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Abstract
Agents operating in the real world have to deal
with a constantly changing and only partially
predictable environment and are nevertheless ex-
pected to choose reasonable actions quickly. One
way to address this problem is to use behavior
networks as proposed by Maes, which support
real-time decision making. Robotic soccer ap-
pears to be one domain where behavior networks
have been proven to be particularly successful.
In this paper, we analyze the reason for the suc-
cess by identifying conditions that make behav-
ior networks goal converging, i.e., allow them
to reach the goals regardless of which particu-
lar action selection scheme is used. In terms of
STRIPS domains one could talk of self-solving
planning domains. We finally show that the be-
havior networks used for different robotic soccer
teams have this property.

1 Introduction
Agents operating in the real world have to deal with a
constantly changing and only partially predictable environ-
ment; and the expectation is that the agents can figure out
the best suitable actions in real-time. The behavior net-
work approach [Maes, 1990] addresses this problem through
activation spreading inside a network of competence mod-
ules. This approach is intended to address, as Maes [1990]
states, the problems of “brittleness, inflexibility, and slow re-
sponse” of classical planning approaches on one hand, and
the problem of “the lack of explicit goals” in reactive ap-
proaches on the other hand. It proved to be useful and be-
came popular during the last decade. For instance, it has
been used in the implementation of an intelligent e-mail agent
[Zhang et al., 1998] and as the underlying mechanism for
generating behavior of autonomous characters in interactive
story systems [Rhodes, 1996]. Most notably, the approach
has been employed in the simulated robotic soccer team
magmaFreiburg [Dorer, 2000a] and in the real robotic soc-
cer (F2000 league) team CS Freiburg [Weigel et al., 2001;
2002]. In both cases, the teams were highly successful. The
simulation team magmaFreiburg was runner-up in 1999 and
CS Freiburg won the RoboCup world championship in 2000

and 2001. Although there is a wide range of components,
both hard- and software, that contribute to such a success,
the behavior networks, as reported by Weigel et al. [2001;
2002] and Dorer [2000a], played a significant role.

It must be said, however, that the particular action selec-
tion mechanism employed in the robotic soccer teams dif-
fers significantly from Maes’ [1990] original proposal. The
so-called extended behavior networks [Dorer, 1999], which
are used in the robotic soccer domain, can deal with con-
tinuous propositions, use a technique called goal-tracking
in order to address some of Tyrrell’s [1994] criticisms con-
cerning Maes’ [1990] proposal, and employ a goal manage-
ment mechanism that allows for changing goals. In fact, with
all the extensions, the behavior networks have now the fla-
vor of decision-theoretic planning, without implementing this
framework, though. Furthermore, as shown in a number of
experiments [Dorer, 1999], these changes lead to a signifi-
cantly higher number of scored goals.

Although Maes’ behavior networks and variations have
been analyzed from several perspectives, there are neverthe-
less many issues that have not been resolved. For example, it
is not clear under which conditions we can be sure that a be-
havior network converges to its goal, i.e., generates an action
sequence that eventually satisfies the goal. Dorer [2000b] de-
scribes some experiments where he used the original behav-
ior networks by Maes [1990] in order to solve blocks-world
planning problems. As it turns out, for some five-block prob-
lems, the behavior network goes into an infinite loop and does
not come up with a solution, regardless of the parameter set-
ting. Clearly, such a performance would be unacceptable in
a soccer context. Just imagine a soccer player who dribbles
the ball in an endless circle. However, this does not happen
in this domain. One could explain this difference by the fact
that the blocks world is an artificial domain with a puzzle-
like character while soccer has a real-world character much
more suited for behavior networks. However, it would be, of
course, more interesting to find some formal conditions that
explain why behavior networks work so well for robotic soc-
cer.

More generally, we are interested to find a condition that
guarantees that the behavior network will generate a success-
ful sequence of actions provided there exists one and no ex-
ogenous events intervene. Furthermore, we want this guaran-
tee regardless of which particular action selection scheme and



parameter setting is employed. Behavior networks with this
property will be called goal converging. If we view the be-
havior network as a STRIPS planning domain specification,
then the corresponding domain specification could be termed
self-solving, since all sequences of executable actions lead to
the goal.1

If a behavior network is goal converging, then we know
that it will always act goal-oriented and parameter tuning is
only necessary to generate better, shorter action sequences.
Of course, it is also clear that goal convergence will require
severe restrictions on the structure of behavior networks.
However, as we show in this paper, there exists a non-trivial
restriction on the topology of the behavior network that guar-
antees that the network is goal converging. In addition, all
the networks that have been designed for robotic soccer are
of this type (or are very close to this form), which explains
to some degree why the approach works so well for robotic
soccer.

The rest of the paper is structured as follows. In the next
section we sketch the behavior network approach. In Sec-
tion 3, we identify two conditions for a behavior network be-
ing goal converging. Based on that, we analyze in Section 4
the networks that have been used in the Freiburg RoboCup
teams and show that they satisfy one of the conditions identi-
fied. Finally, in Section 5, we conclude and give an outlook.

2 Behavior Networks
In the following, we describe the behavior network formal-
ism. Since we do not need the full details for our purposes,
the description will be sketchy at some points.

2.1 Specifying Behavior Networks
Let P be a set of propositional atoms. A state is a truth as-
signment to all atoms in P (often also represented as the set of
true atoms). For extended behavior networks [Dorer, 1999],
the state is an assignment of fuzzy values. Behavior net-
works are tuples (P,G,M,Π), where

• G ⊆ P is the goal specification;
• M is a finite set of competence modules or actions,

where m ∈ M is a tuple 〈pre, eff+, eff−, beh〉 with
pre ⊆ P denoting the preconditions,2 eff+, eff− ⊆ P
denoting the positive and negative effects, respectively,
with eff+ ∩ eff− = ∅ and beh being the name of an
executable behavior, which is started once the module
is selected for execution. If we want to refer to one of
the components of a competence module m we use the
notation pre(m), eff+(m), etc.

1This condition corresponds to what is called the all-policies-
proper condition in the MDP community. However, in this context
one usually assumes the condition and does not try to identify crite-
ria which guarantee the condition.

2Note that we allow only for positive goals and preconditions.
This, however, does not restrict the expressivity since (for STRIPS-
like planning) this is equivalent to formalisms with negative precon-
ditions and goals under various formal notions of expressive equiv-
alence [Bäckström, 1995; Nebel, 2000].

• Π is a set of global parameters used to control the ac-
tion selection process, among them the threshold for the
activation θ. There are more parameters, but we do not
need them for our purposes and ignore them for this
reason.

Depending on the type of behavior networks, some varia-
tions are possible. For example, in Dorer’s [1999] extended
behavior networks, the goals can have an importance measure
and an additional relevance condition. Further, effects have
an expectation value describing how likely it is that the ef-
fect proposition becomes true after executing the competence
module. These details will not be important for us, though.

2.2 Activation Spreading
Competence modules are connected in a network so that they
can send and receive activation energy. A positive effect link
connects a positive effect p of a competence module to the
precondition p of another competence module. A negative ef-
fect link connects a negative effect p of one competence mod-
ule to the precondition p of another competence module.3 An
example of a small behavior network is given in Figure 1.

Soccer Goal

Shoot

GetBall

haveNoBall closeToBall

GotoBall

haveNoBall

ballKickable

Figure 1: Example of a behavior network: Solid arrows de-
note positive effect links and dashed arrows denote negative
effect links.

In this example, the competence module GotoBall has the
precondition haveNoBall and the effect closeToBall enabling
the competence module GetBall. This, in turn, has the neg-
ative effect of deleting haveNoBall and the positive effect of
making ballKickable true. The latter enables the Shoot mod-
ule, which then (hopefully) leads to scoring a goal, the ulti-
mate goal of this behavior network.

Unsatisfied goals send some activation energy to compe-
tence modules that could make the goals true and, in turn,
each activated module sends some of its activation through its
unsatisfied preconditions to modules which can make the pre-
condition true. In the original version of behavior networks,
there is also a “forward spreading” of activation energy. This
means that activation energy flows from propositions true in a

3Although negative self-links are usually not considered, we will
draw them in depictions of behavior networks in order to describe
the actions completely.



situation towards competence modules that have these propo-
sitions as preconditions, and from executable competence
modules to competence modules which have unsatisfied pre-
conditions identical to the effects of the executable modules.
However, this forward spreading of activation does not seem
to increase the quality of the action selection [Dorer, 1999;
Goetz and Walters, 1997] and for this reason this kind of ac-
tivation is not present in Dorer’s [1999] extended behavior
networks. While positive effect links are used for spreading
activation, negative links are used to inhibit the activation of
other modules. Modules that have the negative effect p ∈ eff−
are inhibited by modules that have p as a satisfied precondi-
tion.

2.3 Action Selection
Action selection is done in a cycle containing four steps
[Maes, 1990; Dorer, 1999]:

1. The current activation of each module is calculated us-
ing the methods described above, i.e., each modules
receives some activation and inhibition from modules
connected to it.

2. Activation and executability of a module are combined
by a non-decreasing function into the utility of a mod-
ule, whereby non-executable competence modules al-
ways get the value zero.

3. The module with the highest utility value is chosen,4
provided it passes a certain threshold θ (one of the
global parameters). The action associated with the
competence module is then executed.

4. If none of the modules reached the activation threshold,
the threshold is reduced by a certain percentage (an-
other global parameter) and the cycle is started again
with the currently computed activation values for each
module.

Since we usually want an agent to execute a sequence of
actions leading to the goal, the above cycle will be called in-
finitely or until the agent has reached the goal.

From the description above it follows that there are only a
few things one can be sure of when using a behavior network
for action selection. First of all, only executable actions are
chosen. Second, if an action selection scheme is employed
that does not use forward activation spreading, for instance
Dorer’s [1999] scheme, then it follows that if an action is cho-
sen, it “contributes” to one of the goals, since the competence
module can receive activation only from the goal through a
chain of unsatisfied preconditions.

2.4 Ideal Abstract Behavior Networks
If we want to guarantee properties of a network under dif-
ferent action selection schemes and parameter settings, we
have to make a number of simplifying assumptions. We will
assume that the state is always correctly observable (with
Boolean state variables), that the competence modules de-
scribe all relevant effects correctly, that the execution of the
behavior of a competence module is always successful, and

4Ties are broken randomly.

that no exogenous event will intervene. Based on these as-
sumptions, we define an abstract version of behavior net-
works, which from a formal point of view are identical to
STRIPS domain descriptions.

An ideal, abstract behavior network is a tuple B =
(P,G,M), where P,G and M are defined as in Section 2.1.
In the state S ⊆ P , the network can choose any competence
module m for execution such that the preconditions pre(m)
are satisfied in S, i.e., pre(m) ⊆ S, and not all positive ef-
fects are satisfied, i.e., eff+(m)−S �= ∅. When m is executed
in state S, the resulting state Result(S, m) is given by

Result(S, m) = S − eff−(m) ∪ eff+(m).

We say that the network B can generate a (finite or infinite)
sequence of actions m1,m2, . . . ,mi, . . . in a state S1 if

Si+1 = Result(Si,mi).

We say B can reach the goals G from a state S if it can
generate a finite sequence of actions in S such that the last
state Sn satisfies the goals, i.e., Sn ⊇ G.

3 Goal-Converging Behavior Networks
If we want to guarantee that a behavior network is successful
regardless of the action selection scheme and parameter set-
ting,5 we have to consider all action sequences the network
can generate. Although this appears to be a fairly strong re-
quirement, there are indeed realistic networks for which we
can show that they are always successful—if the goal is reach-
able at all.

3.1 Terminating and Dead-End Free Networks
We call a behavior network terminating if for all states and
under all possibilities to choose actions, it is impossible to
generate infinite action sequences—provided the goal was
reachable initially.6 Figure 2 gives a simple example of a
non-terminating network.

Goal

p1 p2

q1

C

B1

A1 A2

q2
B2

Figure 2: A non-terminating behavior network

Provided that p1, p2, q1, q2 and the Goal are false ini-
tially, then it is possible that the sequence A1, A2, A1, A2, . . .
is chosen. Hence, the network is not terminating.
Note that there is a successful sequence consisting of

5The only restriction is that we never consider actions such that
all their positive effects are already satisfied (see Section 2.4).

6If the goal is unreachable, we do not care about the behavior of
the network.



A1, B1, A2, B2, C. However, the action selection mecha-
nism might not necessarily find it. An example for a termi-
nating network is the one in Figure 1, as is easy to verify.

We say that a network is in a blocked state when no ac-
tion is executable and the goal is not satisfied. Such a blocked
state may occur because there was no way to reach the goal
in the first place. However, it may be possible that the goal
was reachable in the beginning. We call a network dead-end
free if it never leads to a blocked state when it is possible to
reach the goal. Consider, for example, the network in Fig-
ure 3. This network contains a dead end. Provided one starts
with p1, p2, q2 and Goal as false and q1 as true, the execution
of A2, B2 leads to a blocked state. However, obviously, the
sequence B1, A2, B2, C would have led to the goal. In other
words, this network is not dead-end free. An example of a
dead-end free network is again the one in Figure 1. Although
in this network one can make propositions false, this can only
happen in the course of satisfying the goal and it will never
prohibit reaching the goal.

Goal

p1 p2

q1

C

B1

A2

q2
B2

Figure 3: A behavior network with a dead end

Finally, we call a behavior network goal converging when
it will generate a finite action sequence leading to the goal re-
gardless of the action selection scheme and parameter setting,
provided the goal is reachable at all. When viewing the be-
havior networks as specifications of STRIPS planning prob-
lems, we would talk of self-solving planning domains, be-
cause regardless of which order we would choose for the ex-
ecutable actions, one would always reach the goal—provided
the goal was initially reachable at all.

Proposition 1 A behavior network is goal converging if and
only if it is dead-end free and terminating.
Proof: The “only if” direction is obvious since networks with
dead ends and networks which are non-terminating cannot be
goal converging. There are possible states and action selec-
tions such that either a loop or a dead end, respectively, are
chosen although there is the possibility of reaching the goal.
For the “if” direction observe that a non-goal-converging net-
work must either produce an infinite sequence or end up in a
dead end although there is a action sequence leading to a goal
state.

3.2 Monotone Networks
One particularly simple type of goal-converging networks are
networks with only positive effects, which we will call mono-
tone networks. Since a propositional atom can never be
made false in a monotone network, one can reach any desired
goal after any initial sequence of actions, provided the goal

was initially reachable. This implies that it is impossible to
run into a dead end. Since each action can be executed at most
once, there is additionally an upper bound to the length of any
action sequence generated by a monotone behavior network,
implying that the network is also terminating.
Proposition 2 Monotone behavior networks are goal con-
verging.

Monotone behavior networks are hardly interesting, be-
cause they almost never appear in practice.For our purposes,
they are equivalent to STRIPS planning problems that have
only positive preconditions and effects. While such planning
problems appear to be trivial, it is well known that generating
a shortest plan is still an NP-hard problem [Bylander, 1994].
Furthermore, such planning problems have become popular
as the basis for computing heuristic estimates in action plan-
ning [Hoffmann and Nebel, 2001; Bonet and Geffner, 2001].
For our purposes, however, the restriction to purely positive
effects is not possible.For instance, in our example network
in Figure 1, the action GetBall destroys the haveNoBall con-
dition.

3.3 Acyclic Networks with Restricted Negative
Links

In order to specify a more interesting class of goal-convergent
networks, let us view these networks from a slightly differ-
ent angle. Let us consider directed graphs with two kinds of
nodes, action nodes and fact nodes and two kinds of directed
edges, positive and negative ones, such that

• there is a positive (precondition) edge from fact node p
to action node a if p is a precondition of action a;

• there is a positive (effect) edge from action node a to
fact node p if p is a positive effect of a;

• there is a negative (effect) edge from action node a to
fact node p if p is a negative effect of a.

The resulting graph is called action-fact graph.7 The nor-
malized action-fact graph is the directed graph where the
direction of the negative edges has been reversed. The in-
teresting point is that acyclicity of the normalized action-fact
graph implies that the behavior network is terminating.
Theorem 3 A behavior network which corresponds to an
acyclic normalized action-fact graph is terminating.
Proof: In order to show that a behavior network satisfying the
condition of the theorem is terminating, we assign as a first
step values to the atoms in the action-fact graph. For each
atom p the value of p should be 1 plus the sum of values of
the fact nodes that are incident via a negative edge to an action
having p as a positive effect. Since the normalized action-fact
graph is acyclic, this value assignment is well-defined.8

With this value assignment to atoms, each action applica-
tion will strictly increase the overall value of the state (as the

7Such graphs correspond to what has been called bi-level plan-
ning graph [Long and Fox, 1999] or connectivity graph [Hoffmann
and Nebel, 2001] in the planning literature.

8In fact, as is obvious from this argument, it suffices when the
sub-graph consisting of effect edges only is acyclic.



sum over the values of all true propositions), because an ac-
tion is only executed when one of its positive effects is not
true. This implies, however, that it is impossible to generate
infinite action sequences.

While it was easy to find a condition for termination, it
appears to be much more difficult to find a criterion that guar-
antees that the network is dead-end free. Let us consider even
further restricted action-fact graphs. If the sub-graph formed
from the positive links is acyclic and if for all negative edges
from action a to fact p there exists a positive path from p to
a, then we call the graph acyclic, negative-feedback action-
fact graphs. This is obviously a special-case of an acyclic
normalized action-fact graph. However, it is still not a crite-
rion for guaranteeing the absence of dead ends. In fact, plan-
ning is still non-trivial as the plan existence problem is still
NP-hard.

3.4 Modular Action-Fact Graphs
One way to guarantee that there are no dead ends is to make
sure that it is always possible to make falsifiable proposi-
tions true without affecting other propositions, which has to
be guaranteed independently of the initial state[Hoffmann,
2002]. While this condition is often true in classical plan-
ning tasks, it seems very unlikely that we can guarantee this
in our case. Hoffmann [2002] gives a number of other suffi-
cient conditions, but none appears to be applicable here. For
this reason, we will look into an alternative condition. We
will try to make sure that any proposition that can be falsified
needs never to be used again after it has been falsified. For
example, this condition is satisfied in Figure 1. One way to
guarantee this is to require the following modularity condi-
tion. For all atoms q that can be falsified by an action a in
an acyclic, negative-feedback action-fact graph, each positive
path from q to a goal atom must go through an action a′ such
that eff+(a) ⊇ eff+(a′) �= ∅. This condition is, for example,
satisfied by the action-fact graph in Figure 4 and the action-
fact graph derivable from the network in Figure 1. We call
acyclic, negative-feedback action-fact graphs satisfying this
condition modular action-fact graphs.

A1 A2

r2q r3

A3

r1

Goal

p1 p2

Figure 4: An action-fact graph satisfying the modularity con-
dition

Theorem 4 Modular action-fact graphs are goal converg-
ing.
Proof: Termination follows from Theorem 3. The proof that
the action-fact graphs are dead-end free is by induction on the
number of negative links. For k = 0 negative links, the claim
follows from Proposition 2. Assume now that the claim is

true for modular action-fact graphs with k or fewer negative
links. Consider a graph with k+1 negative links. Now choose
one action node a that is the source of a negative link and
which has no positive path to any other action node with such
a property. Because of the acyclicity of the graph formed
from positive links, such a node must exist. Assume that q is
amongst the negative effects of a and that the positive effects
are p1, . . . , pk. If we remove the negative link from a to q,
we can apply the induction hypothesis for k negative links
and know that the graph is dead-end free.

Assume now for contradiction that the original network is
not dead-end free. This must be connected with the possibil-
ity of falsifying q by a. However, once all the positive effects
of a have been made true by executing a, the truth value of q
is not of any concern since all positive paths from q to a goal
go through a and actions with a subset of eff+(a) as their
positive effects. Hence, the negative link from a to q cannot
create a dead end, which completes the induction step.

4 RoboCup Behavior Network
As mentioned in the Introduction, the analysis of behavior
networks was motivated by the observation that the behavior
networks of the magmaFreiburg and CS Freiburg robotic soc-
cer players work so robustly. When one now analyzes the net-
works with the tools developed in this paper, it turns out that
they indeed satisfy the condition of being modular—modulo
some qualifications. Before we talk about qualifications, we
should, however, have a look at some real behavior networks.
In Figure 5 the main part of the CS Freiburg [Müller, 2000]
behavior network is displayed as an action-fact graph. Ob-
viously, the few negative links satisfy the modularity condi-
tion. However, one may wonder, why there are no negative
links from the actions having HaveBall as a precondition to
HaveBall? Although these negative links should have been
there in order to describe the action effects correctly, their ab-
sence is not problematic, since we assumed that all actions
are successful—and the positive effect of all the actions is the
ultimate goal. In any case, when adding the negative effects,
we still would have a modular action-fact graph.9

A similar comment applies to the missing positive links
back to NegHaveBall. Again, it is not interesting because we
achieve the goal anyway. Furthermore, we can ignore these
positive links without losing anything, i.e., they never help us
to achieve the goal.

Often it is necessary to take more than one goal into ac-
count. The extended behavior network may contain multiple
goals which can be selected based on the current situation.
So, for example, a CS Freiburg player either tries to score a
goal (if it fills the role of an active player) or it has the over-
all goal to cooperate. In the latter case, we would have to
consider a different network, which also satisfies the struc-
tural condition of being modular, though. In the case of the
magmaFreiburg players, things are even more complicated
because it is possible to pursue more than one goal at once. If
we break the networks down to one goal at a time, however,
the resulting networks are again modular.

9Indeed, the magmaFreiburg networks contain these negative ef-
fects.
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TurnAwayBall
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    GetBall1 GetBall2
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Figure 5: Part of the Action-Fact Graph of the CS Freiburg
behavior network [Müller, 2000]

Finally, it should be noted that there are levels in the de-
cision making that influence the behavior networks, e.g., the
role assignment and placement of players on the field [Weigel
et al., 2001], which are, however, not taken into account when
analyzing the network.

Summarizing, if we assume that no exogenous actions in-
tervene and if there occurs no change in the goals (in par-
ticular there is no influence from the strategic component),
then all the behavior networks of the CS Freiburg [Müller,
2000] and the magmaFreiburg [Dorer, 2000b] players satisfy
the modularity condition and are therefore goal converging,
which goes somewhere in explaining why they have been suc-
cessful. At least, when players are alone on the field, they will
eventually score. Although this is a rather weak guarantee, it
is much better than the statement that the player might score
a goal only when the parameters of the network are well ad-
justed.

Of course, all this seems to imply that the domain as
modelled in the described RoboCup teams has a quite sim-
ple structure. However, thinking a while about the problem,
one will come to the conlusion that even in the face of more

complex modelling and decision making by, e.g., integrat-
ing opponent modelling and adversary planning, we neverthe-
less would like to guarantee the conditions mentioned above.
However, it may be the case that it is not possible to verify
the conditions using simple syntactic tests any longer.

5 Conclusions and Outlook
We have identified a structural property of behavior net-
works, called modularity, that guarantees that the networks
will reach their goals in a static environment under all
circumstances—if the goals are reachable at all. Interest-
ingly, there exists a significant application of behavior net-
works where this restriction is met, namely, the networks of
the Freiburg simulation and real robot (F2000) soccer players.

Having shown that a network has this property means that
we never have to fear that the network leads to infinite action
sequences or blocked states. In addition, it means that tuning
network parameters [Maes, 1992] will not modify the princi-
pal property of reaching the goal, but only the efficiency.

In the future, we will pursue three directions of research.
First of all, there is the question whether there exist other rel-
evant restrictions on network structures that lead to goal con-
vergence. Second, in most cases, it is enough if the network
is goal converging for a subset of all possible states. Now, the
interesting question is in how far this would result in a more
liberal condition for goal convergence. Third, we will analyze
the feasibility of testing the property of goal convergence on
a semantic level. In this context, it will probably be helpful to
take the syntactic restrictions identified in this paper into ac-
count, because it is probably prohibitive to inspect the entire
state space.
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