)
����������� ��� 	 ��� $ 
 $ ��� (5)
����������� ��� 	 ��� $ 
��$��� ����������� ��� 	 ��� � 
��$��� (6)

� �
�����!� � �
��� � � � �
��� � � � �
���)����� � � ���)��� � � � � �
���)� � � � � ���)� � � (7)

Fact (3) states that honest agent
�

plays the role of initiator in session $ and knows
her own identity, the agent she would like to talk with (the intruder), her public
and private keys, and the intruder public key. Facts (4) represent the initial state of

8 For simplicity of the description of translation we assume � and � to be ground.
9 To improve readability we use the “  ” operator as set constructor. For instance, we write “ !" $#% '& ”

to denote the set
� !)(*#+(,& � .



the honest agents
�

and
�

and specify their involvement as initiator and responder
(resp.) in session

�
. Facts (5) and (6) state the initial freshness of the nonces. Facts

(7) represent the information known by the intruder. The lp-rules corresponding
to the initial state are:



�
"

�� 
�� 
�� ��

��
�� � 
�� � � � 
���� � 
 $ � � �

...�
���)� � � � �

Goal. We recall that the goal if a formula in DNF specifying the set of bad
states, whose reachability implies a violation of the desired security property. (For
simplicity, here we assume that

*
contains only positive facts.) For each disjunct

� ��� ����� � � � of
*

we generate the lp-rule �
� ��� � � � � 
 ����� 
 � � � . The constraint� � ���

�
� ���

is also included in the output logic program. It restricts the answer
sets to contain �

� ���
.

For example, successful execution of NSPK should ensure authentication
of the responder with the initiator and vice versa. The attack situation can
be easily modeled by the goal formula 


� $ 
���
 ��
�� ��
���
�� ��
�� ��� � 
�� � � 
�� �)�$��� �


�
"

�� 
���
�� � 
 ��
�� ��
�� � � � 
�� � � 
��$� that represents all the states in which

�
believes

to have completed a session with
�

, while
�

did not start this session with him.
The corresponding lp-rules are:

�
� ��� � 


� $ 
�� 
 ��
�� ��
�� 
�� ��
�� ��� � 
�� � � 
�� �)�$��� � 



�
"

�� 
���
�� � 
 ��
�� ��
�� � � � 
�� � � 
��$� �

� � ���
�
� ���

Inertia. For each �
	 $ there is an lp-rule of the form � �! � � � � 

� ��� � � �  �

.
Such lp-rule states that if some fact � is true at time

�
it is also true at time

��� $
unless it is inferred to be false at time

��� $ . For instance, the inertia for the facts
modeling the intruder knowledge is modeled by:�
����� � �! � � �
����� � � 
 � ��� � �
����� � �! �

Rewrite Rule Execution. For each rewrite rule
� � ��� � �%	 '

with
� !
 �

�

 ����� 
&� 5 � , we generate the following lp-rules:

� � � � �

� � 
 ����� 
&� 5 � ,
� �  � � � � , for each �

	=� � �
, and

� � �! � � � � , for each �
	 � � �

.



The first rule states that if elements of
�

are satisfied at time
�

then rule � might
be applied at the same time. The last two rules state that if the rule � is applied at
time

�
then at

� � $ the facts that belong to
� � �

hold and the ones which belong
to
� � �

do not hold. In the last rule we introduce � � �  �
for all facts �

	 � � �
.

When combined with the lp-rules modeling the inertia this forces � to not hold at
time

��� $ .
We call the rules modeling the behavior of honest agents protocol rules and

rules representing the intruder intruder rules. Here for the sake of brevity we
present only one rewrite rule for each type and their corresponding compilation.

The following protocol rule models the activity of sending the first message
of the NSPK:

���
��� 	 ��� 	 ��� $ 
 � ��� � 
 � " 
���
�� 
�� ��
�� 
 # ��
 # �

� � 
 #
� � 
 � � �������	��

��� ���

���
�
���

� ���� � � � � � � � � � � � � �


�)� 
�� 
�� 
�� � 	 ��� $ 
 � � 
���
�� 
 # ��
 # �

� � 
 #
� � 
 � �

� 2 � $ 
���
�� 
 
�� 

� 	 ��� $ 
 � � ����� �

The lp-rules corresponding to this rewrite rule are:
�� � �
� �
� � 
�� 


#
� 

#
��
 � � � � � ���

��� 	 ��� 	 ��� $ 
 � ��� � 



�
"

���
�� 
�� ��
�� 


#
� 

#
� � � 
 #

� � 
 � � �


�)� 
�� 
���
�� � 	 ��� $ 
 � � 
�� 
�� 
 # � 
 # � � � 
 #

� � 
 � � �  � � ��� ��� �
� ��
�� 


#
� 

#
��
 � � �2 � $ 
���
�� 
 
�� 

� 	 ��� $ 
 � � ����� � �  � � ��� ��� �

� ��
�� 

#
� 

#
��
 � � �

� ���
����	 ��� 	 ��� $ 
 � ��� �  � � ��� ��� �

� ��
�� 

#
� 

#
��
 � � �

� 

�
"

�� 
���
�� ��
�� 


#
� 

#
� � � 
 #
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The following intruder rule models the ability of the intruder to decrypt messages:
� ��� 
	� � � � � � ��� #

� � ��� ����� � �!�"

�

� #$�� � � � � � � � � � ��� 
	� � � � � � ��� #
� � � � �
��� � �

(8)

It states that if the intruder knows both the cypher-text

	� � �

and the decryption
key #

� �
, then he can learn

�
. The lp-rules corresponding to this rewrite rule

are: 
!%���	
�'&��

� �
#

(� � � � � �
��� 
	� � � � � 

�
��� # � � � ��
��� � � �! � � %���	

�'&��
� �
#

(� � � (9)

Conflicts Exclusion. For each pair of conflicting rules � � and � � we generate a
constraint of the form � � � � 
 � � �
In this way we forbid the parallel execution of conflicting rewrite rules.



For instance,
� �
�

� �
� ��
 ��
�� � 
�� ��
��$�

and
� � �

� �
� � 

��
�� ��
���� 
��$�

are conflicting
rules in  NSPK since they would use simultaneously the same fresh nonce� 	 ��� $ 
��$� . This is encoded in logic programming by means of the constraint� � �
�

� �
� � 
 ��
�� � 
�� ��
��$� � 
�� � � � � � ��

� 
�� ��
�����
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Let
�

is an answer set for the logic program � �� and let 8 � ! 

���

	
��� � 	 � and

� � ��� � � 	 ' �
for

� ! "

 ����� 
�� � $ , then it can be shown that

8/�

 ����� 
 8 � � � is a partial-order attack on  .
It is worth pointing out that while the above reduction paves the way to an au-

tomatic compilation of protocol insecurity problems into logic programs, its direct
application is not viable as the resulting logic programs can be of unmanageable
size even for simple protocols. To overcome this difficulty in [3] we introduced a
number of (attack preserving) optimizing transformations on protocols insecurity
problems that make the approach both feasible and effective on many protocols
of interest.

6 Experimental Results

SATMC is a SAT-based Model-Checker for security protocol analysis. Given a
protocol insecurity problem  , as a preliminary step SATMC applies the opti-
mizing transformations presented in [3] to  thereby obtaining a new protocol
insecurity problem  � such that any attack on  � corresponds to an attack on  
and vice versa. Then SATMC generates a SAT formula �

� ��� (for increasing values
of

�
) such that any model of �

� � � corresponds to an attack on  � (and hence to
an attack on  ). Models of SAT formulae are automatically found by invoking
state-of-the-art SAT solvers.

In order to assess the effectiveness of the reduction described in this paper we
have developed a prototype implementation of the translation described in Sec-
tion 5. As a consequence, SATMC can now also translate the optimized protocol
insecurity problem  � into a logic program � �� � (for increasing values of

�
). The

logic program � �� � is then fed to the grounder LPARSE10 and then to a state-of-
the-art solver. (Currently both SMODELS and CMODELScan be used to this end.)
Once an answer set is found, SATMC transforms it into a partial-order attack that
is reported to the user.

We ran SATMC against a selection of flawed security protocols drawn from
the Clark & Jacob library [8]. For each protocol we built a corresponding protocol
insecurity problem modeling a scenario with a bounded number of sessions in
which the involved principals exchange messages on a channel controlled by the
most general intruder based on the Dolev-Yao model.

10 http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz



Table 1. Experimental results.

Reduction to Logic programming (LP) Reduction to SAT (SAT)

Pb K LP EncT LP LP CMODELS EncT ATs CLs SolT
(IF2LP / LPARSE) ATs Rules ATs CLs LP SolT

ISO-CCF-1 U 4 0.10 / 0.28 ��� 2 ��� 1 0.02 0.04 ��� ��� 0.00
ISO-CCF-2 M 4 0.18 / 1.12 2 7 2 3 0.05 0.32 ��� 6 0.01
ISO-PK-1 U 4 0.19 / 0.95 1 4 1 2 0.03 0.12 ��� 2 0.00
ISO-PK-2 M 4 0.50 / 3.87 4 17 4 4 0.14 0.89 2 17 0.00
ISO-SK-1 U 4 0.09 / 0.29 ��� 2 ��� 1 0.02 0.04 ��� ��� 0.00
ISO-SK-2 M 4 0.25 / 1.65 4 11 4 4 0.11 0.38 ��� 3 0.00
NSPK 7 0.46 / 7.54 12 80 12 14 0.65 2.31 7 51 0.09
NSPK-server 8 2.74 / 26.54 17 198 17 19 1.47 8.03 9 212 0.22
SPLICE 9 1.79 / 72.44 27 333 27 32 2.47 4.63 14 91 0.21
Swick 1 5 0.97 / 14.81 11 36 11 11 0.32 1.03 4 17 0.02
Swick 2 6 1.63 / 51.81 16 148 16 18 1.11 3.18 8 59 0.08
Swick 3 4 0.38 / 24.36 6 12 6 7 0.13 0.82 5 12 0.02
Swick 4 5 1.85 / 137.98 20 62 20 21 0.59 11.05 15 64 0.18
Stubblebine rep 3 1.40 / 371.00 29 2,010 29 30 14.37 82.93 13 2,048 0.63

Table 1 reports the experimental results obtained by compiling to logic pro-
grams (LP sub-table) and by compiling to SAT11 (SAT sub-table). We used
CMODELS as solver for logic programs and Chaff [16] as SAT solver. Experi-
ments were carried out on a PC with a 1.4 GHz CPU and 1 GB of RAM.

For each protocol we give the smallest value of
�

at which the attack is found
(K). We also give the time spent for generating the logic program (IF2LP) and the
time spent by LPARSE for grounding it (LPARSE),12 the number of lp-atoms (LP
ATs) and lp-rules (LP Rules) in the logic program (in thousands), the time spent
by CMODELS for solving the logic program (LP SolT)13 together with the number
of atoms (ATs) and clauses (CLs) in the SAT formula generated by CMODELS in
this solving phase (in thousands). Moreover, we give the time spent by SATMC
for generating the SAT formula (EncT), the number of propositional variables
(ATs) and clauses (CLs) in the SAT formula (in thousands), and the time spent
by Chaff to solve the SAT formula (SolT).

11 SATMC supports a variety of techniques for compiling protocol insecurity problems to SAT.
The experiments described in this paper are obtained by using the linear encoding technique.
See [4] for a survey of the encoding techniques supported by SATMC.

12 The time spent for generating the ground logic program (LP EncT) is the sum of IF2LP and
LPARSE.

13 The results obtained by running SMODELS on this application domain are really comparable
with those of CMODELS.



Since CMODELS[13] reduces the problem of finding answer sets of logic pro-
grams by reduction to SAT, it is interesting to compare the number of atoms
and clauses directly generated by SATMC with that generated by CMODELSby
compiling the logic program obtained by applying the reduction technique de-
scribed in this paper. SATMC uses a noticeably smaller number of atoms, while
the number of clauses generated often speaks in favor of CMODELS. The differ-
ence in the number of atoms can be explained by the advantage of the grounder
of SATMC tuned to the protocol insecurity problems over the general purpose
grounder LPARSE. As far as the number of clauses is concerned, the difference
is due to the fact that CMODELS performs some reductions on the logic program
before translating it into a propositional formula.14

As far are the timings are concerned, the experimental results indicate that the
SAT approach outperforms the LP approach. But this is mainly due to the time
spent by the grounder LPARSE that largely dominates the other times.

In [5] an optimized intruder model is proposed that leads in many cases to
shorter attacks. The key idea is to model the ability of the intruder to decompose
messages by means of axioms instead of rewrite rules. (An axiom is a formula that
states a relation between the facts and that holds in all reachable states.) However,
this requires non trivial extensions to the SAT-reduction techniques, whereas its
application to the approach described in this paper is considerably simpler. For
instance, the axiom ���
��� 
	� � � �

�
� ���
#
� � ��� �

�
��� � �
(10)

states that, every time the intruder knows both a message encrypted with the key# and the decryption key #
� �

, then he also knows
�

at the very same time step.
This can me mimicked in logic programming by the lp-rules:�
��� � � � � � ��� 
	� � � � � 

�
��� # � � � �

�
� ���
#
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�
��� � � � 

� ��� 
	� � � � �
�
�
��� 
	� � � � � � �

�
��� � � � 

� ��� # � � � � (11)

By modeling the intruder rules by means of axioms and by changing the en-
coding described in this paper accordingly, preliminary experiments indicate that
SATMC finds attacks which are up to 3 steps shorter therefby saving up to 44%
atoms and clauses when applied to the problems in the Clark & Jacob library.

Axioms are also useful to model specific algebraic properties of cryptographic
operators. For instance, the Diffie-Hellman protocol relies on the following prop-
erty of exponentiation: �

� 

��� ! �

�
� �



14 The details on the reduction can be found at http://www.cs.utexas.edu/users/
tag/cmodels/cmodels-1.ps



Such a property can be modeled as a set of axioms representing equivalence
classes over facts. For instance, the axioms�
�����
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�����

�
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and
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�
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� 
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state that
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�����

� 

� � �

and
�
�����

� �
�


�

are in the same equivalence class. By adopt-
ing the above approach we have been able to generate with SATMC a logic pro-
gram whose answer set corresponds to a (known) attack on the Diffie-Hellman
protocol.

7 Conclusions

The work presented in [1] is closely related to ours. In that paper the authors put
forward the idea of formalizing protocol insecurity problems (modeled according
to Paulson’s inductive model [20]) in logic programming and of using solvers for
logic programs for automating the analysis of security protocols. In this paper
we have described an approach to the automatic compilation of security protocol
specifications (in a multi-set rewriting formalism) into logic programs. This re-
duction, combined with the optimizing transformations introduced in [3], paves
the way to the construction of model-checkers for security protocols based on
state-of-the-art solvers for logic programs. We have also thoroughly assessed the
effectiveness of the proposed reduction by running our prototype implementation
against a selection of flawed security protocols drawn from the Clark & Jacob
library [8] and using CMODELS to solve the resulting logic programs. A com-
parison with the approach of compiling protocol insecurity problems into SAT,
indicates that even if the reduction to SAT exhibits better performance, the re-
duction to logic programming can readily take into account specific algebraic
properties of cryptographic operators. Moreover we expect a considerable gain in
performance by using the SATMC grounder instead of LPARSE for grounding the
resulting logic programs.
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