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Abstract
Background: Several investigations have suggested that changes in the nonlinear gait dynamics are
related to the neural control of locomotion. However, no investigations have provided insight on
how neural control of the locomotive pattern may be directly reflected in changes in the nonlinear
gait dynamics. Our simulations with a passive dynamic walking model predicted that toe-off
impulses that assist the forward motion of the center of mass influence the nonlinear gait dynamics.
Here we tested this prediction in humans as they walked on the treadmill while the forward
progression of the center of mass was assisted by a custom built mechanical horizontal actuator.

Methods: Nineteen participants walked for two minutes on a motorized treadmill as a horizontal
actuator assisted the forward translation of the center of mass during the stance phase. All subjects
walked at a self-select speed that had a medium-high velocity. The actuator provided assistive
forces equal to 0, 3, 6 and 9 percent of the participant's body weight. The largest Lyapunov
exponent, which measures the nonlinear structure, was calculated for the hip, knee and ankle joint
time series. A repeated measures one-way analysis of variance with a t-test post hoc was used to
determine significant differences in the nonlinear gait dynamics.

Results: The magnitude of the largest Lyapunov exponent systematically increased as the percent
assistance provided by the mechanical actuator was increased.

Conclusion: These results support our model's prediction that control of the forward
progression of the center of mass influences the nonlinear gait dynamics. The inability to control
the forward progression of the center of mass during the stance phase may be the reason the
nonlinear gait dynamics are altered in pathological populations. However, these conclusions need
to be further explored at a range of walking speeds.

Background
Human and animal locomotion is typically described as
having a periodic movement pattern. For example, it can
be readily observed that the legs oscillate to-and-fro with
a limit cycle behavior that is similar to the pendulum

motions of a clock [1,2]. Any variations from this periodic
pattern have traditionally been considered to be "noise"
within the neuromuscular system [3,4]. However, recent
investigations have confirmed that the step-to-step varia-
tions that are present in gait may not be strictly noise.
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Rather these variations may have a deterministic structure
[3,5-12]. Several authors have noted that the structure of
the nonlinear gait dynamics is influenced by the health of
the neuromuscular system. These results imply that the
observed changes in the nonlinear gait dynamics may be
related to the organization of the nervous system for func-
tional and stable gait [3,5-9]. Although this seems plausi-
ble, no efforts have been made to explore what neural
control strategies can govern the nonlinear gait dynamics.
Such insight may lead to new clinical methods for assess-
ing the health of the neuromuscular system, and may lead
to new metrics that can be used to guide the rehabilitation
of the neuromuscular system.

The control of human locomotion can be globally divided
into the stance and swing phases. A major determinant of
the stance phase is the ability of the neuromuscular sys-
tem to redirect the center of mass forward and over the
support limb for each step of the gait cycle [13,14]. Proper
neuromuscular control of the center of mass allows for the
locomotive system to take advantage of the energy
exchange that is associated with the inverted pendulum
dynamics [13]. Possibly the neural control strategies that
dictate the forward progression of the center of mass may
also influence the nonlinear structure of human locomo-
tion. In this investigation, we explored if the control of the
forward progression of the center of mass during the
stance phase may govern the nonlinear gait dynamics.

Much of the insights on the origin of the nonlinear
dynamics of physical and biological systems have come
from the analysis of simplified mathematical models that
are sufficiently close to the behavior of the real system
[15]. Full and Koditschek [16] referred to such simple
models as templates. A template for locomotion has all
the joint complexities, muscles and neurons of the loco-
motive system removed [16]. Recently, passive dynamic
walking models have proven to be a viable template for
the exploration of nonlinear gait dynamics [17-21]. These
models consist of an inverted double pendulum system
that captures the dynamics of the swing and stance phase
(Figure 1A). Energy for the locomotive pattern comes
from a slightly sloped walking surface. Compared to other
walking models, this model is unique because as the walk-
ing surface angle increases, there is a cascade of bifurca-
tions in the model's gait pattern that eventually converges
to a nonlinear gait pattern that is similar to humans (Fig-
ure 1B) [19]. To gain insight on how neural control strat-
egies influence the nonlinear gait dynamics, we modified
the governing equations of the passive dynamic walking
model to include an instantaneous toe-off impulse (J)
that assisted the forward motion of the center of mass.
Our simulations indicated that toe-off impulses influ-
enced the bifurcations and nonlinear structure of the pas-
sive dynamic walking model's gait. Changes in the

nonlinear structure were quantified by calculating the
largest Lyapunov exponent for the model's gait. Our sim-
ulations indicated that the magnitude of the largest Lya-
punov exponent linearly increased as the amount of
assistance provided by the toe-off impulse (J) was
increased in each simulation (Figure 2). These simula-
tions predict that neural control of the forward progres-
sion of the center of mass during the stance phase
influences the nonlinear structure of human locomotion.

To test the prediction of our model, we built a mechanical
horizontal actuator that assisted the forward motion of
the center of mass during the stance phase. Based on the
results of our simulations, we hypothesized that the mag-
nitude of the largest Lyapunov exponent is dependent on
neural control of the forward progression of the center of
mass during the stance phase of gait.

Methods
Nonlinear Analysis Techniques
The following analysis techniques were used to quantify
the nonlinear structure of the gait patterns of the compu-
ter simulations, and the complementary human experi-
ment conducted in this investigation.

From the original time series (i.e., knee angle), the state
space was reconstructed based on Taken's embedding the-
orem [22,23]. The reconstruction process involved creat-
ing time-lagged copies of the original time series.
Equation 1 presents the reconstructed state vector where
y(t) was the reconstructed state vector, x(t) was the origi-
nal time series data, and x(t-Ti) was time delay copies of
x(t).

y(t) = [x(t), x(t-T1), x(t-T2),...].

The time delay (Ti) for creating the state vector was deter-
mined by estimating when information about the state of
the dynamic system at x(t) was different from the infor-
mation contained in its time-delayed copy using an aver-
age mutual information algorithm [22]. Equation 2
presents the average mutual information algorithm used
in this investigation where T was the time delay, x(t) was
the original data, x(t+T) was the time delay data, P(x(t),
x(t+T)) was the joint probability for measurement of x(t)
and x(t+T), P(x(t)) was the probability for measurement
of x(t), and P(x(t+T)) was the probability for measure-
ment of x(t+T).

Average mutual information was iteratively calculated for
various time delays, and the selected time delay was the
first local minimum of the iterative process (Figure 3)

I P x t x t T
P x t x t T

P x t P x tx t x t T( ), ( ) ( ( ), ( ))log
( ( ), ( ))
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(A) Passive dynamic walking model where  is the angle of the swing leg,  is the angle of the stance leg, m is the point mass at the respective foot, M is the mass at the hip,  is the angle of inclination of the supporting surface, and g is gravity.Figure 1
(A) Passive dynamic walking model where  is the angle of the swing leg,  is the angle of the stance leg, m is the point mass at 
the respective foot, M is the mass at the hip,  is the angle of inclination of the supporting surface, and g is gravity. Both legs are 
of length �. (B) Cascade of bifurcations in the step time interval of the passive dynamic walking model with no toe-off impulse 
applied (e.g., J = 0). A period-1 gait means the model selects the same step-time interval for gait pattern, a period-2 means that 
the model alternates between two different step-time intervals, and a period-4 means that the model uses four different step-
time intervals. Nonlinear gait patterns that are chaotic are found when the ramp angle is between 0.01839 radians and 0.0189 
radians when J = 0. No stable gaits are present if the ramp angle is greater than 0.019 radians [19].
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[22,23]. This selection was based on previous investiga-
tions that have determined that the time delay at the first
local minimum contains sufficient information about the
dynamics of the system to reconstruct the state vector
[22].

The number of embedding dimensions of the data time
series was calculated to unfold the dynamics of the system
in an appropriate state space. An inappropriate number of
embedding dimensions may result in a projection of the
dynamics of the system that has orbital crossings in the
state space that are due to false neighbors, and not the
actual dynamics of the system [22,23]. To unfold the state
space, we systematically inspected x(t), and its neighbors
in various dimensions (e.g., dimension = 1, 2, 3,...etc.).
The appropriate embedding dimension was identified
when the neighbors of the x(t) stopped being un-pro-
jected by the addition of further dimensions of the state
vector. For example, the global false nearest neighbors
algorithm compares the points in the attractor at a given
dimension dE

y(t) = [x(t), x(t + T), x(t + 2T), ... x(t + (dE-1) T)].

yNN(t) = [xNN(t), xNN(t + T), xNN(t + 2T), ... xNN(t + (dE-1) 
T)].

where y(t) is the current point being considered, and
yNN(t) is the nearest neighbor. If the distance between the
points at the next dimension (e.g., dE+1) is greater than the
distance calculated at the current dimension (e.g., dE),
then the point is considered a false neighbor and further
embeddings are necessary to unfold the attractor. The per-
centage of false nearest neighbors was calculated at higher
dimensions until the percent nearest neighbors dropped
to zero (Figure 4). The embedding dimension that had
zero percent false nearest neighbors was used to re-con-
struct the attractor in an appropriate state space. Equation
5 presents a reconstructed state vector where dE was the
number of embedding dimensions, y(t) was the dE-1
dimensional state vector, x(t) was the original data, and T
was the time delay.

y(t) = [x(t), x(t + T), x(t + 2T), ... x(t + (dE-1) T)].

The Applied Nonlinear Dynamics software was used to
calculate the time lags and embedding dimensions for the
computer simulations and complementary human exper-
iments.

The largest Lyapunov exponent was calculated to deter-
mine the nonlinear structure of the reconstructed attrac-
tor. Lyapunov exponents quantify the average rate of
separation or divergence of points in the attractor over
time [22,23]. Figure 5A presents a hypothetical recon-
structed attractor, and Figure 5B is a zoomed-in portion of

Largest Lyapunov exponent values as the toe-off impulse (J) was increased in each simulation.Figure 2
Largest Lyapunov exponent values as the toe-off impulse (J) 
was increased in each simulation. The ramp angle remained 
fixed at 0.0185 radians for all simulations. The simulations 
predict that the magnitude of the largest Lyapunov exponent 
will increase as the toe-off impulse is increased and assists 
the forward progression of the center of mass. These simula-
tions indicate that toe-off impulses can be used to control 
the structure of the chaotic gait pattern.

Average mutual information algorithm is used to locate the time lag at the first local minimum.Figure 3
Average mutual information algorithm is used to locate the 
time lag at the first local minimum.
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the reconstructed attractor. Figure 5B depicts two neigh-
boring points in the reconstructed attractor that are sepa-
rated by an initial distance of s(0). As time evolves, the
two points diverge rapidly and are separated by a distance
of s(i). The Lyapunov exponent is a measure of the loga-
rithmic divergence of the pairs of neighboring points in
the attractor over time. The larger the Lyapunov exponent,
the greater the divergence in the reconstructed attractor.
For the simulations and complementary human experi-
ments conducted here, we used the Chaos Data Analyzer
(American Institute of Physics) to numerically calculate
the largest Lyapunov exponent.

Walking Model
A simplified passive dynamic walking model was used to
initially predict the effects of a toe-off impulse on the non-
linear gait dynamics (Figure 1A). The equations of motion
for the model were as follows:

where  was the angle of the stance leg,  was the angle of

the swing leg and ,  and  were the respective time

derivatives,  is the angle of the walking surface, and t is
time. Equation 6 represents the stance leg and equation 7
represents the swing leg. Derivations of the equations of
motion for the walking model are detailed in Garcia et al.
[17].

The governing equations were integrated using a modified
version of Matlab's (MathWorks, Natick, MA) ODE45. The
ODE45 was modified to integrate the equations of
motion with a tolerance of 10-11, and to stop integrating
when the angle of the swing leg angle was twice as large as
the stance leg angle (Equation 8).

 - 2  = 0

The swing leg became the stance leg and the former stance
leg became the swing leg when the conditions presented
in equation 8 were satisfied. The control properties of the
ankle joint in assisting the forward progression of the
center of mass were modeled in the transition equation
(Equation 9).
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(A) Hypothetical reconstructed attractor, (B) zoomed-inwin-dow of the reconstructed attractor where s(0) is the initial Euclidean distance between two neighboring points in the attractor and s(i) is the Euclidean distance between the two points i times later.Figure 5
(A) Hypothetical reconstructed attractor, (B) zoomed-inwin-
dow of the reconstructed attractor where s(0) is the initial 
Euclidean distance between two neighboring points in the 
attractor and s(i) is the Euclidean distance between the two 
points i times later. The larger the divergance of the two 
points over time, the larger the Lyapunov exponent value.

Global false nearest neighbor algorithm is used to determine the embedding dimension where the percent of global false nearest neighbors drops to zero percent.Figure 4
Global false nearest neighbor algorithm is used to determine 
the embedding dimension where the percent of global false 
nearest neighbors drops to zero percent.
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where "+" indicated the behavior of the model just after
heel-contact, "-" indicated the behavior of the model just
before heel-contact, and J represents an instantaneous toe-
off impulse that is directed toward the center of mass. J
was dimensionless and had a normalization factor M(g
l)1/2. Further details on the derivation of the transition
equation are found in Kuo [24]. A toe-off impulse was
included in our model because several experimental
investigations with humans have demonstrated that the
ankle joint is a major contributor for the forward progres-
sion of the center of mass during locomotion [25,26].

Analyses of the locomotive patterns of the model were
performed from 3,000 footfalls with the first 500 footfalls
removed to be certain that the model converged to the
given attractor. The step time intervals were used to clas-
sify the gait pattern of the walking model. The influence
of the toe-off impulse on the nonlinear structure of the
model's gait was explored by systematically increasing J in
the transition equation while the ramp angle remained
constant in the governing equations. For each simulation,
the largest Lyapunov exponent was calculated for the
respective step time interval time series to determine how
the altered toe-off impulses influenced the model's non-
linear gait dynamics using a time lag of one and an
embedding dimension of three [19].

Experimental Procedures
Nineteen subjects (14 Females, 5 Males; Age = 25.89 ± 5
years; Weight = 665.8 ± 79.8 N; Height = 1.68 ± 0.06 m)

volunteered to participate in this investigation. All sub-
jects were in good health and free from any musculoskel-
etal injuries and disorders. The experimental protocol
used in this investigation was approved by the Univer-
sity's Internal Review Board and all subjects provided writ-
ten informed consent. All subjects had treadmill walking
experience prior to participating in the experiment.

A mechanical horizontal actuator was designed to assist
the forward motion of the center of mass during the
stance phase (Figure 6). The horizontal actuator applied a
linear force at the center of mass of the subject via a cable-
spring winch system as the subject walked on a reversible
treadmill (Bodygaurd Fitness, St-Georges, Quebec, Can-
ada). Similar actuators have been used to explore the met-
abolic cost and neural control of locomotion [25,27,28].
Additionally, Gottschall and Kram [25] previously deter-
mined that a horizontal mechanical actuator can be use to
assist the ankle joint in the forward progression of the
center of mass. To set the horizontal force actuator to a
specific force value, the subject stood at the middle of the
length of the treadmill. The length of the rubber spring
was adjusted with a hand winch and the force was meas-
ured with a piezoelectric load cell (PCB Piezotronics Inc.,
Depew, New York) that was in series with the cable-
spring-winch system. To ensure that the mechanical hori-
zontal force actuator supplied the same assistance, mark-
ers were placed on the treadmill to serve as reminders of
the proper position on the treadmill. Additionally, during
the data collection, the subjects were coached to maintain
their gait between the markers and could view the force
value of the load cell on a computer monitor. Subjects ini-
tially warmed up and accommodated to the motion of the
treadmill for approximately five minutes. This was fol-
lowed by having the subjects accommodate to walking
with the mechanical actuator assisting the forward
motion of the center of mass at the experimental levels.
The subjects continued to walk on the treadmill until the
subject stated that they felt stable walking while attached
to the mechanical actuator.

The subjects walked on the treadmill for two minutes at a
self-selected pace while the mechanical horizontal actua-
tor assisted the forward motion of the center of mass. The
average walking speed that was used for all conditions was
1.01 ± 0.2 ms-1 (Cadence = 116 ± 8 steps/min). The hori-
zontal force actuator supplied a force equal to 0%, 3%,
6% and 9% of the subject's body weight. These percent-
ages were selected based on our pilot data, where we
determined that they provided the minimal distortion of
the normal gait pattern. A high-speed digital four camera
motion capture system (Motion Analysis, Santa Rosa, Cal-
ifornia) was used to capture the three dimensional posi-
tions of reflective markers placed on the lower extremity
at 60 Hz. Triangulations of markers were placed on the

The mechanical horizontal actuator used in this investigation supplied a linear force at the center of mass during the stance phase.Figure 6
The mechanical horizontal actuator used in this investigation 
supplied a linear force at the center of mass during the stance 
phase. The device consisted of a cable-spring pulley system. 
The magnitude restoring force supplied by the spring during 
the stance phase was adjusted with a hand winch.
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thigh, shank and foot segments. A standing calibration
was used to correct for misalignment of the markers with
the local coordinate system of each of the lower extremity
segments. This was accomplished by having the subjects
stand in a calibration fixture that was aligned with the glo-
bal reference system. Custom software was used to calcu-
late the three-dimensional segment and joint angles
consistent with Vaughan et al. [29] from the corrected
positions of the segment markers. The joint angle time
series were analyzed unfiltered in order to get a more accu-
rate representation of the variability within the system
[30]. Previous investigations have indicated that filtering
the data may eliminate important information and pro-
vide a skewed view of the system's inherent variability

[31]. Using the nonlinear analysis techniques discussed in
Section A of the methods, the largest Lyapunov exponents
for the respective joint angle time series were numerically
calculated with an embedding dimension of six.

A one-way analysis of variances (ANOVA) with repeated-
measures design was performed for each joint to deter-
mine statistical significance between the means of the
respective assistance conditions. Furthermore, we used
dependent t-tests with a Bonferroni adjustment as a post-
hoc test to analyze if the respective assistance conditions
were different from the no assistance condition. The alpha
level was defined as P < 0.05. A linear trend analysis was
performed if statistical differences were found. The trend
analysis allowed us to infer if the nonlinear structure of
the human gait pattern scaled in a similar fashion as the
passive dynamic walking model computer simulations.

Results and Discussion
Simulation Results
Our simulations indicated that systematic increase in the
toe-off impulse (J>0) resulted in the largest Lyapunov
exponent to have a greater magnitude. For example, at a
ramp angle of 0.0185 radians the largest Lyapunov expo-
nent for the model's nonlinear gait pattern was 0.285
when J = 0. However, if a toe-off impulse was used to assist
the forward progression of the center of mass (J = 0.001),
the largest Lyapunov exponent of the model's gait pattern
increased to a value of 0.363. These results are further
detailed in Figure 2 where it is apparent that the largest
Lyapunov exponent's magnitude linearly increased as a
greater toe-off impulse was used to assist the forward pro-
gression of the model's center of mass. Therefore, the sim-
ulations predict that an increase in the propulsive forces
that govern the forward translation of the center of mass
during the stance phase will result in a linear increase in
the magnitude of the largest Lyapunov exponent in a
human's gait pattern.

Experimental Results
A significant difference was found for the hip (F(3,54) =
134.03, p = 0.0001) and the ankle (F(3,54) = 38.99, p =
0.0001) joint's largest Lyapunov exponent for the hori-
zontal assistance conditions (Figure 7). Post-hoc analysis
indicated a significant difference between 0% and all the
assistance conditions for the hip and the ankle. No signif-
icant differences were found for the knee joint during the
horizontal assistance conditions (F(3,54) = 0.605, p =
0.62; Figure 7). There was a significant increasing linear
trend for the hip (F(1,18) = 267.16, p = 0.0001) and the
ankle (F(1,18) = 146.73, p = 0.0001) joints' largest Lyapu-
nov exponent as the horizontal assistance was increased.
These results indicated that the nonlinear structure of the
ankle and hip joints' movement patterns were altered as
horizontal assistance was increased.

Largest Lyapunov exponent values for the hip (A), knee (B) and ankle (C) joints as the percent of horizontal assistance by the mechanical actuator was increased.Figure 7
Largest Lyapunov exponent values for the hip (A), knee (B) 
and ankle (C) joints as the percent of horizontal assistance by 
the mechanical actuator was increased. The line represents 
the significant linear trend for the respective horizontal 
assistance conditions. All of the horizontal assistance condi-
tions for the ankle and hip joints were significantly different 
(p < 0.05) from the no assistance condition (i.e., 0%). No sig-
nificant differences were found for the knee joint.
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The experimental results are consistent with the hypothe-
sis that the nonlinear structure of gait is dependent on the
neural control of the forward progression of the center of
mass during the stance phase of gait. As the mechanical
actuator increased the amount of assistance supplied to
the center of mass, the magnitude of the largest Lyapunov
exponent systematically increased for the hip and ankle
joints. These results imply that the performance of the hip
and ankle joints during the stance phase may be related to
the changes in the nonlinear structure noted in previous
investigations [6,7,9]. This is consistent with previous
experimental studies where it has been concluded that the
stance phase dynamics are dependent on the ankle and
hip joints' control properties. The ankle joint supplies a
large amount of power for the forward progression of the
center of mass [25,26] and the hip joint stabilizes the
trunk during the early and late portions of the stance
phase [32,33]. However, it cannot be completely con-
cluded if the changes in the nonlinear structure of the hip
joint were a result of normal torso control during the
stance phase. Since the mechanical horizontal actuator
was attached at the waist of the subject, it may have artifi-
cially created instabilities in the torso which required an
altered control strategy at the hip joint that would not
have been present if the center of mass was actuated
purely by a toe-off impulse.

The nonlinear structure of the knee joint during the hori-
zontal assistance conditions was not significantly differ-
ent from normal walking. The lack of clear results for the
knee joint may be related to its functional role during gait.
The behavior of the knee joint is largely attributed to
maintaining the inverted pendulum during stance and
limb clearance during the swing [32]. Hence, the knee
joint has less influence on the forward progression of the
center of mass [14]. However, further inspection of Figure
6 indicates that with the exception of 0%, the knee follows
the same increasing linear trend as the ankle and hip joint.
Possibly, the knee joint's nonlinear behavior may be also
sensitive to the assistive force provided during the stance
phase. However, further exploration of this notion is nec-
essary before we can make this conclusion. Possibly, by
altering the walking velocity of the subject, the linear
trend at the knee joint may be further magnified.

The experiments conducted here were only performed at a
medium-high walking velocity. This walking velocity may
not be representative of the walking velocity that a disa-
bled subject may select. Since we did not test the influence
of horizontal assistance at a wide range of speeds we can-
not generalize our results to all populations. Future inves-
tigations should explore how the interactive effect of
walking speed and forward progression of the center of
mass on the nonlinear structure of gait. These insights
may lead to new insights on the nature of nonlinear gait

patterns and may guide the development of rehabilitative
protocols that are aimed at restoring a healthy nonlinear
gait.

The passive dynamic walking model was able to predict
the changes in the nonlinear structure of human locomo-
tion as the forward progression of the center of mass was
assisted. Although this model is highly simplified com-
pared to the human locomotive system, it appears that it
provides a well suited template for modeling the control
properties of nonlinear gait dynamics. The additions of
more life-like properties to this model may prove fruitful
for the future research that is directed toward understand-
ing how the neuromuscular properties influence the non-
linear structure of human locomotion. Such simulations
and models will provide further insight on what neuro-
mechanical variables influence the nonlinear gait dynam-
ics.

Conclusion
Horizontal propulsive forces that are applied during the
stance phase influence the nonlinear structure of human
locomotion. The experimental results presented here infer
that the changes in the nonlinear structure may be related
to the proper utilization the hip and ankle joint muscula-
ture to control the forward progression of the center of
mass. Future investigation should determine if the results
presented here can be extended to individuals with altered
nonlinear gait patterns (i.e., elderly, Parkinson's disease).
The initial step toward making this connection should be
directed towards determining if the results presented here
are consistent for different walking speeds. This scientific
information will provide further insight on which neuro-
mechanical components that are responsible for changes
in the nonlinear structure of gait, and may lead to a better
understanding of why the nonlinear gait pattern is altered
in pathological populations.
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