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ALTERNATIVE LIFE CYCLE STRATEGIES AND COLONIZATION OF YOUNG ANURANS
BY GORGODERINA ATTENUATA IN NEBRASKA

Matthew G. Bolek*, Scott D. Snyder†, and John Janovy, Jr.‡
School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, Nebraska 68588. e-mail: bolek@okstate.edu

ABSTRACT: Studies on life cycles and epizootiology of North American frog bladder flukes indicate that adult frogs become
infected predominantly by ingesting tadpoles or other frogs that serve as second intermediate hosts for gorgoderid metacercariae.
Other studies have indicated that newly metamorphosed frogs are rarely infected with these parasites because they are gape-
limited predators that cannot feed on large intermediate hosts such as tadpoles and other frogs. We examined the role of potential
intermediate hosts in the recruitment of the frog bladder fluke, Gorgoderina attenuata, to metamorphosed northern leopard frogs,
Woodhouse’s toads, and bullfrogs from western Nebraska. We completed the life cycle of G. attenuata in the laboratory in 3
anuran species by experimentally infecting a variety of hosts. In addition, we generated and compared DNA sequence data from
life cycle stages collected from a variety of naturally infected hosts. Our field and laboratory data indicate that in Nebraska G.
attenuata has a truncated, 2-host life cycle that includes fingernail clams and anurans. Cercariae are ingested directly by tadpoles;
unencysted juvenile worms then develop in the kidneys of tadpoles before moving to, and maturing in, the urinary bladder when
tadpoles metamorphose. Additionally, G. attenuata can infect metamorphosed leopard frogs, bullfrogs, and toads when metacer-
cariae in damselfly second intermediate hosts are ingested. These worms can also infect adult bullfrogs when they feed on other
infected anurans possessing worms in their kidneys. Comparison of our material to published accounts of G. attenuata morphology
and life cycles in Massachusetts suggests that previous work may have inadvertently involved 2 different species of gorgoderids.
Our comparative approach to life cycle studies in different anuran life stages and multiple species of hosts suggests that tadpoles
and metamorphosed anurans have favored alternative life cycle strategies in this trematode.

Recently there has been an increased interest in attempts to
understand adaptations involved in the evolution of complex
life cycles of parasitic organisms (see Poulin and Cribb, 2002;
Parker et al., 2003). These studies have derived mathematical
models of how complex life cycles might have evolved from
simple life cycles or conducted meta-analysis from a phyloge-
netic perspective on life cycle variation among different genera
and families of parasites. The results of these studies suggest
that we need additional field and experimental data to better
understand the selective pressures that have resulted in the evo-
lution of these highly improbable complex life cycles. A major
impediment of this evolutionary understanding comes from the
fact that few data exist concerning different life cycle strategies
among closely related parasite taxa that are distributed in dif-
ferent combinations of hosts in different parts of the world (see
Grabda-Kazubska, 1976; Snyder and Janovy, 1994, 1996; Pou-
lin and Cribb, 2002; Bolek and Janovy, 2007a, 2007b).

Bolek and Janovy (2007a) argued that amphibian parasites
may be good model systems to address questions of parasite
life cycle diversity and evolution. Recent comparative studies
on amphibian parasite life cycles, recruitment, and community
structure in anuran hosts by Bolek and Coggins (2000, 2001,
2003), Muzzall et al. (2001), Bolek and Janovy (2007a, 2007b,
2008), and Yoder and Coggins (2007) have provided base line
data on the distribution, demography, field host specificity, and
life history of amphibian parasites. These studies suggest that
life cycle strategies of amphibian parasites are adapted to the
environment and ecology of their hosts; however, life cycle
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strategies of congeners and individual species in different life
stages of amphibians can vary substantially. This variability
may provide insight into the evolution and local adaptation of
complex life cycles (Grabda-Kazubska, 1976; Snyder and Jan-
ovy, 1994, 1996; Bolek and Janovy, 2007a, 2007b, 2008).

Studies on the life cycles and epizootiology of North Amer-
ican amphibian bladder flukes indicate a remarkable plasticity
in the use of second intermediate hosts in their life cycles.
North American species of Gorgodera and Gorgoderina pri-
marily use tadpoles as second intermediate hosts but can also
use odonates and molluscs. However, species of Phylodistomum
use arthropods as second intermediate hosts, while adult am-
phibians become infected by ingesting arthropods, snails, tad-
poles, or other frogs infected with metacercariae (Krull, 1935;
Rankin, 1939; Crawford, 1940; Goodchild, 1943, 1948; Ube-
laker and Olsen, 1972). Field studies also indicate that within
individual anuran species, newly metamorphosed and juvenile
anurans are less commonly infected with bladder flukes than
are larger adult frogs because of small gape size, which affects
the size of potential intermediate hosts that can be ingested by
these frogs (see Bolek and Coggins, 2003; Bolek and Janovy,
2007a). Contrary to these studies, our observations from Ne-
braska indicate that newly metamorphosed northern leopard
frogs, which never feed on tadpoles or other anurans (Bolek
and Janvoy, 2007a), are commonly infected with Gorgoderina
attenuata, with prevalences reaching 80%.

We examined the population structure, recruitment, and route
of infection of G. attenuata in young-of-the-year northern leop-
ard frogs (Rana pipiens), Woodhouse’s toads (Bufo woodhou-
sii), and bullfrogs (Rana catesbeiana) from western Nebraska
in order to elucidate any differences in this bladder fluke’s life
cycle strategy. Additionally, we compare our results to the orig-
inal life cycle work on G. attenuata from western Massachu-
setts by Rankin (1939). The conceptual strength of the present
study rests with the examination of alternative routes of infec-
tions by a single trematode species to 3 different anuran species
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that vary in their life histories and phylogenetic relationships
(Lannoo, 2005).

MATERIALS AND METHODS

Gorgoderina attenuata field studies in tadpoles and
metamorphosed leopard frogs

During July–September 2001 and July 2002, 125 newly metamor-
phosed northern leopard froglets were collected from Cedar Creek,
Keith County, Nebraska (41�11.194�, �101�21.820�). All frogs were
placed on ice as they were collected and brought into the laboratory.
Frogs were killed, the snout vent length (SVL) was measured, and they
were examined for bladder fluke metacercariae in the skin and viscera
as well as worms in the urinary bladder within 1–6 hr of collection.
Additionally, 12 northern leopard frog tadpoles (Gosner stage 39–41)
collected from Cedar Creek during July 2002 were brought to the lab-
oratory, maintained through metamorphosis in 45.5-L tanks filled with
aged tap water for a period of 3–6 wk, then examined for bladder flukes.

To understand at what stage, age, or both newly metamorphosed
northern leopard frogs acquired bladder fluke infections, we examined
the seasonal recruitment of G. attenuata by collecting 60 northern leop-
ard frog tadpoles (20 individuals every 2–3 wk during May–July 2003)
and 20 metamorphosed froglets during July 2003 from Cedar Creek.
All tadpoles and froglets were collected with a dip net, placed on ice,
and necropsied within 1–6 hr of collection. They were aged and mea-
sured according to Gosner (1960) and McDiarmid and Altig (1999) and
examined for gorgoderid metacercariae in the skin, musculature, and
viscera, as well as for worms in the kidneys and urinary bladder. Kid-
neys were removed from tadpoles and froglets, pressed between 2
slides, and examined for any juvenile or encysted worms. Worms were
fixed in 95% ethanol or AFA, and representative worms were stained
and permanent slides prepared. Kidneys of some tadpoles were fixed in
Bouin’s fixative, embedded in paraffin, sectioned at 12 �m, affixed to
slides, stained with hematoxylin and eosin, mounted in Canada balsam,
and examined microscopically.

Gorgoderina attenuata field studies in 3 sympatric anuran
species

During June–September 2004, 20 tadpoles each of northern leopard
frogs and Woodhouse’s toads were collected from Cedar Creek, 20 bull-
frog tadpoles from Breen’s Flyway (a pond adjacent to Cedar Creek)
(41�10.914�, �101�21.654�), along with 20 metamorph or adult northern
leopard frogs, 25 metamorph Woodhouse’s toads from Cedar Creek, and
10 metamorph or adult bullfrogs from Cedar Creek and Breen’s Flyway,
and examined for gorgoderid infections in their kidneys, urinary blad-
der, skin, and viscera. A chi-square test for independence was calculated
to compare differences in prevalence between sympatric tadpole and
metamorphosed anuran species collected during 2004. The Kruskal-
Wallis test was calculated to compare differences among mean abun-
dance among sympatric tadpoles and metamorphosed anurans collected
during 2004 because variances were heteroscedastic (Sokal and Rohlf,
1981).

Arthropod survey for gorgoderid metacercariae

To examine other potential routs of infection by G. attenuata to meta-
morphosed anurans, we examined 227 aquatic arthropods for gorgoderid
metacercariae from Cedar Creek and Breen’s Flyway. All aquatic ar-
thropods were collected with a dip net during the summer of 2001–
2004. These included anisopteran larvae (Anax junius, N � 16; Sym-
petrum occidiualis, N � 4); zygopteran larvae (Amphiagrion abbrev-
iatum, N � 14; Ischnura verticalis, N � 11); coleopteran adults (Hy-
drophilidae, N � 27); hemipterans (Belostoma sp., N � 33);
Ephemeroptera larvae (Callibaetis sp., N � 20; Caenis sp., N � 22);
dipteran larvae (Stratiomyidae, N � 9); amphipods (Hyalella azteca, N
� 70); and decapods (Orconectes, sp. N � 1). Aquatic arthropods were
brought to the laboratory, identified to family, genus, or species using
keys in Borror et al. (1989), Merritt and Cummins (1996), Westfall and
May (1996), Needham et al. (2000), and Thorp and Covich (2001), and
gently teased apart for metacercariae with forceps in insect saline.

Gorgoderina attenuata laboratory northern leopard frog tadpole
infections

Sphaerid pea clams (Pisidium compressum) were collected during
June–July 2003 from Cedar Creek by sifting aquatic vegetation and
sand in the stream with a 1-mm mesh size strainer. Individual clams
were isolated in 1.5-ml well plates filled with aged tap water and ob-
served daily for shedding gorgoderid cercariae. Some cercariae were
fixed in AFA and representative cercariae were stained and permanent
slides prepared.

Northern leopard frog tadpoles (Gosner stage 30–36) were collected
from Cedar Creek during May 2003 when no apparent infections were
present and maintained in the laboratory in 45.5-L tanks for 2 wk.
Tadpoles were divided into 3 groups and assigned to either a time-0
control (N � 20), experimental (N � 10), or time-T control (N � 10)
and were isolated in 5-ml well plates filled with aged tap water for 1
hr before exposure. Time-0 controls were dissected at the beginning of
the experimental infections, whereas time-T controls were maintained
throughout the duration of the experiment and dissected along with the
experimental group. Gorgoderid cercariae were isolated from the shed-
ding clams, and 3–10 cercariae were individually provided to each ex-
perimental tadpole over a period of 1–3 days. Tadpoles were observed
using a dissecting microscope until they ingested an individual cercaria
before another cercaria was introduced into the 5-ml well plate con-
taining the tadpole. Additionally, the water in each well containing in-
dividual tadpoles was checked for any dead cercariae 12–24 hr after
exposure. All infected tadpoles and time-T controls were maintained in
groups of 1–4 on a diet of frozen mustard greens and Tetra Min� fish
food in 45.5-L tanks. To follow infection status, bladder fluke devel-
opment, and migration, experimental and time-T tadpoles were killed
and necropsied 3 days to 4 wk post-exposure (Gosner stage 36–45).

Gorgoderina attenuata laboratory damselfly infections

Sphaerid pea clams were collected during June–July 2004 from Cedar
Creek and processed as described previously. Ischnura verticalis dam-
selfly larvae were collected from Dunwoody Pond, Keith County, Ne-
braska (41�12.916�, �101�34.704�). Larvae were divided into 3 groups
and starved for 5 days before exposure; they were assigned to either a
time-0 control (N � 10), experimental (N � 10), or time-T control (N
� 10) and were isolated in 5-ml well plates filled with aged tap water.
Time-0 control damselflies were dissected at the beginning of the ex-
perimental infections; 1 to 5 cercariae were individually pipetted to each
experimental damselfly larva over a period of 1–5 days. Larvae were
observed using a dissecting microscope until they ingested an individual
cercaria before another cercaria was introduced into the well. All ex-
posed damselflies and time-T controls were dissected 1–6 days post-
exposure.

Gorgoderina attenuata laboratory metamorphosed toad and
bullfrog infections

Newly metamorphosed Woodhouse’s toads were collected from
Beckius Pond, Keith County, Nebraska (41�12.523�, �101�37.266�) and
divided into 3 groups: time-0 control (N � 10), experimental (N � 1),
and time-T control (N � 10). Laboratory-infected damselflies were dis-
sected in insect saline (Hoar and Hickman, 1967). Time-0 control toads
were dissected at the beginning of the experimental infections; 3 meta-
cercariae were intubated into an experimental toad. The pipette was
examined to confirm that no metacercariae remained. The experimental
toad and the 10 time-T controls were killed 5 days post-exposure and
examined for bladder flukes in the kidneys and urinary bladder.

Bullfrog tadpoles were collected at South Platte River, Paxton, Keith
County, Nebraska (41�07.600�, �101�34.611�), brought to the labora-
tory, reared through metamorphosis, and divided into 3 groups: time-0
control (N � 10), experimental (N � 2), and time-T control (N � 10).
Lab-reared bullfrogs were each fed 4, naturally infected, northern leop-
ard frog tadpoles over a period of 4 days, with 0–10 juvenile worms
located in the kidneys (prevalence 55%; mean abundance 1.4 � 2.2),
determined by dissecting 20 tadpoles. Thirteen to 18 days post-expo-
sure, experimental bullfrogs were examined for juvenile and adult blad-
der flukes in the kidneys and urinary bladder and metacercariae in the
tissues. Finally, a single adult northern leopard frog and a single labo-
ratory-reared bullfrog were each fed 7 and 4 newly metamorphosed
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TABLE I. Gorgoderid specimens used in this study, their hosts, geographical origin of specimens, GenBank accession numbers, sequence length,
and accession numbers for vouchers of corresponding sequences of gorgoderid specimens.

Gorgoderid taxa Stage/location Host species Geographic origin
ITS GenBank no.
(sequence length) Vouchers

G. attenuata RP1WNE Adult, bladder R. pipiens Cedar Creek, Keith County, Nebraska FJ445736 (960) HWML 49000
G. attenuata RP2WNE Adult, bladder R. pipiens Cedar Creek, Keith County, Nebraska FJ445737 (963) HWML 49001
Juvenile Gorgoderina sp.

RP3WNE
Juvenile, kidney Tadpole of R.

pipiens
Cedar Creek, Keith County, Nebraska FJ445738 (1,030) HWML 49002

Juvenile Gorgoderina sp.
BWEXCC

Juvenile, kidney B. woodhousii Cedar Creek, Keith County, Nebraska FJ445739 (918) HWML 49003

G. attenuata BWWNE Adult, bladder B. woodhousii Cedar Creek, Keith County, Nebraska FJ445740 (861) HWML 49004
G. attenuata RCLNY Adult, bladder R. clamitans Queechy, Columbia County, New York FJ445741 (891) HWML 49005
G. simplex RCLWI Adult, bladder R. clamitans Eagle, Waukesha County, Wisconsin FJ445742 (1,060) HWML 49006
G. amplicava RCWI Adult, bladder R. catesbeiana Big Muskego Lake, Waukesha County,

Wisconsin
FJ445743 (911) HWML 49007

Woodhouse’s toads to see if they could survive after ingesting these
potential toxic hosts.

Other amphibian field surveys

Because Rankin (1939) indicated that G. attenuata formed metacer-
caria stages in tadpoles and metamorphosed frogs in Massachusetts, we
examined different species of adult anurans and/or their tadpoles from
other locations for gorgoderid metacercariae stages to see if gorgoderid
metacercariae occurred in anurans at other locations than Cedar Creek.
During May–September 2000–2006 and March–May 2007 an addition-
al 9 species of adult anurans and/or their tadpoles were collected from
4 locations in Nebraska and Arkansas and examined for gorgoderid
metacercariae in the skin, musculature, and viscera as well as juvenile
worms in the kidneys and adults in the urinary bladder. These included
(1) 69 adult bullfrogs and 2 adult plains leopard frogs (Rana blairi)
collected from Nevens Pond, Keith County, Nebraska (41�12.426�,
101�24.510�); (2) 100 plains leopard frogs, 108 bullfrogs, 100 Wood-
house’s toads, 103 boreal chorus frogs (Pseudacris maculata), 56 cricket
frogs (Acris crepitans), and 62 Cope’s gray treefrogs (Hyla chrysoscelis)
from Pawnee Lake, Lancaster County, Nebraska (40�51.589�,
�96�53.468�); (3) 53 bullfrog tadpoles and 3 bullfrogs from Elk Creek,
Lancaster County, Nebraska (40�53.145�, � 96�50.048�); and (4) 6 bull-
frogs, 4 southern leopard frogs, (Rana sphenocephala), 1 green frog
(Rana clamitans), 1 pickerel frog (Rana palustris), 1 eastern gray tree-
frog (Hyla versicolor), and 7 cricket frogs collected from a pond in
Washington County, Arkansas (35�46.979�, �94�14.687�).

All adult gorgoderids from experimental life cycle studies and spec-
imens collected from Arkansas, Nebraska, and other locations from
North America for molecular work (see below) were identified based
on the descriptions and redescriptions provided by Stafford (1902), Cort
(1912), Holl (1928), Olsen, (1937), Goodchild (1950), Brooks (1976),
and Bolek et al. (2009). Voucher specimens of bladder flukes have been
deposited in the H. W. Manter Parasitology Collection, University of
Nebraska, Lincoln, Nebraska (accession numbers HWML): 48984, G.
attenuata from the urinary bladder of a northern leopard frog from
Cedar Creek, Keith County, Nebraska (unless indicated otherwise, all
collecting sites are in Keith County); 48985, G. attenuata from the
urinary bladder of a bullfrog from Cedar Creek; 48986, G. attenuata
from the urinary bladder of Woodhouse’s toad from Cedar Creek;
48987, Gorgoderina sp. from the kidneys of a northern leopard frog
tadpole from Cedar Creek; 48988, Gorgoderina sp. from the kidneys
of a Woodhouse’s toad tadpole from Cedar Creek; 48989, Gorgoderina
sp. from the kidneys of a bullfrog from Breen’s Flyway; 48990, G.
attenuata from the urinary bladder of an experimentally infected north-
ern leopard frog tadpole; 48991, Gorgoderina sp. from the kidneys of
an experimentally infected northern leopard frog tadpole; 48992, G.
attenuata from the urinary bladder of an experimentally infected bull-
frog; 48993, G. attenuata from the urinary bladder of a bullfrog from
Nevens Pond; 48994, G. attenuata from the urinary bladder of a bull-
frog from Pawnee Lake, Lancaster County, Nebraska; 48995, G. atten-
uata from the urinary bladder of a plains leopard frog from Pawnee

Lake; 48996, G. attenuata from the urinary bladder of a bullfrog from
Elk Creek, Lancaster County, Nebraska; 48997, Gorgoderina sp. from
the kidney of a bullfrog tadpole from Elk Creek; 48998, G. attenuata
from the urinary bladder of a southern leopard frog from a pond in
Washington County, Arkansas; and 48999, gorgoderid cercaria from P.
compressum from Cedar Creek.

Specimen collection for molecular characterization

Because the original 3-host life cycle of G. attenuata was elucidated
from green frogs and other amphibian species from western Massachu-
setts (specific location not given) by Rankin (1939), we collected a
single green frog infected with G. attenuata near the border of New
York and Massachusetts (Queechy, Columbia County, New York;
42�24.269�, �73�25.627�) to compare the complete internal transcribed
spacer region (ITS) of the ribosomal DNA (ITS 1 - 5.8S - ITS 2) of
worms from the general location of the original life cycle study and
worms from northern leopard frogs and Woodhouse’s toads from Cedar
Creek, Nebraska. Additionally, Gorgoderina simplex and Gorgodera
amplicava were collected from green frogs from Eagle, Waukesha
County, Wisconsin (42�53.225�, �88� 29.545�) and bullfrogs from Big
Muskego Lake, (42�51.241�, �88�7.456�), respectfully. These worms
were collected during March–September 2003–2004 to compare the ITS
sequence of G. attenuata to other species of amphibian gorgoderids.
Living worms recovered from amphibians were allowed to release eggs
in water, then thoroughly rinsed in water, identified, and fixed in 95%
ethanol. A 2- to 5-mm piece of the left or right side of each single
alcohol-preserved worm was then removed for DNA extraction. Once
DNA was obtained, the remaining adult worm was stained and identi-
fied based on the original descriptions. Stained voucher specimens of
all species were preserved. Additionally, live juvenile worms identified
as Gorgoderina sp. from the kidneys of naturally and experimentally
infected tadpoles or metamorphosed naturally and experimentally in-
fected Woodhouse’s toads were fixed in 95% ethanol. Because juvenile
worms from kidneys of naturally and experimentally infected tadpoles
and metamorphosed anurans contained small amounts of tissue, we used
the entire specimen of these individuals for DNA extraction. Species
used in the analysis, hosts, collection location, sequence length, and the
voucher accession number of species are listed in Table I.

DNA extraction, amplification, and sequencing

Genomic DNA was extracted from single adult worm pieces and
entire juvenile worms from the kidneys of tadpoles, frogs, and toads
using DNeasy tissue kits (Qiagen, Valencia, California). With the ex-
ception of a few bases at the 5� and 3� ends, the entire ITS rDNA (ITS
1 � 5.8S � ITS 2) was amplified by polymerase chain reaction (PCR)
using a forward primer in the 18S region, Br1 (5�-GTA GGT GAA
CCT GCA GAA GG), a digenean-specific reverse primer in the 28S
region, DigL1 (5�-GTG ATA TGC TTA AGT TCA GC), and a 58S2
(5�-TAA GCC GAC CCT CGG ACA GG) digenean-specific internal
reverse primer. Reactions were performed in a 25 �l total volume ac-
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cording to instructions accompanying the FildeliTaq PCR master mix
kit (USB Corporation, Cleveland, Ohio). Reactions were run on a Biom-
etra UNO under the following cycling conditions: 94 C for 4 min fol-
lowed by 40 cycles of 94 C for 30 sec, 50–56 C for 30 sec, and 72 C
for 2 min, followed by 1 cycle of 72 C for 5 min for final elongation.
Unincorporated PCR primers and nucleotides were removed from PCR
products using High Pure PCR Purification Kit (Roche Diagnostics,
Mannheim, Germany). Sequences were determined directly from PCR
templates by cycle sequencing using Big Dye fluorescent dye termina-
tors and protocols and an ABI 377 automated sequencer (Perkin-Elmer,
Foster City, California). Primers used for PCR amplification were also
used in sequencing reactions.

Sequence analysis

Approximately 861 to 1,060 bp were determined from the complete
ITS region of the rDNA for 7 specimens representing 2 Gorgoderina
species and 1 specimen of Gorgodera amplicava. Sequences were as-
sembled using Contig Express (v. 8.0, InforMax) and provisionally
aligned using ClustalX using default settings (Thompson et al., 1997)
followed by alignment by eye using the Bio Edit Sequence Alignment
Editor (Hall, 1999). The resultant sequence alignment was then edited
by eye to remove ambiguous regions where we could not confidently
identify positions of homology within these regions, and the ends of
each fragment were trimmed to match the shortest sequence in the align-
ment yielding an 849 character alignment. Sequence divergences among
and within life stages, species, and geographical location of Gorgoder-
ina and Gorgodera were calculated using MEGA 3.1 (Kumar et al.,
2004).

Morphological studies for comparisons to the original life cycle
of Rankin (1939)

Morphological data were compared for the single adult G. attenuata
drawn by Rankin (1939) in his original life cycle study to the rede-
scription of G. attenuata from a variety of frogs and toads by Bolek et
al. (2009). Additionally, morphological data were collected for 10 ju-
venile worms from the kidneys of tadpoles, and 10 cercariae shed by
pea clams used in our experimental infections. Figures were drawn of
representative juvenile worms from the kidneys of tadpoles, and cer-
cariae shed from naturally infected pea clams with the aid of a camera
lucida and compared to the original description of these life cycle stages
by Rankin (1939).

RESULTS

Gorgoderina attenuata field studies

Mean SVL of the 100 northern leopard froglets collected
during July–September 2001 was 4.1 � 0.69 cm, range 3.0–
6.3 cm, whereas the mean SVL of the 25 northern leopard frog-
lets collected during July 2002 was 4.0 � 0.59 cm, range 3.3–
6.5 cm. Forty of 100 (40%) froglets were infected with a single
species of frog bladder fluke (G. attenuata) during 2001, with
a mean abundance of 0.96 � 1.68 (range � 0–10); whereas 19
of 25 (76%) froglets were infected with G. attenuata during
July 2002, with a mean abundance of 3.0 � 3.25 (range � 0–
10). All were gravid adults located in the urinary bladder. Of
the 12 northern leopard frog tadpoles collected during July 2002
and allowed to metamorphose in the laboratory, 8 of 12 (66%)
were infected with gravid G. attenuata in the urinary bladder,
with a mean abundance of 2.0 � 2.1 (range � 0–5). No gor-
goderid metacercariae were found in any of these frogs.

During 2003 no gorgoderid metacercariae were found among
the 60 tadpoles (Gosner stage 32–45) or 20 newly metamor-
phosed northern leopard froglets (SVL � 2.9 � 0.27, range 2.6–
3.5 cm) examined during the spring and summer of 2003. Only
unencysted non-gravid worms were found in the kidneys of
tadpoles (Fig. 1), and non-gravid worms in the kidneys and

gravid worms in the urinary bladder of froglets. Juvenile worms
recovered from the kidneys of tadpoles and froglets were 428
� 58 �m (range 380–540) in length and 118 � 33 �m (range
90–160) in width and contained an ovary, 2 kidney-shaped
lobed vitellaria, 2 testes arranged in tandem, and a developing
uterus, indicating that they are a species of Gorgoderina. Sea-
sonally, prevalence and mean abundance ranged from a low of
0% in tadpoles to a high of 80% and 2.3 � 2.2 in metamor-
phosed froglets. No tadpoles were infected during May 2003,
with tadpoles recruiting worms in June 2003, then increasing
in prevalence and abundance during July 2003 in both tadpoles
and froglets (Fig. 2). Additionally, none of the newly meta-
morphosed leopard frogs or toads ever contained tadpoles or
frogs in their stomachs.

Of the 3 species of anuran tadpoles sampled during 2004,
only tadpoles of northern leopard frogs (Gosner stage 31–38)
and Woodhouse’s toads (Gosner stage 34–45) were infected
with non-gravid Gorgoderina sp. in the kidneys, whereas none
of the bullfrog tadpoles (Gosner stage 35–41) contained any
worms. Mean SVL of the 20 metamorphosed northern leopard
frogs collected during June–September 2004 was 4.6 � 1.0 cm
and range 2.6–6.2 cm. The mean SVL of the 25 metamorphosed
Woodhouse’s toads was 1.60 � 0.49 cm and range 1.0–2.8 cm,
while the mean SVL of the 10 metamorphosed and adult bull-
frogs was 7.6 � 2.1 cm and range 4.5–10 cm. All 3 species of
metamorphosed and adult anurans were infected with G. atten-
uata; bullfrogs had infections in both the kidneys and the uri-
nary bladder and the highest prevalence, mean intensity, and
mean abundance of the 3 anuran species sampled (Table II).
Worms from the kidneys of metamorphosed bullfrogs appeared
weak and less mobile than worms in the urinary bladder; the
testes and ovaries of some of these worms were irregular in
shape compared to worms from the urinary bladder from all
anuran species collected. Additionally, some worms recovered
from the kidneys of bullfrogs were gravid. Statistically signif-
icant differences in prevalence and mean abundance of Gor-
goderina sp. in the kidneys of tadpoles and G. attenuata in the
kidneys and urinary bladder of frogs existed between the 3
different species of tadpoles (	2 � 18.07, P 
 0.001; H cor-
rected � 17.85, P � 0.001) and metamorph anurans (	2 �
25.07, P 
 0.001; H corrected � 31.97, P 
 0.001). None of
these tadpoles, froglets, or adult frogs contained any gorgoderid
metacercariae in the tissue or on the skin, and none of the meta-
morphosed anurans contained any tadpoles or frogs in their
stomach contents.

Of the 227 aquatic arthropods examined for gorgoderid meta-
cercariae, only odonate larvae were infected. Two of 11 (18%)
larval I. verticalis were infected with 1 metacercaria each, and
1 of 4 (25%) larval Sympetrum occidiualis was infected with a
single metacercaria.

Gorgoderina attenuata laboratory life cycle studies

Of the 268 sphaerid pea clams collected during 2003, 80
(30%) shed gorgoderid cercariae (Fig. 3). Numerous field stud-
ies on parasites of fish and amphibians at Cedar Creek and other
locations in Keith County, Nebraska, over the last 7 yr have
indicated that only 2 gorgoderids occur at this location (Helt et
al., 2003; M. Bolek, pers. obs.). The only gorgoderid known
from Cedar Creek other than G. attenuata is Phyllodistomum
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FIGURE 1. Developmental stages of Gorgoderina sp. in northern leopard frog tadpoles and the eastern forktail damselfly Ischnura verticalis.
(A) Unencysted worm in a kidney of a prometamorphic northern leopard frog tadpole (arrow). Scale bar � 500 �m. (B) Same worm removed
from the kidney. Note that the worm is not gravid. Scale bar � 500 �m. (C) Paraffin section through the kidney of a prometamorphic northern
leopard tadpole. Note 3 unencysted non-gravid Gorgoderina sp. Scale bar � 250 �m. (D) Gorgoderid metacercaria recovered from a laboratory-
infected I. verticalis 6 days post-infection. Note stylet (inset). Scale bar � 100 �m; 10 �m inset.

funduli, a bladder fluke of the plains topminnow, Fundulus
sciadicus, which has a morphologically distinct cercaria (Ube-
laker, 1967).

All 10 northern leopard frog tadpoles exposed to gorgoderid
cercariae were observed to ingest the cercariae. Nine of 10
(90%) experimentally exposed tadpoles became infected with
what we assumed was G. attenuata. Additionally, 1 of 20 (5%)
time-0 controls and 2 of 10 (20%) time-T controls were infected
with G. attenuata. Although both time-0 and time-T control
groups were infected with 3, 1, and 1 worm, respectively, there
was a statistically significant difference in the mean abundance
and prevalence of G. attenuata among the control groups and
the experimental group, indicating that our laboratory infections
were successful (Kruskal-Wallis test, H corrected � 23.65, P 

0.0001; 	2 � 23.57, P 
 0.001; Fig. 4). Worms recovered from
experimentally infected tadpoles 5 days post-infection (PI) were
367 � 30 �m (range 330–410) in length and contained a de-
veloping uterus, 2 developing testes, and a developing ovary;
whereas worms recovered from experimentally infected tad-
poles 17 days PI were 438 � 28 �m (410–469) in length and
contained a developing uterus, 2 oval testes, an oval ovary, and

2 developing kidney-shaped lobed vitellaria. Worms recovered
from the urinary bladder of metamorphosing tadpoles were
identified as G. attenuata. All infected experimental tadpoles
(Gosner stage 36–38; N � 6) contained 1–10 unencysted worms
in the kidneys, whereas metamorphosing tadpoles (Gosner stage
44–45; N � 3) contained 1–2 worms in the urinary bladder.
When all field and laboratory infection data were pooled, there
was a statistically significant difference among the percent of
non-gravid worms recovered from the kidneys and non-gravid
and gravid worms recovered from the urinary bladder of pro-
metamorphic tadpoles (Gosner stage 36–41), metamorphic tad-
poles (Gosner stage 42–45), and metamorphosed froglets, with
all worms being found in the kidneys of prometamorphic tad-
poles and nearly all worms being found in the urinary bladder
of metamorphic tadpoles and froglets (	2 � 95.4, P 
 0.001;
Fig. 5).

Of the 150 sphaerid pea clams collected during 2004, 15
(10%) shed gorgoderid cercariae. Damselfly larvae offered gor-
goderid cercariae were immediately attracted to the beating ac-
tion of the cercaria tail. In all cases the labium of the larval
damselfly was projected out to grasp the cercaria, which was
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FIGURE 2. (A) Seasonal prevalence of juvenile Gorgoderina sp. in
the kidneys of tadpoles and G. attenuata in the urinary bladder of 1-
to 2-wk-old metamorphosed northern leopard frogs collected from Ce-
dar Creek during 2003. (B) Seasonal mean abundance � 1 SD of Gor-
goderina sp. in the kidneys of tadpoles and G. attenuata in the urinary
bladder of 1- to 2-wk-old metamorphosed northern leopard frogs col-
lected from Cedar Creek during 2003.

TABLE II. Prevalence (Pr), mean intensity (MI), and mean abundance (MA) of Gorgoderina sp. in tadpole and frog kidneys (Kd), and G. attenuata
in the urinary bladder (Bd) and total number of worms in the kidneys and urinary bladder (Tl) infecting metamorphs and adults of northern
leopard frogs (R. pipiens), metamorphs of Woodhouse’s toads (B. woodhousii), and metamorphs and adults of bullfrogs (R. catesbeiana) from
Cedar Creek and Breen’s Flyway, Keith County, Nebraska 2004.

R. pipiens

Tadpole

N � 20

Kd

Metamorph

N � 20

Kd Bd

B. woodhousii

Tadpole

N � 20

Kd

Metamorph

N � 25

Kd Bd

R. catesbeiana

Tadpole

N � 20

Kd

Metamorph

N � 10

Kd Bd Tl

Pr 55% 0% 80% 15% 0% 16% 0% 60% 90% 90%
MI � 1SD 2.5 � 2.5 — 3 � 3 1.6 � 1.5 — 1 � 0 — 64.5 � 85.8 17.8 � 16.2 60.8 � 80.4
MA � 1SD 1.4 � 2.2 0 � 0 2.5 � 3 0.25 � 0.7 0 � 0 0.16 � 0.4 0 � 0 38.7 � 72.1 16 � 16.3 54.7 � 78.2

then ingested. After ingestion, larvae were observed rubbing
their legs over the thorax followed by random thrashing and
dashing through the water. Nine of 10 (90%) exposed I. verti-
calis damselfly larvae became infected with gorgoderid meta-
cercariae located in the heamocoel of the thorax, with a mean
intensity of 3.2 � 1.9 (1–6), while none of the time-0 or time-
T controls were infected with any gorgoderid metacercariae. All
metacercariae recovered from experimentally infected damsel-
flies were encysted and resembled typical gorgoderid metacer-
cariae (Fig. 1). Measurements of 5 metacercariae recovered 5
days PI indicated that they were 120 � 6.8 (range 114–130)
�m in diameter. When 3 of these metacercarie were fed to a
single newly metamorphosed Woodhouse’s toad and examined
5 days PI, a single juvenile worm identified a species of Gor-
goderina was recovered from the kidney. None of the time-0
or time-T control toads was infected.

The 2 laboratory-reared bullfrogs examined 13–18 days after
being fed 4 naturally infected northern leopard frog tadpoles
became infected with 3 and 5 G. attenuata each in the urinary
bladder. Worms recovered from the urinary bladder of experi-
mentally infected bullfrogs were 1.28 � 0.6 mm (range 0.78–
2.0) in length, and most were gravid. None of the 10 time-0 or
10 time-T control bullfrogs was infected with any gorgoderid
life stage. The single adult northern leopard frog and single
adult bullfrog each ingested 7 and 4 newly metamorphosed
Woodhouse’s toads and appeared to have no ill effects for 3 wk
when observations were stopped.

Other amphibian field surveys

Examination of adult anurans from 3 different locations in
Nebraska and a single location in Arkansas indicated that G.
attenuata was the only adult gorgoderid recovered. Of the 69
bullfrogs and 2 plains leopard frogs collected from Nevens
Pond, only a single bullfrog (1.4%) was infected with 1 gravid
worm in the urinary bladder (mean abundance 0.01 � 0.1). In
contrast, of the 6 species of adult anurans sampled from Pawnee
Lake, 6 of 100 plains leopard frogs (6.0%) were infected with
gravid worms in the urinary bladder (mean abundance of 0.08
� 0.3; range 0–2) and 8 of 108 bullfrogs (7.4% ) were infected
with gravid worms in the urinary bladder (mean abundance of
0.15 � 0.7; range 0–5). Of the 6 adult anuran species sampled
from a pond in Arkansas, only 1 of 4 southern leopard frogs
(25%) was infected with 3 gravid worms in the urinary bladder,
with a mean abundance of 0.75 � 1.5. No gorgoderid meta-
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FIGURE 3. Gorgoderid cercaria from P. compressum. (A) Entire cercaria. Scale bar � 0.25 mm. (B) Cercaria body; note the stylet and
penetration glands. Scale bar � 50 �m. (C) Anterior portion of tail showing spherical cells. Bar � 50 �m.

cercariae on the skin or tissues and/or juvenile worms in the
kidneys were found in any of the frogs sampled from these 3
sites. Of the 3 adult bullfrogs sampled from Elk Creek, all 3
(100%) were infected with adult worms in the urinary bladder
(mean abundance 10.6 � 14.2; range 1–27); and 8 of 53 (15%)
bullfrog tadpoles (Gosner stage 28–41) were infected with non-
gravid juveniles, identified as Gorgoderina sp. in the kidneys
(mean abundance 0.17 � 0.4: range 0–2). Worms in the kidneys
of tadpoles were 723 � 64 �m (range 650–770) in length and
147 � 25 �m (range 120–170) in width and morphologically
resembled gorgoderids recovered from the kidneys of tadpoles
of northern leopard frogs and Woodhouse’s toads from Cedar
Creek. No gorgoderid metacercariae were found in the skin,
musculature, and viscera of any of the tadpoles or bullfrogs
sampled from Elk Creek.

Specimen collection for molecular characterization

Sequence difference in ITS rDNA among G. attenuata, G.
simplex, Gorgoderina sp., and G. amplicava collected from Ne-
braska, New York, and Wisconsin ranged from 7.0 to 7.6% and
0% among Gorgoderina sp. (juvenile worms from the kidneys
of a tadpole and toad) and populations of G. attenuata from
western Nebraska and New York (Table III). Two specimens of
G. attenuata collected from 2 different naturally infected north-
ern leopard frogs and 1 Woodhouse’s toad and a single juvenile
Gorgoderina sp. worm from the kidneys of an experimentally
infected Woodhouse’s toad with a laboratory-reared metacer-
cariae had no sequence variation across 849 overlapping bases,
whereas a single juvenile Gorgoderina sp. from the kidneys of
a leopard frog tadpole contained a single base indel in the ITS
2 region of rDNA. The single gravid G. attenuata recovered
from a green frog from New York was identical in ITS se-
quence to all G. attenuata from northern leopard frogs and the
Gorgoderina sp. from the experimentally infected toad from
western Nebraska, except for a 3-base indel (GTT) in the ITS
2 region of rDNA.

Morphological studies for comparisons to the original life
cycle study on G. attenuata by Rankin (1939)

Rankin (1939) did not give any measurements of adult
worms from his experimental infections and did not deposit any
voucher specimens; however, measurements taken from his fig-
ure of an adult worm from a field-collected and laboratory-
infected eastern newt (Notophtalmus virdescens; body length �
5.296 mm; forebody length � 0.926 mm; forebody width �
0.822 mm; hindbody length � 3.962 mm; hindbody width �
1.037 mm; oral sucker length � 519 �m; oral sucker width �
441 �m; esophagus length � 89 �m; esophagus width � 37
�m; ceca ending at 2.1% of body length; acetabulum length �
740 �m; acetabulum width � 759 �m; oral sucker/acetabulum
width ratio � 0.58; ratio of body width to acetabulum width �
2.59; anterior testis length � 556 �m; anterior testis width �
500 �m; posterior testis length � 667 �m; posterior testis width
� 389 �m; seminal vesicle length � 333 �m; seminal vesicle
width � 167 �m; ovary length � 389 �m; ovary width � 333
�m; vitellaria with 3 lobes; see Fig. 6) fell in the range of our
worms redescribed by Bolek et al. (2009) except for forebody
width, hindbody width, ceca ending at percentage of body
length, ratio of body width to acetabulum width, anterior testis
width, and seminal vesicle length.

Our morphological comparisons of the gorgoderid cercariae
of G. attenuata from Nebraska pea clams and non-gravid
worms from the kidneys of tadpoles and metamorphosed an-
urans also differed from the original description of these life
stages by Rankin (1939; see Fig. 6). Average total length and
body length of 10 motile cercariae from our study was 1.108
� 0.084 mm (range � 1.05–1.27) for total length and 0.218 �
0.01 mm (0.2–0.23) for cercaria body length. Rankin (1939)
gave a range for total length of his non-motile G. attenuata
cercariae from naturally and experimentally infected Herring-
ton’s fingernail clam (Sphaerium occidentale) as 8.75–9.63 mm
and the average size for the cercaria body as 0.41 mm. Rankin’s
juvenile worm removed from the intestine of a newt was 1.1
mm in length and 0.27 mm wide and contained 9 testes, which
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FIGURE 4. (A) Prevalence and (B) mean abundance of G. attenuata
in time-0, experimentally infected northern leopard frog tadpoles, and
time-T controls collected from Cedar Creek. 	2 � 23.57, P 
 0.001;
Kruskal-Wallis test, H corrected � 23.65, P 
 0.001.

FIGURE 5. Percentage of Gorgoderina sp. recovered from the kid-
neys and G. attenuata from the urinary bladder of prometamorphic
tadpoles, metamorphic tadpoles, and froglets of the northern leopard
frog collected form Cedar Creek. N � number of worms recovered per
northern leopard frog developmental stage.

TABLE III. Pairwise genetic distance between ITS genotypes of different populations and stages of Gorgoderina sp., G. attenuata, G. simplex,
and G. amplicava. Uncorrected p-distances are expressed as percentages in the lower portion of the matrix. Standard error estimates are based on
bootstrap analysis with 1,000 pseudoreplicates and are given in the upper portion of the matrix.

G.
attenuata
RP1WNE

G.
attenuata
RP2WNE

Juvenile
Gorgoderina
sp. RP3WNE

Juvenile
Gorgoderina

sp. BWEXCC

G.
attenuata
BWWNE

G.
attenuata
RCLNY

G.
amplicava

RCWI

G.
simplex
RCLWI

G. attenuata RP1WNE — 0.000 0.000 0.000 0.000 0.000 0.009 0.008
G. attenuata RP2WNE 0.0 — 0.000 0.000 0.000 0.000 0.009 0.008
Juvenile Gorgoderina sp. RP3WNE 0.0 0.0 — 0.000 0.000 0.000 0.009 0.008
Juvenile Gorgoderina sp. BWEXCC 0.0 0.0 0.0 — 0.000 0.000 0.009 0.008
G. attenuata BWWNE 0.0 0.0 0.0 0.0 — 0.000 0.009 0.008
G. attenuata RCLNY 0.0 0.0 0.0 0.0 0.0 — 0.009 0.008
G. amplicava RCWI 7.6 7.6 7.6 7.6 7.6 7.6 — 0.008
G. simplex RCLWI 7.0 7.0 7.0 7.0 7.0 7.0 7.5 —

he indicated were in the process of fusing. None of our worms
recovered from the kidneys of naturally and experimentally in-
fected tadpoles and frogs of 3 species reached this size (514 �
167 �m, range 330–840), and we never observed 9 testes
in any stage of G. attenuata from Nebraska tadpoles or frogs
(Fig. 6).

DISCUSSION

The major contribution of our paper is the elucidation of
different avenues for, and constraints on, the transmission of a
single species of trematode to 3 anuran species. Our field and
laboratory studies on the recruitment and development of G.
attenuata in tadpoles and newly metamorphosed leopard frogs
and toads, and the use of molecular techniques to match life
cycle stages, indicates that this life cycle is truncated; meta-
morphosed anurans become infected with G. attenuata during
the tadpole stage, and worms mature after tadpole metamor-
phosis. Molecular data from the present study support the con-
clusion that juveniles of Gorgoderina sp. in the kidneys of leop-
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FIGURE 6. Line drawings of gravid worms, cercariae, and non-grav-
id juvenile worms of G. attenuata from Rankin’s (1939) original life
cycle description, adult redescription by Bolek et al. (2009), and our
life cycle study from Nebraska. (A) Gravid adult worm from Rankin
(1939). (B) Gravid adult worm from naturally infected R. pipiens from
Nebraska by Bolek et al. (2009). (C) Cercaria from Rankin (1939). (D)
Cercaria from P. compressum from Nebraska. (E) Non-gravid juvenile
worm from the intestine of newt from Rankin (1939). (F) Non-gravid
5-day-old juvenile worm from the kidneys of an experimentally infected
tadpole of a northern leopard frog. All scale bars in mm.

ard frog tadpoles and experimentally infected Woodhouse’s
toads are conspecific with adult G. attenuata from the urinary
bladder of northern leopard frogs, Woodhouse’s toads, and
green frogs from Nebraska and New York. Juvenile and adult
G. attenuata did not differ by any base pair of the ITS rDNA
across a gapped sequence length of 849 bp (Table III). This
contrasts with sequence differences among G. simplex or G.
amplicava, which differed from individuals of G. attenuata in
59 and 62–63 bp, respectively, across a gapped sequence length
of 849 bp (Table III).

Our laboratory infections and field data from northern leop-
ard frogs and Woodhouse’s toads also showed that worms did
not migrate to the bladder and reach sexual maturity until an-
uran tadpoles metamorphosed into froglets. Studies of anuran
metamorphosis indicate that in tadpoles the urinary bladder
originates during late prometamorphosis and then increases in
developmental rate at the beginning of metamorphic climax,
with a fully developed urinary bladder being present in meta-
morphosed froglets (Viertel and Richter, 1999). Prometamor-
phic tadpoles (Gosner stage 36–41) did not possess a urinary
bladder until the metamorphic stage (Gosner stage 42–45), and
this was the developmental stage in which we observed worms
migrating from the kidneys into the bladder, indicating that the
absence or presence of a bladder is a constraint on worm mat-
uration in different life stages of anurans.

Our field data also indicate that there was a significant dif-
ference in the prevalence, mean abundance, and degree of mat-
uration of G. attenuata between tadpoles and metamorphs of
northern leopard frogs and Woodhouse’s toads, and bullfrog
tadpoles and metamorphs. Only 1 metamorphosed northern
leopard frog and none of the metamorphosed toads had worms
in the kidneys. The lack of worms in the kidneys of metamor-
phosed leopard frogs and toads indicates that both of these an-
urans acquire infections with G. attenuata primarily during the
tadpole stage, and that worms migrate from the kidneys to the
urinary bladder as soon as tadpoles metamorphose into froglets
or toadlets. In contrast, tadpoles of bullfrogs from Breen’s Fly-
way and Elk Creek were never, or less commonly, infected with
gorgoderids in the kidneys than metamorphosed bullfrogs from
these locations, indicating that metamorphosed bullfrogs were
actively recruiting G. attenuata after metamorphosis. Our lab-
oratory infections of the single toad and 2 bullfrogs with G.
attenuata metacercariae from damselflies or juvenile worms in
the kidneys of tadpoles and the ability of adult bullfrogs and
leopard frogs to ingest tadpoles and toads gives additional sup-
port that bullfrogs and potentially other anurans recruit G. at-
tenuata by feeding on odonates or other anurans. These obser-
vations indicate that the life cycle of G. attenuata can alternate
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between a 2- or 3-host life cycle depending on cercaria/host
encounter.

All other North American amphibian gorgoderids for which
life cycles are known have a metacercaria stage, which suggests
that a 3-host life cycle is the ancestral condition in amphibian
gorgoderids (Krull, 1935; Rankin, 1939; Goodchild, 1943,
1948, 1950; Ubelaker and Olsen, 1972). However, there are
exceptions to the 3-host life cycle in this family of trematodes,
with at least 1 other amphibian bladder fluke exhibiting an al-
ternative 2- or 3-host life cycle. Gorgoderina bufonis a bladder
fluke of boreal toads (Bufo boreas) infects dragonflies as the
second intermediate host in its life cycle; toads become infected
when they ingest the encysted metacercaria in dragonflies.
However, the metacercaria of this species can also become pro-
genetic in dragonflies, and apparently eggs are released when
dragonflies die in an aquatic habitat (Ubelaker and Olsen,
1972). These observations of alternative 2- or 3-host life cycle
strategies of G. bufonis and G. attenuata suggest that anuran
gape size, different life stages of anurans (tadpoles and meta-
morphs), as well as different species of anurans that vary in
their habitats (aquatic, semi-terrestrial, or terrestrial) present
different avenues for, and constraints on, transmission of blad-
der flukes to their respective hosts.

When the results of our current study are compared to the
original life cycle study of Rankin (1939), questions arise re-
garding the possibility of regional variation in the life cycle of
G. attenuata. Rankin (1939) in his elucidation of the life cycle
of G. attenuata from Massachusetts showed that it used Her-
rington’s fingernail clam (S. occidentale) as the first interme-
diate host, and metacercariae developed in larval amphibians
(anurans and caudatans) and less often in aquatic snails when
they ingested the non-motile cercariae; frogs became infected
when they fed on infected amphibians or snails.

Because Rankin (1939) did not deposit voucher specimens
of his material and based on other inconsistencies in Rankin’s
life cycle study, questions arise as to the identity of the species
of bladder fluke(s) on which he was working. In his experi-
mental infections, he used laboratory-reared tadpoles and meta-
morphosed green frogs and northern leopard frogs as well as
field-collected eastern newts for his infections. He infected lab-
oratory-reared tadpoles by exposing them to cercariae from nat-
urally infected fingernail clams and dissected metacercariae
from these second intermediate hosts. He placed these meta-
cercariae (cysts) in fingerbowls, each containing a laboratory-
reared green frog or a field-collected newt, and he stated that
all frogs and newts acquired cysts and became infected with
immature worms. These hosts were then killed at intervals to
determine the path of migration. Because frogs and newts feed
on moving prey, it is unclear how these amphibians could ingest
non-motile 0.1–0.5 mm metacercariae on the bottom of finger-
bowls. He then infected laboratory-reared frogs and field-col-
lected newts by feeding them laboratory-infected tadpoles con-
taining metacercariae, recovered adult worms from these hosts,
and infected laboratory-reared fingernail clams to complete the
life cycle.

Rankin’s original identifications of the cercaria and metacer-
caria stages of G. attenuata were based on his assertion that G.
amplicava was not present in Massachusetts and differences in
the life cycle of the 2 species. However, at the time of his study,
the life cycle of G. amplicava was only partially known. Krull

(1935) showed that G. amplicava used Sphaerium (Musculium)
partumeium, as the first intermediate hosts and aquatic snails
as the second intermediate host; adult anurans became infected
when they fed on infected snails. However, subsequent studies
on the life cycle of G. amplicava by Goodchild (1948) indicated
that this species was present in Massachusetts, and that both
tadpoles and aquatic snails served as second intermediate hosts
when they ingested the non-motile cercariae. In fact, Rankin
(1939) and others (Goodchild, 1948; Coil, 1954) indicated that
their cercariae of G. attenuata looked identical to the cercariae
of G. amplicava. He distinguished the 2 based on size, with G.
amplicava having a smaller cercaria (4.4–7.5 mm) than his G.
attenuata (8.75–9.63 mm). Goodchild (1948) in a later study
showed that the cercariae of G. amplicava could be as large as
12–17.4 mm, which suggests that Rankin may have been deal-
ing with the cercariae of G. amplicava. Other inconsistencies
in Rankin’s study include the finding of immature worms in the
process of fusing testes from 9 to 2 in the intestine of a field-
collected and laboratory-infected newt. To our knowledge, G.
attenuata is the only species in the genus from Europe and
North America that has been reported to have 9 testes in the
metacercaria stage, whereas all Gorgodera species for which
life cycles are known have 9 testes in the metacercaria stage
(see Dale, 1967; Ubelaker and Olsen, 1972; Prudhoe and Bray,
1982). Rankin’s description of the metacercaria is also remark-
ably similar in size and number of testes to the description of
G. amplicava metacercaria by Krull (1935) and Goodchild
(1948) (see Fig. 7). Unfortunately, the only record of an adult
in Rankin’s study is his drawing of a worm recovered from the
bladder of a field-collected and laboratory-exposed newt. Ran-
kin (1939) stated that he fixed his specimens under cover slip
pressure, and, therefore, he probably distorted his specimens,
which more closely resemble G. simplex or Gorgoderina inter-
media than our G. attenuata recovered from 6 different species
of amphibians.

Although other European species of Gorgoderina have been
reported to form metacercaria stages in tadpoles (Lees, 1953),
few field studies exist on gorgoderid metacercariae in the tissue
or skin of amphibians in North America; all these reports are
from the eastern part of the United States and Canada, and other
amphibian gorgoderid species (G. amplicava and G. simplex),
along with G. attenuata, were present in bullfrogs and/or green
frogs at these locations (Rankin, 1937; Goodchild, 1948;
McAlpine and Burt, 1998; Muzzall et al., 2001, 2003; King et
al., 2007; K. King, pers. comm.). In contrast, Fortner (1923)
examined a large number of northern leopard frogs and green
frogs from the Douglas Lake region of Michigan during 1917–
1919 and indicated that bullfrogs were not present at his loca-
tions. Like us, he recovered only G. attenuata from these hosts,
with prevalences ranging from 38 to 66%. Importantly, in a
later study Goodchild (1950) reported examining a serially sec-
tioned metamorphic northern leopard frog tadpole from the
Douglas Lake regions that contained numerous juvenile Gor-
goderina sp. located in the tadpole’s cloaca, urinary bladder,
Wolffian ducts, and mesonephric tissue (Fig. 7). Remarkably,
Goodchild’s drawing looks similar in size and number of testes
to our worms recovered from tadpole kidneys from Nebraska,
which suggests that the alternative 2-host life cycle also occurs
in other parts of the United States. We suggest that to resolve
this dilemma, the life cycle of G. attenuata from the eastern
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FIGURE 7. Original line drawing of the metacercaria stages of G. attenuata, G. amplicava, and juvenile Gorgoderina sp. published by Rankin
(1939) and Goodchild (1948, 1950). (A) Line drawings of a metacercaria stage of G. attenuata recovered from the tissue of a tadpole from
Rankin’s (1939) original life cycle description. (B) Line drawing of a metacercaria stage of G. amplicava from the tissue of a tadpole from
Goodchild’s (1948) original life cycle description. (C) Line drawing of a non-gravid Gorgoderina sp. from the kidney of a naturally infected
northern leopard frog tadpole from Michigan by Goodchild (1950). All scale bars in mm.

United States must be reevaluated, or the life cycle stages (cer-
caria and metacercaria stages) will require comparative DNA
sequence analysis across the range of this parasite and across
ontogenetic stages.

Although life cycle strategies of amphibian parasites are crit-
ical for our interpretations of parasite community structure and
life cycle evolution, few recent studies exist on this topic (see
Snyder and Janovy, 1994, 1996; Bolek and Janovy, 2007a,
2007b, 2008). Among the North American amphibian bladder
flukes, the last life cycle study was resolved over 35 yr ago
(Ubelaker and Olsen, 1972). It is remarkable that, although pi-
oneering in their efforts, no one has questioned these life cycle
studies, particularly when recent findings on the natural history
of salamanders, toads, and other newly metamorphosed anurans
indicate that these animals rarely feed on dragonflies and other
anurans (Crawford, 1940; Lannoo, 2005; Bolek and Janovy,
2007a). Although difficult to complete, life cycle studies are
now more easily conducted by matching adult parasite to larval
stages in intermediate hosts using molecular techniques, and we
urge other parasitologists to reexamine the life cycles of some

of these parasites and examine the larval stages of anurans for
their parasites. Only then will we have a better understanding
of the selective pressures on the avenues for, and constraints
upon, trematode life cycle transmission in anuran hosts.
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