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Objectives: Symptomatic peripheral arterial disease (PAD) results in significant gait impairment. 1 

In an attempt to fully delineate and quantify these gait alterations, we analyzed joint kinematics, 2 

torques (rotational forces) and powers (rotational forces times angular velocity) in PAD patients 3 

with unilateral claudication for both the affected and non-affected legs.  4 

Methods: Twelve patients with unilateral PAD (age: 61.69±10.53 years, ABI: Affected Limb 5 

0.59 ± 0.25; Non-Affected Limb 0.93 ± 0.12) and ten healthy controls (age: 67.23 ± 12.67 years, 6 

ABI>1.0 all subjects) walked over a force platform to acquire gait kinetics, while joint 7 

kinematics were recorded simultaneously. Data were collected for the affected and non-affected 8 

limbs during pain free (PAD-PF) and pain induced (PAD-P) trials. Kinetics and kinematics were 9 

combined to quantify torques and powers during the stance period from the hip, knee, and ankle 10 

joints.  11 

Results: The affected limb demonstrated significantly (p<0.05) reduced ankle plantar flexion 12 

torque compared to control during late stance in both PAD-PF and PAD-P trials. There were 13 

significant reductions in ankle plantar flexion power generation during late stance for both the 14 

affected (P<.05) and non-affected limbs (P<.05) compared to control during PAD-PF and PAD-P 15 

trials.  No significant differences were noted in torques comparing the non-affected limb in 16 

PAD-PF and PAD-P conditions to control for knee and hip joints throughout the stance phase. 17 

Significant reductions were found in knee power absorption in early stance and knee power 18 

generation during mid stance for both limbs of the PAD patients as compared to control (P<.05).  19 

Conclusions: PAD patients with unilateral claudication demonstrate significant gait impairments 20 

in both limbs that are present even before they experience any claudication symptoms. Overall, 21 

our data demonstrate significantly reduced ankle plantar flexion torque and power during late 22 

stance with reduced knee power during early and mid stance for the affected limb. Further 23 



 3 

studies are needed to determine if these findings dependent on the location and the severity of 1 

lower extremity ischemia and whether the changes in the non-affected limb are the result of 2 

underlying PAD or compensatory changes from the affected limb dysfunction. 3 

Keywords: biomechanics, ischemia, peripheral arterial disease, locomotion, gait 4 
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INTRODUCTION 1 
 2 

 Peripheral arterial disease (PAD) affects over ten million people in the U.S., the 3 

majority of which are elderly.  Intermittent claudication is the most common presentation 4 

of PAD and consists of pain, cramping, aching and tiredness, induced by physical activity 5 

(i.e. walking) and relieved with rest1. Intermittent claudication and its related ambulatory 6 

dysfunction are associated with poor health outcomes, physical dependence and 7 

inactivity2, 3 severely limiting all aspects of patient functioning and quality of life4, 5.  8 

 Currently, the ambulatory impairment produced by claudication and the degree to 9 

which it may respond to treatment are evaluated using basic time-distance tools such as 10 

gait velocity and cadence6. The majority of available studies indicate PAD patients walk 11 

slower, have reduced cadence, increased stance time, shorter stride length and a narrower 12 

step width as compared with controls6-9. Although these basic temporal and spatial 13 

parameters provide a description of the ambulatory dysfunction of the PAD patient, they 14 

are unable to provide an understanding of the mechanisms responsible for this gait 15 

impairment.   16 

 A series of studies by our laboratory and others have utilized advanced 17 

biomechanical measures to identify the mechanisms underlying the gait impairment of 18 

PAD patients.  Scott-Pandorf et al. demonstrated several mechanisms leading to PAD gait 19 

dysfunction.  PAD patients walk with decreased fluctuations of center of gravity, have 20 

significantly decreased peak propulsion force and exhibit a reduced ability to swing their 21 

legs forward. Crowther et al. observed abnormal ankle plantar flexion in early stance, 22 

knee range of motion in stance phase and hip extension in late stance10 while Chen et al. 23 

demonstrated significant torque alterations at the ankle and hip.   24 

PRINT
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 To more clearly delineate the joint muscular responses and their contributions in 1 

patients with claudication, we have employed advanced biomechanical analysis in the 2 

form of joint torques and powers. The joint torque is the net result of all forces acting 3 

around a joint. Positive torque values represent an extensor response while negative 4 

values indicate a flexor response. Joint powers are the product of net torque across a joint 5 

and the angular velocity of the joint.  Positive joint power indicates that energy is being 6 

generated and is associated with concentric muscular contraction while negative power 7 

indicates that energy is being absorbed and is associated with eccentric muscular 8 

contraction.  The utility of joint powers is their unique ability to point to specific 9 

neuromuscular deficits in pathological gait and guide subsequent treatment.  Joint powers 10 

have identified the alterations in knee osteoarthritis, anterior cruciate ligament 11 

reconstruction11, 12, below knee amputees13  and hip arthroplasty 14 patients while 12 

providing unique rehabilitation protocols in patients undergoing anterior cruciate 13 

ligament reconstruction15. In addition, joint powers have characterized the gait mechanics 14 

of the elderly16-19and identified the risk for falls in healthy elderly populations. Similar 15 

insights can be gained from advanced biomechanical analysis of patients with PAD. 16 

 Using this approach in our previous work we have identified weakness in the 17 

posterior compartment muscles of the calf as a consistent and key factor underlying the 18 

PAD gait adaptations20. Our previous studies investigated patients with bilateral 19 

claudication. Clinically however, many patients present with unilateral symptoms having 20 

both an affected limb (AL) and a non-affected limb (NAL).  Therefore, the purpose of 21 

our study was to utilize advanced biomechanical analysis to determine the gait 22 

impairment of the individual limbs of unilateral PAD patients. Based on our previous 23 
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work, we hypothesized that the affected limb of PAD patients would demonstrate 1 

significant differences compared to the non-affected and the control (CON) limbs while 2 

the patients walked before the onset of claudication and that these differences would 3 

variably worsen after the onset of claudication symptoms.  . We also hypothesized that 4 

the non-affected limbs would demonstrate no differences as compared to CON. 5 
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METHODS  1 

Subject inclusion and exclusion criteria 2 

Twelve male patients (age: 61.69±10.53 years, ABI: Affected Limb 0.59 ± 0.25; Non-3 

Affected limb 0.93 ± 0.12) diagnosed with moderate arterial occlusive disease and 4 

unilateral claudication were recruited from the vascular surgery clinics of the VA 5 

Nebraska and Western Iowa and University of Nebraska Medical Centers. In addition, ten 6 

age-, gender-, body mass- and height-matched healthy controls (age: 66.27  9.22 years, 7 

ABI: 1.1±0.11) were recruited from the community and volunteered to participate. 8 

Patients and CON were screened and evaluated by two board certified vascular surgeons. 9 

PAD and CON patients with ambulation limiting cardiac, pulmonary, neuromuscular, or 10 

musculoskeletal disease or those who experienced pain or discomfort during walking for 11 

any reason other than claudication were excluded. Patient evaluation included resting 12 

ABI (a measurement below 0.9 was present in the affected limb of all subjects with 13 

unilateral claudication that was measured in our VA and University of Nebraska Medical 14 

Center vascular laboratories), a detailed history, a physical exam, and a direct 15 

assessment/observation of the patient’s walking impairment.  All PAD subjects recruited 16 

had no previous attempts at revascularization. 17 

Control subjects had an ABI greater than 1.0 and no subjective or objective 18 

ambulatory dysfunction. Controls were screened in a similar fashion as PAD patients and 19 

were excluded for the same ambulation limiting co-morbidities. Informed consent was 20 

obtained from all subjects prior to data collection according to the guidelines of the 21 

Institutional Review Boards of the medical centers. The gait of all recruited participants 22 

was tested in our Biomechanics Laboratory.  23 
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Experimental Procedure and Data Collection  1 

Kinematic and kinetic parameters from the ankle, knee, and hip joints were 2 

evaluated in PAD patients from both the affected and non-affected limbs before (pain 3 

free = PAD-PF) and after onset of claudication symptoms (pain = PAD-P). The limbs 4 

were evaluated during early stance (weight acceptance phase), mid stance (weight 5 

transfer phase) and late stance (weight propulsion phase). To assess the ambulatory 6 

deficits of the affected and non-affected limbs, PAD patients were compared to height-, 7 

gender-, mass-, and age-matched healthy controls. Prior to data collection, reflective 8 

markers were placed at specific anatomical locations of each subject’s lower limb 9 

utilizing the modified Helen Hayes marker set21, 22. Each subject walked with their self-10 

selected pace on a ten meters pathway while the three-dimensional marker trajectories 11 

and ground reaction force data were collected simultaneously. The three dimensional 12 

marker trajectories were collected with an eight high-speed real-time camera system 13 

(EvaRT 5.0, Motion Analysis Corp., Santa Rosa, CA) surrounding the walkway sampling 14 

at 60Hz. The ground reaction force data were acquired with a Kistler force platform 15 

(Kistler Instrument, Switzerland) located in the middle of the walkway sampling at 600 16 

Hz. 17 

Each PAD patient was tested first in the PAD-PF condition (before the onset of 18 

claudication symptoms), followed by the PAD-P (after the onset of claudication 19 

symptoms). For the PAD-PF-condition, a mandatory rest period of at least one minute 20 

occurred between walking trials to ensure that any pain symptoms had subsided. Once 21 

patients completed all PAD-PF trials, claudication was induced.  To accomplish this, a 22 

clinical protocol was used consisted of walking on a treadmill set at 10% grade and at a 23 
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speed of 0.67m/s23, 24 until the onset of pain. At this time patients were immediately 1 

removed from the treadmill and returned to the collection walkway to acquire the data for 2 

the pain-condition without the mandatory resting periods between trials. The CON 3 

subjects completed five walking trials with mandatory rest of 1 minute between the trials. 4 

A total of five successful trials were collected from each limb of the subjects for each 5 

condition. A successful walking trial was determined by the subject’s foot being 6 

completely within the force platform.  7 

Data Analysis  8 

Data from the three-dimensional marker trajectories and ground reaction forces 9 

were combined to calculate the joint torques and powers for the sagittal plane during the 10 

stance phase of walking (from heel touchdown to toe off).  The limbs were evaluated 11 

during early stance (weight acceptance phase), mid stance (weight transfer phase) and 12 

late stance (weight propulsion phase) (Figure 1). A low-pass fourth order Butterworth 13 

filter with a 7 Hz cutoff frequency was used to smooth the marker trajectories during post 14 

data processing. An inverse dynamic technique was performed to calculate joint torques 15 

and joint muscle powers from the kinematic (displacement velocities and accelerations 16 

derived from the three-dimensional marker trajectories) and the kinetic (derived from the 17 

ground reaction forces) data25. Joint torque was calculated as the summation of all 18 

torques acting around a specific joint. These torques are the product of all muscular, 19 

ligament, frictional, gravitational, inertial and ground reaction forces acting on the joint. 20 

Positive torque values represent extensor torques while negative values indicate flexor 21 

torques.  Joint muscle power was calculated as the product of the net torque at a joint (Tj) 22 

and joint angular velocity (ωj) or Pj=Tj x ωj. Power measurements can be expressed 23 
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positively or negatively.  Positive power indicates energy is being generated (concentric 1 

muscular contractions) and negative power indicates energy is being absorbed (eccentric 2 

muscular contractions) by the joint muscle group under study. Joint torques and joint 3 

muscle powers were normalized by body weight and expressed as a percentage (100%) 4 

during stance phase from heel strike (zero percent stance) to toe-off (100 percent stance). 5 

Peak torques were measured for the following muscle groups: ankle dorsiflexors, ankle 6 

plantar flexors, knee extensors, knee flexors, hip extensors and hip flexors. The peak 7 

variables indentified for joint powers were: ankle power absorption in mid-stance (A1), 8 

ankle power generation in late stance (A2), knee power absorption in early stance (K1), 9 

knee power generation in early stance (K2), knee power absorption in late stance (K3), 10 

hip power generation in early stance (H1), hip power absorption in mid-stance (H2) and 11 

hip power generation in late stance (H3).  All normalization occurred after the peak 12 

points were determined to ensure that the normalization did not distort these values. Joint 13 

torques and joint powers were calculated and normalized using custom software in 14 

Matlab (Matlab 2007, Mathworks, Inc., Concord, MA). 15 

Statistical Analysis 16 

Group means for all dependent variables were calculated for each testing 17 

condition (PAD-PF and P) for all limbs. Thus, twelve affected limbs and twelve non-18 

affected limbs were evaluated for the PAD patients in each condition compared to 20 19 

limbs for the control group. A two by two fully repeated measures analysis of variance 20 

was used to compare the two limbs for both PAD-PF and P conditions. Independent t-21 

tests were used to compare both conditions and both limbs of the PAD group with the 22 

CON group. Independent t-tests were also used to compare the differences between PAD 23 
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and CON group demographics. The level of significance was set to 0.05. Values are 1 

presented in the tables and figures as means ± standard deviations. The SPSS Base 12.0 2 

statistical software (SPSS Inc., Chicago, IL) was used to perform the statistical analysis. 3 
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RESULTS 1 

Subjects 2 

Twelve PAD patients with clinically diagnosed aortoiliac (N=4), femoropopliteal (N=4) 3 

and multilevel (N=4) occlusive disease and calf claudication were evaluated. All patients 4 

had Rutherford category 2 moderate claudication symptoms.  Ten control subjects with 5 

absence of claudication were also included (Table 1).  6 

Joint Torques and Powers: 7 

Early Stance: Significant reduction in ankle dorsiflexion torque was noted for the 8 

affected limb during early stance in the PAD-P condition as compared to CON. The knee 9 

extensor torque was reduced during early stance for the affected limb in both PAD-PF 10 

and PAD-P conditions as compared to CON (Table 2; Figure 2). Knee power absorption 11 

during early stance was significantly reduced for the affected limb in both PAD-PF and 12 

PAD-P conditions as compared to CON (Table 3; Figure 3) whereas reduction for the 13 

non-affected limb was noted in the PAD-PF condition (Table 3; Figure 4). The knee 14 

power generation during early stance was significantly reduced for both limbs in the 15 

PAD-PF and PAD-P conditions as compared to CON. In addition, the knee power 16 

generation during early stance was significantly reduced in the PAD-PF condition as 17 

compared to PAD-P primarily in the non-affected limb (Table 3). 18 

Mid Stance:  Hip power absorption in midstance was significantly reduced in the non-19 

affected limb in both PAD-PF and PAD-P conditions as compared to CON (Table 3). 20 

Late Stance: Significant reduction in ankle plantar flexion torque was noted for the 21 

affected limb in both PAD-PF and PAD-P conditions during late stance as compared to 22 

CON (Table 3; Figure 2).  Ankle power generation during late stance was significantly 23 
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reduced for the limbs a compared to CON for both the PAD-PF and PAD-P conditions 1 

(Table 3; Figures 3 & 4). In addition, significant reductions in ankle power generation 2 

were noted during the PAD-P condition compared to PAD-PF condition for both limbs of 3 

the PAD patients (Table 3). 4 

 5 
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DISCUSSION    1 

The present study is the first to provide detailed quantitative analysis of the joint 2 

torque and joint power changes in PAD patients with unilateral intermittent claudication. 3 

While prior works have examined the biomechanics of symptomatic PAD limbs7, 26, the 4 

current study is unique in simultaneously evaluating symptomatic and asymptomatic 5 

limbs of PAD patients with classic symptom unilateral claudication. Joint torques and 6 

joint powers were evaluated while PAD patients walked both before and after the onset of 7 

claudication (PAD-PF and PAD-P conditions respectively) and were compared to those 8 

of gender-, height-, mass-, and age-matched healthy controls. Our data demonstrate that 9 

the gait of claudicating patients is significantly altered for both limbs in both the PAD-PF 10 

and PAD-P conditions.   11 

Our results continue to identify a weakness in the posterior compartment muscles 12 

of the calf as the primary dysfunction operating in the PAD patient producing 13 

significantly altered ankle propulsion during late stance20.  Compared to CON, patients 14 

with PAD have decreased power generation in both their limbs as they try to propel 15 

towards swing in late stance in both PAD-PF and PAD-P conditions (Table 3; Figures 2 16 

& 3). The decreased power generation during plantar flexion points to a significant 17 

weakness of the posterior calf muscles (primarily the gastrocnemius and soleus), which 18 

constitute the dominant muscle group responsible for ankle plantar flexion (push-off 19 

initiating the swing phase). Weakness of the posterior calf muscles is consistent with this 20 

muscle group being the “functional end organ” in lower extremity ischemia. This 21 

hypothesis is further supported by findings demonstrating that PAD patients have 22 

significantly decreased ankle plantar flexor strength3, 27-29 and decreased ankle plantar 23 
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flexor torque.  Importantly, advanced biomechanical analysis demonstrated the specific 1 

dysfunction with a limited number of patients (N=22) compared to other methodologies 2 

(N= 500-1500).  Functionally, in late stance, the gastrocnemius and the soleus both 3 

concentrically contract to propel the body forward and initiate leg swing while 4 

decelerating the downward motion of the trunk i.e., providing forward progression and 5 

support 30. Our advanced biomechanical analyses clearly identifies the most definable and 6 

obvious deficit in patients with PAD, regardless of degree of limb ischemia, as a failure 7 

of the ankle plantar flexors to optimally contract producing decreased power output in 8 

late stance. 9 

There were notable findings at the knee and hip for the current study when 10 

examining torque and power data. Knee extensor torque (Figure 2) in early stance was 11 

decreased in both PAD-PF and PAD-P conditions for the affected limb as compared to 12 

CON.  The knee power absorption in early stance and knee power generation in mid-13 

stance (both serving to decelerate trunk descent on the supporting limb) for both limbs of 14 

the PAD patients was significantly reduced as compared to CON.  In addition, hip power 15 

absorption (stabilizing the trunk on the moving lower limb in preparation for push off) 16 

was significantly reduced during mid-stance for the non-affected limb during PAD-PF 17 

and PAD-P trials as compared to CON.  Our current data in patients with unilateral 18 

claudication along with our recently published work in patients with bilateral 19 

claudication20, 31 suggest that alterations at the knee and hip result in abnormal trunk 20 

support during walking in PAD patients.  Combined with the abnormal power generation 21 

at the ankle level in late stance, the claudicating patient may be unable to accept and 22 

support the weight of the trunk especially after the onset of claudication pain.  Future 23 



 

  

13 

studies will need to explore the gait handicap of PAD patients with aortoiliac occlusive 1 

disease (i.e. buttock and thigh claudication) compared to patients with femoral-popliteal 2 

occlusive disease (i.e. calf  claudication) to determine if these patterns persist. 3 

The current study examines unilateral claudication patients with a clear focus on 4 

the “asymptomatic” limb.  Most vascular specialists in a clinical setting would focus 5 

solely on the symptomatic limb, especially with an asymptomatic contra-lateral limb and 6 

normal ankle brachial index.  Additionally, most clinicians would assume the normal 7 

limb would compensate for the dysfunction of the affected limb.  Several important 8 

findings should be noted for this asymptomatic limb.  First, despite absence of symptoms, 9 

the non-affected limb demonstrates significant reductions in joint powers when compared 10 

to the CON limbs. These differences are demonstrated clearly for the ankle power 11 

generation at late stance, knee power absorption and generation in early stance and hip 12 

power absorption at mid-stance. Secondly, when comparing the non-affected to the 13 

affected limb directly, no statistically significant differences were found indicating 14 

similar joint muscular responses in both legs. Therefore, our data demonstrate abnormal 15 

gait biomechanics for the non-affected limb in the unilateral claudicant.  16 

The main pathophysiologic mechanism operating in claudication is exercise-17 

induced ischemia of the muscles in the symptomatic limbs which is followed by 18 

reperfusion at rest 32-37. These repeated cycles of ischemia-reperfusion have been shown 19 

to be responsible for the myopathy of claudicating muscles which is principally 20 

characterized by mitochondrial dysfunction and oxidative damage.  Interestingly, in two 21 

studies38, 39 evaluating levels of mitochondrial DNA damage in muscle from affected and 22 

non-affected limbs of patients with unilateral PAD, Bhat et al. demonstrated that 23 
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mitochondrial damage was present in both limbs despite a normal ABI and absence of 1 

symptoms in the non-affected limb. Our findings coupled with those of Bhat et al. 2 

suggest that that ischemia/reperfusion of the affected limb may have an effect (possibly 3 

by systemic oxidative stress or another neuro/humoral pathway) on the non-affected limb.  4 

An alternative explanation for our findings is subclinical occlusive disease in the non-5 

affected and asymptomatic limbs not detected at rest but present with exertion. Although 6 

our patients had normal resting ABI’s and no symptoms in their non-affected limb, we 7 

did not evaluate them using exercise treadmill testing which could have revealed 8 

occlusive disease in the non-affected limb that is not discernible by ABI measurements at 9 

rest. Finally, it is possible that the non-affected limb may be suffering overuse injury 10 

because of an attempt by the PAD patient to protect the symptomatic limb or in contrast, 11 

the non-affected limb may be deconditioned because of the limitations to ambulation 12 

posed by the affected limb. Regardless of the mechanism, it is clear that the non-affected 13 

limb in unilateral PAD is not simply an innocent bystander. 14 

In summary, biomechanical analysis using joint torques and powers indicates 15 

significant abnormalities in the gait of non-affected and affected limbs in both PAD-PF 16 

and PAD-P conditions for patients with unilateral claudication. Our research work points 17 

to significant calf muscle dysfunction leading to an inability to propel the body as the 18 

primary gait deficit in PAD patients. Additional impairments at the knee and hip affecting 19 

weight transfer are also present. These findings demonstrate that advanced biomechanical 20 

analysis correlates with basic laboratory data and can be used to fully define the 21 

underlying gait handicap of PAD patients.  Advanced biomechanical gait analysis 22 

therefore holds the potential to assess in a limited number of patients the effect of 23 
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exercise walking programs, medication regimens and revascularization to determine the 1 

degree to which the gait dysfunction of claudicating patients is ultimately recoverable. 2 

3 



 

  

16 

ACKNOWLEDGEMENTS 1 

Support for this work was provided by funds from the Alexander S. Onassis Public 2 

Benefit Foundation to PK, the American Geriatrics Society’s Hartford Foundation Dennis 3 

W. Jahnigen Award to JMJ, the Nebraska Research Initiative to NS, the Lifeline 4 

Programs of the American Vascular Association to IIP and the NIH to NS 5 

(K25HD047194) and IIP (K08HL079967). 6 



 

  

17 

REFERENCES  

1. Hooi JD, Kester AD, Stoffers HE, Overdijk MM, van Ree JW, Knottnerus JA. 

Incidence of and risk factors for asymptomatic peripheral arterial occlusive 

disease: a longitudinal study. Am J Epidemiol. 2001;153(7):666-672. 

2. Atkins LM, Gardner AW. The relationship between lower extremity functional 

strength and severity of peripheral arterial disease. Angiology. 2004;55(4):347-

355. 

3. Gardner AW, Clancy RJ. The relationship between ankle-brachial index and 

leisure-time physical activity in patients with intermittent claudication. Angiology. 

2006;57(5):539-545. 

4. Liles DR, Kallen MA, Petersen LA, Bush RL. Quality of life and peripheral 

arterial disease. J Surg Res. 2006;136(2):294-301. 

5. Regensteiner JG, Stewart KJ. Established and evolving medical therapies for 

claudication in patients with peripheral arterial disease. Nat Clin Pract 

Cardiovasc Med. 2006;3(11):604-610. 

6. McDermott MM, Ohlmiller SM, Liu K, Guralnik JM, Martin GJ, Pearce WH, 

Greenland P. Gait alterations associated with walking impairment in people with 

peripheral arterial disease with and without intermittent claudication. Journal of 

the American Geriatrics Society. 2001;49(6):747-754. 

7. Crowther RG, Spinks WL, Leicht AS, Quigley F, Golledge J. Relationship 

between temporal-spatial gait parameters, gait kinematics, walking performance, 

exercise capacity, and physical activity level in peripheral arterial disease. J Vasc 

Surg. 2007;45(6):1172-1178. 



 

  

18 

8. McDermott MM, Mehta S, Liu K, Guralnik JM, Martin GJ, Criqui MH, 

Greenland P. Leg symptoms, the ankle-brachial index, and walking ability in 

patients with peripheral arterial disease. J Gen Intern Med. 1999;14(3):173-181. 

9. Scherer SA, Bainbridge JS, Hiatt WR, Regensteiner JG. Gait characteristics of 

patients with claudication. Arch Phys Med Rehabil. 1998;79(5):529-531. 

10. Crowther RG, Spinks WL, Leicht AS, Quigley F, Golledge J. Lower limb 

movement variability in patients with peripheral arterial disease. Clin Biomech 

(Bristol, Avon). 2008;23(8):1080-1085. 

11. Kaufman KR, Hughes C, Morrey BF, Morrey M, An KN. Gait characteristics of 

patients with knee osteoarthritis. Journal of Biomechanics. 2001;34(7):907-915. 

12. McGibbon CA, Krebs DE. Compensatory gait mechanics in patients with 

unilateral knee arthritis. The Journal of rheumatology. 2002;29(11):2410-2419. 

13. Centomo H, Amarantini D, Martin L, Prince F. Kinematic and kinetic analysis of 

a stepping-in-place task in below-knee amputee children compared to able-bodied 

children. IEEE transactions on neural systems and rehabilitation engineering : a 

publication of the IEEE Engineering in Medicine and Biology Society. 

2007;15(2):258-265. 

14. Loizeau J, Allard P, Duhaime M, Landjerit B. Bilateral gait patterns in subjects 

fitted with a total hip prosthesis. Archives of Physical Medicine and 

Rehabilitation. 1995;76(6):552-557. 

15. DeVita P, Hortobagyi T, Barrier J. Gait biomechanics are not normal after 

anterior cruciate ligament reconstruction and accelerated rehabilitation. Med Sci 

Sports Exerc. 1998;30(10):1481-1488. 



 

  

19 

16. DeVita P, Hortobagyi T. Age causes a redistribution of joint torques and powers 

during gait. Journal of applied physiology (Bethesda, Md.: 1985). 

2000;88(5):1804-1811. 

17. Kerrigan DC, Todd MK, Della Croce U, Lipsitz LA, Collins JJ. Biomechanical 

gait alterations independent of speed in the healthy elderly: evidence for specific 

limiting impairments. Archives of Physical Medicine and Rehabilitation. 

1998;79(3):317-322. 

18. McGibbon CA, Krebs DE. Age-related changes in lower trunk coordination and 

energy transfer during gait. Journal of neurophysiology. 2001;85(5):1923-1931. 

19. Riley PO, DellaCroce U, Kerrigan DC. Effect of age on lower extremity joint 

moment contributions to gait speed. Gait & posture. 2001;14(3):264-270. 

20. Chen SJ, Pipinos I, Johanning J, Radovic M, Huisinga JM, Myers SA, Stergiou N. 

Bilateral claudication results in alterations in the gait biomechanics at the hip and 

ankle joints. J Biomech. 2008;41(11):2506-2514. 

21. Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity 

kinematics during level walking. Journal Of Orthopaedic Research: Official 

Publication Of The Orthopaedic Research Society. 1990;8(3):383-392. 

22. Houck J, Yack HJ, Cuddeford T. Validity and comparisons of tibiofemoral 

orientations and displacement using a femoral tracking device during early to mid 

stance of walking. Gait & Posture. 2004;19(1):76-84. 

23. Kirby RL, Marlow RW. Reliability of walking endurance with an incremental 

treadmill test. Angiology. 1987;38(7):524-529. 



 

  

20 

24. DiBianco R, Morganroth J, Freitag JA, Ronan JA, Jr, Lindgren KM, Donohue DJ, 

Larca LJ, Chadda KD, Olukotun AY. Effects of nadolol on the spontaneous and 

exercise-provoked heart rate of patients with chronic atrial fibrillation receiving 

stable dosages of digoxin. American Heart Journal. 1984;108(4 Pt 2):1121-1127. 

25. Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes 

in the fit and healthy elderly. Phys Ther. 1990;70(6):340-347. 

26. Scott-Pandorf MM, Stergiou N, Johanning JM, Robinson L, Lynch TG, Pipinos 

II. Peripheral arterial disease affects ground reaction forces during walking. 

Journal of vascular surgery : official publication, the Society for Vascular 

Surgery [and] International Society for Cardiovascular Surgery, North American 

Chapter. 2007;46(3):491-499. 

27. Kuo HK, Yu YH. The relation of peripheral arterial disease to leg force, gait 

speed, and functional dependence among older adults. J Gerontol A Biol Sci Med 

Sci. 2008;63(4):384-390. 

28. McDermott MM, Tian L, Ferrucci L, Liu K, Guralnik JM, Liao Y, Pearce WH, 

Criqui MH. Associations between lower extremity ischemia, upper and lower 

extremity strength, and functional impairment with peripheral arterial disease. J 

Am Geriatr Soc. 2008;56(4):724-729. 

29. Scott-Okafor HR, Silver KK, Parker J, Almy-Albert T, Gardner AW. Lower 

extremity strength deficits in peripheral arterial occlusive disease patients with 

intermittent claudication. Angiology. 2001;52(1):7-14. 



 

  

21 

30. Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar 

flexors to support, forward progression and swing initiation during walking. 

Journal of Biomechanics. 2001;34(11):1387-1398. 

31. Celis R, Pipinos, II, Scott-Pandorf MM, Myers SA, Stergiou N, Johanning JM. 

Peripheral arterial disease affects kinematics during walking. J Vasc Surg. 

2009;49(1):127-132. 

32. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, Dodd SL. The 

myopathy of peripheral arterial occlusive disease: part 1. Functional and 

histomorphological changes and evidence for mitochondrial dysfunction. 

Vascular and endovascular surgery. 2007;41(6):481-489. 

33. Pipinos II, Judge AR, Selsby JT, Zhu Z, Swanson SA, Nella AA, Dodd SL. The 

myopathy of peripheral arterial occlusive disease: Part 2. Oxidative stress, 

neuropathy, and shift in muscle fiber type. Vascular and endovascular surgery. 

2008;42(2):101-112. 

34. Pipinos II, Judge AR, Zhu Z, Selsby JT, Swanson SA, Johanning JM, Baxter BT, 

Lynch TG, Dodd SL. Mitochondrial defects and oxidative damage in patients 

with peripheral arterial disease. Free radical biology & medicine. 

2006;41(2):262-269. 

35. Pipinos II, Sharov VG, Shepard AD, Anagnostopoulos PV, Katsamouris A, Todor 

A, Filis KA, Sabbah HN. Abnormal mitochondrial respiration in skeletal muscle 

in patients with peripheral arterial disease. Journal of vascular surgery : official 

publication, the Society for Vascular Surgery [and] International Society for 

Cardiovascular Surgery, North American Chapter. 2003;38(4):827-832. 



 

  

22 

36. Pipinos II, Shepard AD, Anagnostopoulos PV, Katsamouris A, Boska MD. 

Phosphorus 31 nuclear magnetic resonance spectroscopy suggests a mitochondrial 

defect in claudicating skeletal muscle. Journal of vascular surgery : official 

publication, the Society for Vascular Surgery [and] International Society for 

Cardiovascular Surgery, North American Chapter. 2000;31(5):944-952. 

37. Weber F, Ziegler A. Axonal neuropathy in chronic peripheral arterial occlusive 

disease. Muscle & nerve. 2002;26(4):471-476. 

38. Bhat HK, Hiatt WR, Hoppel CL, Brass EP. Skeletal muscle mitochondrial DNA 

injury in patients with unilateral peripheral arterial disease. Circulation. 

1999;99(6):807-812. 

39. Brass EP, Wang H, Hiatt WR. Multiple skeletal muscle mitochondrial DNA 

deletions in patients with unilateral peripheral arterial disease. Vasc Med. 

2000;5(4):225-230. 

 

 



Fi
gu

re
 #

1 
PR

IN
T

C
lic

k 
he

re
 to

 d
ow

nl
oa

d 
hi

gh
 re

so
lu

tio
n 

im
ag

e



Fi
gu

re
 #

2a
 P

R
IN

T
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
 #

2b
 P

R
IN

T
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
 #

3a
 P

R
IN

T
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
 #

3b
 P

R
IN

T
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
 #

4a
 P

R
IN

T
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Fi
gu

re
 #

4b
 P

R
IN

T
C

lic
k 

he
re

 to
 d

ow
nl

oa
d 

hi
gh

 re
so

lu
tio

n 
im

ag
e



Table 1 
 

Clinical characteristics Control (N=20 
limbs)  

PAD (N=24 
limbs) p-value 

Age (years) 66.27±9.22 61.69 10.53 ns 

Body mass (kg) 77.89±10.65 84.65±20.24 ns 

Body height (m) 1.74±0.08 1.72 ±0.08 ns 

Disease duration (years) 0 6.25 ± 3.84 N/A 

ABI    

Non-Affected Limb 
Right for Controls 

1.1±0.12 0.93±0.12 ns 

Affected limb  

Left for Controls 

1.1±0.08 
 

0.59±0.25 <0.05 

Smokers, n (%) 8 (80)  7 (58.3) ns 

Hypertension, n (%) 0 (0) 5 (41.7) <0.05 

Diabetes mellitus, n (%) 0 (0) 1 (8.3) ns 

Dyslipidemia, n (%) 0 (0) 9 (75) <0.05 

BMI 25.60±2.94 27.42±4.44 ns 

 

Table 1 PRINT



Table 2 

 
Control 
 (N=20 limbs)  

Peripheral 
Arterial Disease 
(N=24 limbs) 

   

  

Pain Free (PAD-PF) Pain (PAD-P)  

Non-Affected 
Limb 

Affected Limb  Non-Affected 
Limb 

Affected Limb  

ADT -0.36 0.09 -0.38 0.20 -0.29 0.13 -0.42 0.30 -0.23 0.15d 

APT 1.31 0.28 1.32 0.16e 1.18 0.25b,e 1.27 0.18 1.11 0.27d 

KET 0.82 0.18 0.61 0.30 0.58 0.27b 0.69 0.41 0.59 0.37d 

KFT -0.14 0.12 -0.23 0.21 -0.14 0.22 -0.20 0.28 -0.13 0.26 

HET 0.98 0.49 0.83 0.33 0.72 0.15 0.80 0.23 0.78 0.24 

HFT -0.95 0.21 -0.72 0.39 -0.96 0.51 -0.76 0.43 -0.90 0.65 
 

Table 2 PRINT



Table 3 
 
 Control 

 (N=20 limbs) 

Peripheral 
Arterial 
Disease (N=24 
limbs) 

 

 

 
 

Pain Free (PAD-PF) Pain (PAD-P) 

 Non-Affected 
Limb 

Affected Limb  Non-Affected 
Limb 

Affected Limb  

A1 -0.52 0.21 -0.37 0.35 -0.43 0.18 -0.53 0.16 -0.43 0.15 

A2 4.00 0.88 2.65 0.92a,e 2.49 0.46 b,e 2.39 0.67c 2.05 0.59d 

K1 -0.73 0.22 -0.52 0.40a -0.36 0.21b -0.75 0.74 -0.36 0.32d 

K2 0.62 0.25 0.31 0.23a,e 0.25 0.25 b,e 0.41 0.28c 0.26 0.31d 

K3 -0.73 0.23 -0.67 0.57 -1.09 1.05 -0.66 0.53 -1.00 1.20 

H1 0.42 0.20 0.39 0.21 0.38 0.20 0.41 0.20 0.31 0.29 

H2 -0.78 0.23 -0.65 0.36a -0.68 0.35 -0.58 0.54c -0.68 0.45 

H3 0.76 0.29 0.77 0.37 0.78 0.51 0.57 0.42 0.62 0.55 
 

Table 3 PRINT



Figure 1. An illustration of the stance phase of walking with the dominant flexor and 

extensor muscle groups that are involved in the three phases is produced. The dominant muscle 

groups are identified in red if they contract concentrically and in purple if they contract 

eccentrically.  

A) Early stance phase lasts from ipsilateral heel strike to contralateral toe off thus 

covering the first double support phase (initial 20% of stance). The right leg is accepting 

majority of body weight as it descends from previously being in single support on the left leg. In 

this phase the right hip extensors concentrically contract to extend the hip, the knee extensors 

eccentrically contract to allow the knee to bend and the ankle dorsiflexors eccentrically contract 

to maintain ankle dorsiflexion. 

B) Mid-stance phase lasts from contralateral (here left) toe off until contralateral heel 

strike. During single support the body is at its highest point over the extended ipsilateral leg. The 

body has maximum potential energy preparing to fall forward for the next double support. 

Limited muscular contractions are needed during this phase except when the knee extensors 

contract concentrically to extend the knee and straighten the leg. 

C) Late stance lasts from contralateral heel strike to ipsilateral toe off. It is the final 20% 

of stance and is the second double support phase. In this phase the body is propelled forward 

onto the extended left leg mainly by the action of the ankle plantarflexors. Functionally, these 

muscles contract concentrically and accelerate the leg and the trunk forward and upward over the 

left leg thus providing forward progression and weight support.  

Figure Legend 1 PRINT



Figure 2. The ensemble-average joint torque curves of the affected limb for the PAD patients 

(PAD-PF and PAD-P; N=24 limbs) and the healthy controls (Control; N=20 limbs) during the 

stance phase for the (a) ankle and (b) knee joints. Note:  ADT ankle dorsiflexion torque, APT 

ankle plantar flexion torque, KET extensor torque, KFT flexor torque. Torques are normalized to 

body mass in kg. Error bars represent the standard deviation of the mean values. 

Note:      b p < .05, significant differences between groups (PAD-PF Affected limb vs. Control). 

d p < .05, significant differences between groups (PAD-P Affected limb vs. Control). 

 e p < .05, significant differences between testing conditions ( PAD-PF vs. PAD-P). 
 

Figure Legend 2 PRINT



Figure 3. The ensemble-average joint power curves of the affected limb for the PAD patients 

(PAD-P and PAD-PF; N=24 limbs) and the healthy controls (Control; N=20 limbs) during the 

stance phase for the (a) ankle and (b) knee joints. Note:  A1 ankle power absorption in late 

midstance, A2 ankle power generation in late stance, K1 knee power absorption in early stance, 

K2 knee power generation in early stance, K3 knee power absorption in late stance. Error bars 

represent the standard deviation of the mean values.   

Note:      b p < .05, significant differences between groups (PAD-PF Affected limb vs. Control). 

d p < .05, significant differences between groups (PAD-P Affected limb vs. Control). 

 e p < .05, significant differences between testing conditions ( PAD-PF vs. PAD-P). 
 

Figure Legend 3 PRINT



Figure 4. The ensemble-average joint power curves of the non-affected limb for the PAD 

patients (PAD-PF and PAD-P; N=24 limbs) and the healthy controls (Control; N=20 limbs) 

during the stance phase for the (a) ankle and (b) knee, joints. Note:  A1 ankle power absorption 

in late midstance, A2 ankle power generation in late stance, K1 knee power absorption in early 

stance, K2 knee power generation in early mid-stance, K3 knee power absorption in late stance. 

Error bars represent the standard deviation of the mean values. 

Note:      a p < .05, significant differences between groups (PAD-PF, Non-affected limb vs. Control).  

c p < .05, significant differences between groups (PAD-P, Non-affected limb vs. Control). 

 e p < .05, significant differences between testing conditions ( PAD-PF vs. PAD-P). 
 

Figure Legend 4 PRINT



Baseline characteristics of Peripheral Arterial Disease (PAD) patients and healthy controls. 
 
[below table] 
Note: ABI: ankle brachial index; BMI: body mass index; ns: statistically non-significant; 

N/A:non applicable; Values are presented as means ± standard deviations. 

 

Table Legend 1 PRINT



Group means and standard deviations for joint torques of the ankle, knee and hip joint for 

Peripheral Arterial Disease (PAD) and control groups. The units for all values are N*m/kg. 

 
[below the table] 

Note:     a p < .05, significant differences between groups (PAD-PF, Non-Affected limb vs. Control).  

b p < .05, significant differences between groups (PAD-PF, Affected limb vs. Control). 

c p < .05, significant differences between groups (PAD-P, Non-Affected limb vs. Control). 

d p < .05, significant differences between groups (PAD-P, Affected limb vs. Control). 

 e p < .05, significant differences between testing conditions (PAD-PF vs. PAD-P). 

Table Legend 2 PRINT



Group means and standard deviations for joint powers of the ankle, knee and hip joint for 

Peripheral Arterial Disease (PAD) and control groups. The units for all values are Watts/kg. 

[below the table] 

Note:     a p < .05, significant differences between groups (PAD-PF, Non-Affected limb vs. Control).  

b p < .05, significant differences between groups (PAD-PF, Affected limb vs. Control). 

c p < .05, significant differences between groups (PAD-P, Non-Affected limb vs. Control). 

d p < .05, significant differences between groups (PAD-P, Affected limb vs. Control). 

 e p < .05, significant differences between testing conditions ( PAD-PF vs. PAD-P). 
 

Table Legend 3 PRINT


	Joint torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication
	Recommended Citation
	Authors

	Koutakis_ Joint torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication.pdf

