
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Information Systems and Quantitative Analysis
Faculty Publications

Department of Information Systems and
Quantitative Analysis

2011

Overview and Guidance on Agile Development in Large Overview and Guidance on Agile Development in Large

Organizations Organizations

Jordan B. Barlow
Indiana University

Justin Scott Giboney
University of Arizona

Mark Jeffrey Keith
West Texas A&M University

David W. Wilson
Washington State University

Ryan Schuetzler
University of Nebraska at Omaha, ryan.schuetzler@byu.edu

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unomaha.edu/isqafacpub

 Part of the Databases and Information Systems Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Barlow, Jordan B.; Giboney, Justin Scott; Keith, Mark Jeffrey; Wilson, David W.; Schuetzler, Ryan; Lowry,
Paul Benjamin; and Vance, Anthony, "Overview and Guidance on Agile Development in Large
Organizations" (2011). Information Systems and Quantitative Analysis Faculty Publications. 31.
https://digitalcommons.unomaha.edu/isqafacpub/31

This Article is brought to you for free and open access by
the Department of Information Systems and Quantitative
Analysis at DigitalCommons@UNO. It has been accepted
for inclusion in Information Systems and Quantitative
Analysis Faculty Publications by an authorized
administrator of DigitalCommons@UNO. For more
information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/isqafacpub
https://digitalcommons.unomaha.edu/isqafacpub
https://digitalcommons.unomaha.edu/isqa
https://digitalcommons.unomaha.edu/isqa
https://digitalcommons.unomaha.edu/isqafacpub?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/isqafacpub/31?utm_source=digitalcommons.unomaha.edu%2Fisqafacpub%2F31&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Authors Authors
Jordan B. Barlow, Justin Scott Giboney, Mark Jeffrey Keith, David W. Wilson, Ryan Schuetzler, Paul
Benjamin Lowry, and Anthony Vance

This article is available at DigitalCommons@UNO: https://digitalcommons.unomaha.edu/isqafacpub/31

https://digitalcommons.unomaha.edu/isqafacpub/31

Volume 29 Article 2

Overview and Guidance on Agile Development in Large Organizations

Jordan B. Barlow

Operations and Decision Technologies Department, Kelley School of Business, Indiana University

jordy.barlow@gmail.com

Justin Scott Giboney

Department of Management Information Systems, Eller College of Management, University of Arizona

Mark Jeffrey Keith

Department of Computer Information and Decision Management, West Texas A&M University

David W. Wilson

Department of Entrepreneurship and Information Systems, Washington State University

Ryan M. Schuetzler

Department of Management Information Systems, Eller College of Management, University of Arizona

Paul Benjamin Lowry

Department of Information Systems, City University of Hong Kong

Anthony Vance

Information Systems Department, Marriott School of Management, Brigham Young University

A continual debate surrounds the effectiveness of agile software development practices. Some organizations adopt
agile practices to become more competitive, improve processes, and reduce costs. Other organizations are skeptical
about whether agile development is beneficial. Large organizations face an additional challenge in integrating agile
practices with existing standards and business processes. To examine the effects of agile development practices in
large organizations, we review and integrate scientific literature and theory on agile software development. We
further organize our theory and observations into a framework with guidelines for large organizations considering
agile methodologies. Based on this framework, we present recommendations that suggest ways large organizations
with established processes can successfully implement agile practices. Our analysis of the literature and theory
provides new insight for researchers of agile software development and assists practitioners in determining how to
adopt agile development in their organizations.

Keywords: agility, agile development, software development, life cycle, large organizations, waterfall method,
extreme programming, Scrum, informal communication, interdependencies, coordination

Volume 29, Article 2, pp. 25-44, July 2011

Overview and Guidance on Agile Development in Large Organizations

Overview and Guidance on Agile Development in Large Organizations

26
Volume 29 Article 2

I. INTRODUCTION

A continual debate surrounds agile software development practices. Agile software development refers to a
development methodology that uses iterative development, frequent consultation with the customer, small and
frequent releases, and rigorously tested code [Cao et al., 2009]. Some organizations adopt agile practices to
become more competitive, improve processes, and reduce costs. Other organizations are skeptical about the
benefits of agile development. Large organizations face an additional challenge in the integration of agile practices
with existing standards and business processes.

Software developers created agile development largely to address the weaknesses of plan-based methods of
software development, such as the influential waterfall method [Royce, 1970]. The primary weakness of plan-based
methods is a lack of responsiveness to change. Due to the sequential nature of plan-based development,
developers using this methodology establish requirements and plan projects early in the process, resulting in
reduced flexibility in subsequent phases of development. However, project requirements often change significantly
between initiation and completion. Agile development enables organizations to adapt to these dynamic conditions,
facilitating more flexible development [Cockburn and Highsmith, 2001].

However, critics doubt whether the benefits of agile development outweigh the costs [Ambler, 2008; Rising and
Janoff, 2000; Selic, 2009]. Most of these critics point specifically to a lack of focus on planning and implementation,
with too much focus on coding [Ambler, 2008]; a lack of needed documentation that often results from decreased
formal communication [Selic, 2009]; and implementation failures in larger, more complex projects [Rising and Janoff,
2000].

To examine this debate from the viewpoint of large organizations, we review and integrate literature on agile
software development. We present a brief description of agile software development, its general strengths and
weaknesses, and the organizational changes required to implement agile methods. Many research articles explain
the benefits and weaknesses of agile development in small or simulated environments. However, little research
examines the impact of agile development on large organizations. In addition, few researchers use a theory-based
approach to examine the reasons for success or failure of agile techniques in large organizations. In this article, we
present a theory-based framework and recommendations that suggest ways large organizations with established
processes can successfully implement agile practices.

Our summary of the literature, as well as our theory-based framework and associated recommendations, provide
insight for researchers of agile software development and assist practitioners in determining how to adopt agile
development in their organizations. We elaborate upon situations in which either agile or traditional methods might
be better suited. Further, we recommend the implementation of an agile-traditional hybrid method. Hybrid methods
allow traditional software development teams to implement some practices of agile development to build on the
strengths of their existing methods.

This article is organized as follows: Section II reviews the background of agile software development. Section III
discusses the theoretical basis for outcomes of agile methodologies. Section IV covers the theory-based implications
of agile development methods in large organizations. Section V presents our framework for choosing an agile
software development methodology depending on project conditions. Section VI addresses the suitability of and
implementation strategy for agile development methods specific to large organizations. Finally, Section VII suggests
ideas for future research, and Section VIII provides conclusions.

II. BACKGROUND ON AGILE SOFTWARE DEVELOPMENT

Development life cycles define the way a group develops software. Life cycles can determine the project leader, the
number of participants, the frequency and formality of team communication, the primary objective, and other facets
of system development. Because a team’s particular life cycle determines so much of what happens during a
project, developers often seek to improve life cycle methods or to implement more effective methods.

One major problem developers often face is the need to adapt to changes [Austin and Devin, 2009]. Requirements
often change after a project begins, and customers and sponsors often change their expectations for the final
product. Traditional development methods usually include provisions for responding to changing requirements, but

Volume 29 Article 2
27

these provisions take time and can be costly. As a result, many developers adapt life cycles that allow increased
agility.

Researchers define agility in various ways, and views on the concept often conflict [Sarker et al., 2009]. Information
Systems literature defines agility as ―the continual readiness of an [Information Systems development] method to
rapidly or inherently create change, proactively or reactively embrace change, and learn from change while
contributing to perceived customer value (economy, quality, and simplicity), through its collective components and
relationships with its environment‖ [Conboy, 2009, p. 377]. This idea of creating more agile methods became widely
popular in the 1990s [Austin and Devin, 2009].

In 2001, a group of software developers met to establish the primary principles of agile development, which we
summarize in Table 1. In each case, agile developers consider the first item listed as more valuable than the
second. For example, proponents of agile methods value documentation, but not as highly as they value working
software: ―We embrace documentation, but not hundreds of pages of never-maintained and rarely-used tomes‖
[Beck et al., 2001].

Table 1: Agile Principles [Beck et al., 2001]

Agile Principle Description
Customer collaboration over contract negotiation Reduce formalities to start and finish faster, with

a strong focus on the customer throughout the
development process

Individuals and interactions over processes and
tools

Enhance communication within teams and
barrier removal

Working software over comprehensive
documentation

Developers spend more time coding and testing
than they do writing extensive documentation

Responding to change over following a plan Give teams the freedom to make changes and
adjust to project needs

While some developers seek to integrate agile principles in existing methodologies, others create formalized agile
life cycles, the most popular being Scrum and eXtreme Programming (XP) [Conboy, 2009]. Each agile methodology
employs unique practices while maintaining focus on the core principles shown in Table 1. For example, Scrum
focuses on project management aspects of development, using short, frequent team meetings to assess progress.
Conversely, XP focuses on the development process itself by prescribing specific techniques such as pair
programming.

Agile development methodologies are based on ―intensely iterative processes‖ [Austin and Devin, 2009, p. 463],
meaning that teams analyze, design, and code rigorously in short intervals; meet with the customer to evaluate their
progress and get feedback; and start the cycle again. This method contrasts sharply with traditional methods, where
a long design phase precedes a long coding phase, which in turn precedes a long testing phase.

Boehm and Turner [2005] state that a truly agile process must also be self-organizing and emergent. Self-organizing
means that teams make decisions through informal communication and frequent, short meetings rather than relying
on one owner to guide the project. Emergent in agile development indicates that requirements emerge during the
course of the project, with almost no time spent on design before coding starts.

The primary difference between agile and traditional development paradigms is that agile paradigms focus on
adapting well to changing project requirements [Austin and Devin, 2009]. Advocates of plan-based methods argue
that time spent on design is key to developing a good system that meets specifications, and that reduced flexibility is
a necessary trade-off. In contrast, proponents of agile methods argue that a system developed using an iterative
method can still meet all requirements and proper design standards, while frequent iterations allow for repeated
refinement and a final product that is closer to customers’ actual desires.

Strengths and Weaknesses

A large body of literature highlights the strengths of agile methods. First, as mentioned, agile methods allow flexibility
and adaptability [Austin and Devin, 2009]. Because the design phase is not formal and programmers work in short
intervals on smaller milestones, significant requirements of the project can change as development proceeds without
much loss of productivity.

Agile methods also promote a focus on customer needs. Because of the adaptability of agile methods, customers’
requested changes in plans or requirements can often be included in the next iteration of development. Practitioners

28
Volume 29 Article 2

note that agile methods help them stay focused on customer needs and changing desires throughout the project
[Cockburn and Highsmith, 2001].

Agile methods can also often lead to faster development, depending on project size and actualization of project
risks. Without a detailed design phase or documentation throughout the project, the team can focus on the act of
development—coding and testing the product. In a small- or medium-sized project where teams develop software
with few iterations, agile development leads to a shorter development cycle than do plan-based methods.

Although agile methods are popular and successfully applied in small- and medium-sized projects, critics are quick
to point out weaknesses of the methods. These weaknesses are often more influential in large or complex projects,
or in large, structured firms. For example, AG Communication Systems, a company with development teams ranging
in size from two to several hundred members, found that while small teams performed well with Scrum, agile
methods were not as effective for large teams [Rising and Janoff, 2000].

With agile methods, development begins before the requirements are well defined. In complex and/or large projects,
this approach is potentially crippling, because important features might be forgotten or misunderstood, requiring
additional work later in the project. Likewise, time and resources can be hard to estimate without a detailed plan.
The short iterations of agile development are intended to provide adaptability and customer focus. However, without
a detailed planning phase, a fairly accurate estimate of resources and time requirements is virtually impossible,
since the customer is enabled to add or remove features during the development process. For small- or medium-
sized projects, this uncertainty is an acceptable risk. For large or complex projects, the magnitude of uncertainty is
greater, and constitutes a prohibitive risk for most organizations.

In large projects, agile methods do not promote formal lines of communication. One study pointed to the benefits of
agile development in facilitating good communication among project team members, but also noted that, when using
agile methods ―in larger development situations involving multiple external stakeholders, a mismatch of adequate
communication mechanisms can sometimes even hinder the communication‖ [Pikkarainen et al., 2008, p. 303].

In addition to decreased formal communication, scant documentation can be particularly detrimental to large or
complex projects. Software products require periodic maintenance, and documentation facilitates maintenance.
Many smaller projects, on the other hand, require less formal updating than large projects, and as such, are not as
dependent on careful, detailed documentation.

We summarize the strengths and weaknesses of agile development in Table 2. Clearly, both agile and traditional
approaches have strengths and weaknesses, and a single approach is not suited for every development project.
Agile methods’ strengths generally benefit smaller, less complex projects, and their weaknesses surface most
evidently in large, complex projects. In these large, complex projects, the weaknesses of traditional methods help to
mitigate risks associated with uncertainty and lack of structure. This article helps inform the decision, given a
project’s characteristics, of whether agile or traditional methods, or a combination of the two, would be best. Of
course, organizations cannot eliminate all the risks associated with project uncertainty. The goal is to mitigate risk
where possible, and to choose a method or methods that best accomplish that goal.

Table 2: Strengths and Weaknesses of Agile Development

Strengths Weaknesses
Focus on customer needs Does not promote formal communication
Adaptable to changing requirements Time and resources might be unknown

initially

Fast development time Requirements not well defined
 Lack of documentation

Research on Agile Methodologies

A number of academics and practitioners in the information systems community have discussed the increasing
popularity of agile development methods and the implications of that growth [e.g., Austin and Devin, 2009; Conboy,
2009; Sarker, 2009]. These articles seek to explore and explain the strengths and weaknesses of agile development
listed above. Many articles [e.g., Mangalaraj et al., 2009; Vidgen and Wang, 2009] are concerned with purely agile
methodologies such as XP and Scrum; other articles [e.g., Fitzgerald et al., 2006; Karlsson and Agerfalk, 2009; Port
and Bui, 2009] discuss hybrid methodologies, a combination of agile and plan-driven methods discussed later in the
paper. Appendix A contains a summary of literature concerning agile methodologies, along with the research
methodologies used. This summary provides guidance for future research concerning agile and hybrid
methodologies.

Volume 29 Article 2
29

A review of literature on agile methodologies in large organizations reveals that most research is narrative in detail
and consists mainly of case studies [Berger and Beynon-Davies, 2009; Boehm and Turner, 2005; Fitzgerald et al.,
2006]. While many case studies give helpful ideas and recommendations, these recommendations are not widely
generalizable because they lack theory development to fully explain their results. A small number of research
articles examine theoretical aspects of agile development [e.g., Pikkarainen et al., 2008; Sarker et al., 2009], but
these articles do not address our concern that agile methods have less success in large organizations or complex
projects.

One exception is research by Cao et al. [2009], who use adaptive structuration theory to examine successful
implementations of agile techniques by adapting development methodologies. Their study uses theory extensively to
examinine agile techniques in large projects and teams. However, our study takes a different approach. While Cao
et al. explain ways to adapt methodologies to specific circumstances, we aim to explain theoretically the reasons
why certain types of environments are more suitable for agile techniques than others. Additionally, by examining the
theory connected to success or failure in implementation of agile methods—particularly in large organizations or
complex projects—we are able to create a guiding framework to aid developers in deciding between agile, plan-
based, and hybrid software development methodologies.

III. THEORETICAL DEVELOPMENT

The need and motivation for agile techniques and their success or failure can be better understood by reviewing
relevant organizational theory on interdependence and coordination [Thompson, 1967]. In his theory on organization
structure, Thompson [1967] outlines three types of interdependencies and three types of coordination used to
manage those interdependencies. The types of interdependencies present in an organization and the costs of
interdependency coordination can determine, in part, the appropriate software development methodology.

Pooled interdependencies are those that arise from an individual being loosely grouped with other individuals and
sharing common risks. For example, insurance customers share a pooled interdependency with all other customers
because they each depend on a critical mass of contributors who can offset the risk of an accident. Similarly, every
member of a software development team shares a pooled interdependency with each other member. In order for the
project to be completed, every member must do his/her own part—though most members do not directly depend on
the inputs or outputs from every other team member. Pooled interdependencies are the least costly to coordinate.
Standardization is the coordination technique used to manage pooled interdependencies. For example, to ensure
that every project team member does his or her part, organizations or teams create standards for the number of
work hours required per week and the quality criteria for each team member’s output.

Sequential interdependencies result from the serial nature of workflow. In software development, some form of
analysis must take place before design, design before development, development before implementation, etc. In
other words, if team member A’s output is required as B’s input, then B has a sequential dependency on A. The cost
of coordinating sequential interdependencies is higher than for pooled interdependencies. Coordination of sequential
interdependencies requires planning that takes place repeatedly and uniquely for each project, as opposed to
standardization, which organizations establish once for several projects.

Last, reciprocal interdependencies exist when two or more parties depend on each other in both directions. Further,
the nature of the dependency might be unclear initially. For example, consider a sequential dependency in which
developer B requires the code produced by A. However, if B finds bugs or m istakes in A’s code, then the code must
be sent back to A. Therefore, a reciprocal dependency exists in which B depends on code from A, yet A also
depends on B to test and approve A’s output. Similarly, consider the scenario where developers A and B each
produce a software module. B’s module requires an input which is an output of A’s module. In this case, B depends
on A to produce an appropriate output and A depends on B to specify his/her required input.

Reciprocal interdependencies relate to high risk and uncertainty in project processes. For example, uncertainty in
the software development process can be the result of unexpected changes to scope or shortcomings of project
plans or competency of team members [Schmidt et al., 2001]. Reciprocal interdependencies typically require
coordination in the form of mutual adjustment, which refers to the ad hoc, informal communication that takes place
outside of formal project plans and often continually throughout a project [Thompson, 1967].

Plan-driven methodologies assume that project interdependencies are mostly sequential and can be managed
through coordination in the form of planning and review. However, many interdependencies in a software project life
cycle are actually reciprocal in nature. As a result, some of the time and cost spent on the creation of detailed plans
is wasted and a certain degree of mutual adjustment is required. Comparatively, agile methodologies assume the
opposite. They frame most or all project interdependencies as reciprocal and, therefore, adopt mutual adjustment to

30
Volume 29 Article 2

coordinate all project interdependencies. In other words, they de-emphasize formal, upfront planning and coordinate
ad hoc as the needs arise. However, according to structural contingency theory [Donaldson, 2001; Thompson,
1967], the unnecessary cost of using mutual adjustment rather than planning for sequential interdependencies is a
waste. Ideally, IT project teams would adopt methodologies using a hybrid coordination strategy that uses mutual
adjustment only for reciprocal interdependencies and planning for sequential interdependencies. Accordingly, we
base our recommendations on this theoretically ideal scenario.

In addition to using the appropriate coordination strategy for interdependencies that exist in the software
development process, project teams must have the infrastructure in place to support their chosen method of
coordination. For example, to make effective use of planning, project managers need to fully understand the nature
of all sequential interdependencies, the scope of the individual tasks required, and the resources needed to
complete those tasks. They must then be able to accurately estimate time and cost requirements, which requires a
significant degree of knowledge and experience on the part of those creating the plans. Without this implicit
knowledge, a system must exist to help new managers reuse the knowledge and experience developed from prior
projects.

Conversely, to make effective use of mutual adjustment through informal knowledge and information sharing, a
strong, well-connected social network must allow informal communication to take place. Thus, organizations should
minimize the costs of communication through conditions such as collocation of team members or availability of
appropriate communication media. This requirement explains, in part, why agile techniques are difficult with large
groups—the number of additional social network connections that must be created to adequately incorporate a team
member increases exponentially with each added actor to a network, as shown in Figure 1. In reality, most actors
will not need to collaborate with every other actor. However, without well-defined and predictable roles, scope, and
communication channels, every actor might potentially need to collaborate with any other actor.

3 actors = 3 relationship 4 actors = 6 relationships 5 actors = 10 relationships 6 actors = 15 relationships

Figure 1. The Complexity of Additional Social Network Actors

These theoretical implications are not enough to prescribe most managerial actions. Project managers might
assume that poor performance on software development projects is the result of a mismatch between their chosen
methodology and their project’s interdependencies. For example, in a plan-driven environment, poor performance
might not be the result of too much reciprocal interdependency but, rather, the result of a poor infrastructure to
support project planning. In this situation, the best decision would be to improve the planning infrastructure rather
than switch to an agile methodology. Similarly, poor performance in an agile environment might be the result of a
weak social network rather than the presence of sequential interdependencies. Thus, making the optimal decision
concerning a software development methodology requires an understanding of both the nature of a process’s
interdependencies as well as the ability to support the type of coordination required by that interdependency.

Information processing theory [Galbraith, 1973; Tushman and Nadler, 1978] posits that a firm’s performance is
based on achieving a ―fit‖ between its information processing needs and its information processing capabilities. The
uncertainty and interdependencies associated with core business processes generate information processing needs.
An organization’s information processing capabilities stem from a variety of sources, including its information
technologies, formal organization structure, and ability to support informal coordination.

If an organization’s information processing needs are low, its information systems and formal structure should be
designed to support coordination in the form of planning and standardization. If information processing needs are
high, managers should design information systems and formal structure to support informal communication and
collaboration and have plenty of available slack resources. A mismatch between an organization’s information

Volume 29 Article 2
31

processing needs and its associated support structure results in either poor information processing performance or
wasted resources (see Table 3).

Table 3: Information Processing Perspective [Galbraith, 1973; Tushman and Nadler, 1978]

 Information Processing Needs
High Low

Information Processing Capabilities
High Optimal Performance Wasted Resources
Low Low Performance Optimal Performance

Another potential mistake is to assume that the nature of project interdependencies is deterministic and
unchangeable. Interdependencies arise from uncertainty [Thompson, 1967]. Thus, changes in uncertainty and risk
within an organization lead to changes in interdependencies. Using the example of reciprocal interdependency
above, developer A is reciprocally interdependent with B due to uncertainty of whether the program module will
perform as planned without user testing. The uncertainty increases if the developers are inexperienced, less
knowledgeable, or unused to working together. This type of risk becomes a greater threat in large organizations
where turnover is high.

Organizations can minimize risk by optimizing the formal organization structure, creating self-contained, modular
tasks [Galbraith, 1973; Thompson, 1967], or selecting communication media appropriate to the task [Dennis et al.,
2008]. For example, managers should formally group those roles and individuals who naturally have the greatest
reciprocal interdependencies to reduce the cost of their coordination [Thompson, 1967]. If managers also
successfully modularize the software development process into independent, self-contained tasks, fewer reciprocal
interdependencies will arise between groups of developers. Finally, if managers properly group roles and modularize
tasks, they can select the appropriate information technology to support reciprocal coordination within groups and
sequential coordination between groups. Organizations that successfully execute these strategies might be able to
create preferable alternatives for software development methodology and supporting infrastructures.

IV. AGILE DEVELOPMENT IN MATURE ORGANIZATIONS

Most articles showcasing the success of agile life cycles use real-world scenarios as evidence, but these scenerios
are typically in small or low-risk projects, often in smaller organizations [e.g., Cockburn and Highsmith, 2001;
Kussmaul et al., 2004; Pikkarainen et al., 2008; Rising and Janoff, 2000]. The small projects described in these
articles enable teams to support an infrastructure that fits project interdependencies. For example, in one case
studied by Pikkarainen et al. [2008], the project team consisted of only six members. The tasks of team members in
creating a security management system were reciprocally interdependent, which required constant informal
communication between team members. Due to small team size, agile strategies such as open office spaces and
informal team meetings successfully supported project needs. Thus, agile development is best suited for small- or
medium-sized collocated teams [Boehm and Turner, 2003; Lindvall et al., 2004].

In contrast, large or complex projects and/or mature organizations are more problematic scenarios for implementing
agile methodologies. Because large, complex projects and organizations naturally have many interdependencies,
projects require a large amount of coordination. As a result, less costly forms of coordination—standardization and
planning—are easier to control in these situations. In other words, most people in large projects and organizations
find it hard to implement mutual adjustment coordination on a large scale. Because agile methods depend on mutual
adjustment, these methods are usually not preferred for large, complex projects or mature organizations.

A complication specific to mature organizations relates to IT governance frameworks such as ITIL, CMMI, or
COBIT.

1
These frameworks ensure alignment of IT with business goals and provide structure to IT development and

management processes. In a typical agile environment, structure established by a governance framework might
hinder project progress [Boehm and Turner, 2005]. We address this issue later in the article by suggesting the use of
hybrid methodologies.

Researchers and practitioners who study or implement agile methods in large, mature organizations document the
associated difficulties [e.g., Berger and Beynon-Davies, 2009; Boehm and Turner, 2005; Lindvall et al., 2004;
Pikkarainen et al., 2008; Pikkarainen and Passoja, 2005]. Proponents of agile methodologies make suggestions for
scaling agile methodologies to larger teams and projects [e.g., Cohn, 2007], but in our review of academic and
practitioner journals, we find no articles with complete success stories of agile life cycles in large organizations (see
Appendix A).

1
 Acronym definitions: Information Technology Infrastructure Library (ITIL), Capability Maturity Model Integration (CMMI), and Control Objectives

for Information and related Technology (COBIT).

32
Volume 29 Article 2

Clearly, agile development in its strictest form is likely not a good solution for many development initiatives at large,
mature organizations. As our reasoning suggests, teams and/or projects in the cases noted above were too large to
fully support the informal nature of agile development methods. Though these projects might have entailed
reciprocal dependencies, the infrastructure was not compatible for purely agile methodologies. In these cases where
reciprocal dependencies are present but agile methodologies are not feasible, a hybrid methodology, which we will
discuss in the next two sections, might be the best solution.

V. CHOOSING A METHODOLOGY

Based on our literature review and theoretical observations of difficulties with agile methods in large organizations,
we present a framework for choosing a methodology appropriate to an organization’s needs. Our framework is
presented in Figure 2, which illustrates the recommended methodology, coordination strategy, and investment
options to support coordination for project teams of varying size, interdependencies, and volatility. In Figure 2, we
use the term volatility to refer to the instability associated with turnover in the project team. Turnover becomes more
likely with drastic changes in the economy. When business is booming, companies hire more employees who need
time to adapt to the organization’s culture and develop appropriate skills. During recessions, many organizations will
lay off higher-paid employees in favor of new college graduates, whom they can pay smaller salaries. Therefore, we
differentiate our theoretical framework between high and low team volatility environments.

When most project interdependencies are sequential (Figure 2, Boxes A and D), regardless of team size or project
volatility, the project manager should adopt a plan-driven methodology and invest in technologies that will support
the project planning process. For example, knowledge management systems that can facilitate the easy storage and
retrieval of past project plans, resources, key performance indicators, successes, failures, etc. would be useful. New
project managers could step in, use documented information, and expect it to be a relatively accurate indicator of
future results. Experience and training are less important in this environment because project managers can easily
codify relevant project knowledge into the knowledge management system. Social network connectivity, which
facilitates informal knowledge sharing, is also less important because most necessary lines of communication can
be predicted, specified, and planned for upfront. As a result, team size is less relevant because coordination is
taking place through project planning rather than during implementation through informal social networks.

Similarly, formal organizational structures do not need to be based on grouping reciprocal interdependencies and
can follow other strategies, such as grouping high- and low-experienced individuals to promote knowledge creation
and transfer [Nonaka, 1994] or grouping those with similar roles to promote economies of scope [Panzar and Willig,
1981]. The only differentiator when most project interdependencies are sequential is that organizations with low
team volatility (Figure 2, Box D) might also consider investing in their project manager’s competence and tacit
knowledge. With fewer turnovers among project managers, organizations are more likely to realize the benefit of
investing in tacit knowledge development.

When the nature of project interdependencies is reciprocal (Figure 2, Boxes B, C, E, and F), our theoretical
recommendations vary depending on project team size and volatility. When project team size is small (Boxes C and
F), we recommend adopting an agile methodology. Agile methods, with iterative cycles and frequent communication
among team members and stakeholders, are well-suited to small teams with highly reciprocal interdependencies.
However, the approach that project managers should take to support frequent communication varies depending on
team volatility. If volatility is low (Box F), project managers should promote a strong social network for informal
knowledge sharing, leaving fewer disruptive changes to the network structure. For example, by analyzing team
members’ personalities, demographics, and values [Klein et al., 2004], project managers can group individuals who
are most likely to develop friendships and knowledge-sharing relationships. Similarly, project managers can improve
social network connectivity by creating groups in which members share similar tasks or by providing training on
appropriate types of collaborative technology [Keith et al., 2010].

If volatility is high (Figure 2, Box C), efforts to improve social networks might be unproductive due to turnover.
Therefore, a project manager’s best strategy for coordinating reciprocal interdependencies would be to group the
roles that are most likely to be reciprocally interdependent [Thompson, 1967]. In that case, whoever joins the team
to fill those roles will already be in close physical proximity and linked in the formal organizational structure.

Lastly, we recommend that organizations with mostly reciprocal interdependencies and large group sizes adopt a
hybrid methodology (Figure 2, Boxes B and E). As will be discussed in the next section, a hybrid methodology
requires managers to decompose project tasks into modules that are as independent as possible. Once the project
is modularized, the manager can use plan-driven techniques for any project modules that have mostly sequential
interdependencies, and agile techniques for the majority of modules that have reciprocal interdependencies. If such
projects can be successfully modularized, project managers can use plan-driven techniques to coordinate the
actions of sub-teams.

Volume 29 Article 2
33

Figure 2. Methodology Selection Framework

For example, service-orientation and cloud computing paradigms help developers compose IT systems from loosely
coupled, independent software modules or services [Bardhan et al., 2010]. If an organization can technically design
a new system in such a manner, the project manager can naturally decompose the software development process
around these modules. Project managers need not care whether each module is developed using a plan-driven or
agile methodology—only that each software module accepts the proper inputs and produces the required outputs
while meeting quality standards.

34
Volume 29 Article 2

Although we recommend a hybrid approach for large organizations with reciprocal interdependencies, the
appropriate infrastructure for supporting project coordination depends on the level of team volatility. When project
turnover is low (Box E), organizations can promote social network connectivity with a greater level of certainty that
their efforts will not be in vain. For the same reason, those organizations should also invest in their project
manager’s tacit knowledge development and general competence. Organizations should have both a well-connected
advice network as well as a strong transactive memory among team members. Transactive memory refers to how
well each project team member understands the strengths and expertise of other team members [Faraj and Lee,
2000]. In addition, project teams must have the ability and support structure to effectively share that knowledge and
expertise across time and space since it becomes increasingly difficult to collocate the entire project team as it
grows in size.

Conversely, when volatility is high (Box B), investment in social networks that are easily disrupted or in project
managers who frequently change might not be worthwhile. Rather, the organization should focus on codifying as
much knowledge as possible into a knowledge management system that will assist with project planning and
sourcing. Those organizations should also group the roles which are most likely to be reciprocally interdependent.
Importantly, the focus is on grouping roles rather than on individuals since actual employees who fill the roles
frequently change.

We base our framework and implications for practice on relevant theory on organizations, structure, and technology
[Galbraith, 1973; Thompson, 1967]. The key is to achieve an appropriate fit between interdependency, team size,
and team volatility and the selected software development methodology and supporting infrastructure. Many of the
salient factors identified in prior IT project research such as risk and coordination [Kraut and Streeter, 1995; Schmidt
et al., 2001], are also based on these basic concepts.

While our suggestions stem from theory, they certainly might vary depending on the real costs of the three options.
For instance, Fitzgerald et al. [2006] provide an example of a successful hybrid method adoption. The Intel Shannon
teams in the case were relatively small, between four and six members. Our framework suggests that hybrid
methods are most appropriate for larger teams, with smaller teams more suited for stricter forms of agile
development. However, in a manner similar to larger teams and projects, Intel Shannon appears to weight its need
for structure, formal communication, and compliance with governance frameworks more heavily than the benefits
promised by agile methodologies. The organization adopted only portions of agile methodologies, preserving many
of the risk-reducing strategies in its traditional methods. We intend our framework and recommendations to be a set
of guidelines that can be adapted to individual situations according to specific needs of the organization.

VI. HYBRID METHODOLOGIES IN LARGE ORGANIZATIONS

Because a purely agile methodology is not suited for general use at a large, mature organization, we recommend,
where appropriate, the implementation of a traditional/agile hybrid solution that will enable project teams to take
advantage of the organization’s maturity in software development while gaining advantages of agile development
such as adaptability to changing requirements.

Support for the combination of agile and traditional development methods continues to grow in academic literature
[Fitzgerald et al., 2006]. Hybrid solutions are often more successful than other methods in large organizations
[Boehm and Turner, 2003; Cao et al., 2004; Cao et al., 2009]. By introducing traditional/agile hybrid methods, large
organizations can take advantage of some benefits of agile development without abandoning the stability provided
by traditional methods.

Portions of agile methodologies are successful alternatives to traditional development practices when used in
situations described by our framework and theory. We base our recommendations primarily on the published results
of actual experiences of various software development units. Several studies [Harris et al., 2009; Maruping et al.,
2009a; Maruping et al., 2009b] show agile methods to be highly successful, particularly when requirements change
during the life of the project. As mentioned earlier, some successful implementations of particular agile methods
include projects at large organizations.

Examples of large companies that successfully use agile practices in hybrid life cycles for large projects include
Nokia [Kahkonen, 2004] and Motorola [Bowers et al., 2002]. Kahkonen [2004] describes in detail three development
styles used at Nokia in large projects. Nokia’s philosophy is that large projects require large numbers of team
members, but communication and coordination become difficult as teams get larger. The Kahkonen case highlights
ways in which a large organization implemented only portions of XP to mitigate some of the negative effects of this
increase in communication and coordination effort. This falls directly in line with our theoretical framework and

Volume 29 Article 2
35

recommendations, in which we suggest a hybrid methodology for projects or teams that are large or complex, but for
which some of the benefits of agile are still desired.

Large teams of developers in a highly structured department at Motorola implemented a hybrid life cycle using some
practices from the XP methodology [Bowers et al., 2002].

2
 This successful project contained fifteen different,

reciprocally dependent pieces—indicating a need for mutual adjustment coordination in the form of agile practices.
In the words of a Motorola employee, ―we took XP, adopted some practices, dropped others, and supplemented
others with practices from [traditional development methods]‖ (p. 100). To support the XP practices adopted, the
organization collocated employees, rearranging cubicles to more easily support pair programming. These changes
in infrastructure and methodology helped Motorola to achieve success on the project.

As noted previously, IT governance frameworks in place at large organizations might conflict with some agile
methodologies. Such an organization should use only a few agile methods rather than an entire life cycle. For
example, an organization of this type might benefit most from disregarding the agile principle of ―no ownership‖ while
implementing other agile methods, such as frequent iterations [Bowers et al., 2002]. This strategy allows existing
structure to stay in place while other methods help to achieve agility in the project.

One area especially affected by change in development methodologies is release management. Release
management is a major component of ITIL, and release management principles play a major role in other
frameworks as well. Because release management usually focuses on introducing new or updated software, working
with customers on planned releases and quality testing, agile methods alter the functions of the release
management team. Increased time is necessary for communication with customers because agile methodologies
require feedback from customers on a regular basis. In addition, quality testing is done on a more regular basis.

Several organizations already achieve process maturity in a governance framework while simultaneously using
some agile methods in their development life cycles. For example, Intel Shannon [Fitzgerald et al., 2006] was
assessed as a Level 2 on the Capability Maturity Model, which implies a measure of discipline and structure in the
development process. The company experienced significant growth in its workforce (i.e., high volatility).
Requirements analysis and actual development required constant collaboration between groups, implying that
project interdependencies were reciprocal in nature. As our framework would indicate, management at Intel
Shannon used a hybrid method, implementing various portions of both Scrum and XP methodologies. Managers
eliminated other portions of these strategies to create a custom blend of agile methods that worked within their
organizational structure—a strategy they termed method engineering.

Developing Hybrid Methodologies

As we have noted, development methodologies can include portions of agile methods in various ways. Because
each organization and project is different, we next review and describe general techniques for developing hybrid
methodologies. Organizations should first evaluate project size, volatility, and project interdependencies to
determine whether a hybrid method is appropriate. If so, they could choose to use one or more of the following
techniques to develop the actual methodology.

Adapted Base Methodology

Karlsson and Agerfalk [2009] suggest that organizations ―want to achieve a method that fits the situation and at the
same time aligns with the basic goals and values of the method‖ (p. 301). Teams choose a base methodology, and
then evaluate each component to determine if its purpose is congruent with the goals of the organization or project.
Pikkarainen and Passoja [2005] suggest a similar process. Again, the focus is on organizational goals and how agile
methods fit with them. Teams adopt components that are judged effective, while discarding those that do not fit.

Risk-based Methodology

Boehm and Turner [2003] propose a hybrid methodology based on risk assessment (see Figure 3). In this
methodology, organizations examine the risk that is present in the project and tailor their life cycle accordingly, using
the proposed model to fit needs more fully. Boehm [2010] later expanded this concept to include an incremental
commitment model that allows organizations to continually monitor the risk in projects and provides specified points
at which a project can be discontinued if risk gets too high.

2
 XP practices selectively adopted include shorter release times, continuous integration, pair programming, simple design, user-driven planning,

refactoring, and continuous testing. For an explanation of each of these XP strategies, see Beck and Andres, 2004.

36
Volume 29 Article 2

Figure 3. Methodology Selection Process
 [Boehm and Turner, “Using Risk to Balance Agile and Plan-Driven Methods,” IEEE Computer, 2003,

p. 60 (© 2003 IEEE) Used with permission]

Cost/Benefit Analysis

Austin and Devin [2009] suggest using a comparison of benefits and costs of specific agile practices and
implementing only those agile principles with a greater overall benefit than cost. Using a process similar to the risk-
based methodology, the organization evaluates a list of possible agile methods and sums the net benefit of using
agile methods in that particular case.

Agile Principles During Only Part of the Life Cycle

Another popular hybrid technique that organizations consider is to use selected practices from agile methodologies
while maintaining an overall plan-based development life cycle. For example, a manager could choose to use agile
methods such as team-owned decisions and frequent iterations during coding and testing phases [Ambler, 2008].
Projects would still include a full design phase while allowing programmers to enjoy benefits such as frequent
feedback and power to make decisions during coding and testing phases.

Volume 29 Article 2
37

Certain practices of agile development, such as pair programming, can be implemented without interrupting current
processes. Research shows that pair programming improves production [Bowers et al., 2002] and reduces code
defect density [Fitzgerald et al., 2006]. However, managers should avoid certain agile practices, such as reducing
documentation, that do not fit well with an organization’s size and culture [Selic, 2009]. Table 4 includes a list of
hybrid practices that are particularly suited for large projects and organizations. We adapted the table from research
by Cao et al. [2004], who studied a successfully implemented hybrid approach in a large organization. We
recommend that large, mature organizations start by considering these practices when designing a hybrid solution
using the methods we previously mentioned.

Table 4: Hybrid Practices for Complex, Large-Scale Projects [Cao et al., 2004]

Hybrid Practices Suited for Large
Organizations and Projects

Description

Designing upfront While agile methodologies usually eliminate upfront design, large or complex
projects cannot live without some design being done before work begins. For
smaller projects, this issue might not be as important.

Short release cycles with layered
approach

No matter the size of the project or organization, it is useful to have working
software at the end of each cycle to be ready for testing and feedback.

Surrogate customer engagement Because of the difficulty in soliciting constant feedback from all affected
customers on large and complex projects, projects should have product
managers who have direct contact with customers for constant feedback on
projects.

Flexible pair programming Pair programming is successful in a wide variety of projects and
organizations. Cao et al. [2004] recommend ―flexible‖ pair programming,

meaning that developers can use it as much as possible but should be
flexible enough to realize that it won’t work in all situations.

Identifying and managing
developers

Hire and use developers that are more capable of working in an agile
development environment.

3
 If using hybrid methodologies on only some

projects, be sure to assign the right developers.

Reuse with refactoring Reuse existing code to create new features. While lack of documentation in
agile methodologies makes reuse more difficult, refactoring (cleaning up the
code so it is easier to adapt to new projects) can help.

Flatter hierarchies with controlled
empowerment

Empowering developers to make important decisions in the code makes
development faster, and short cycles help to correct any problems that might
arise due to this practice.

Service-Oriented Software Development

Another hybrid method, called Service-Oriented Software Development (SOSD), consists of dividing the work of a
specific project into individual components called services [Keith et al., 2009]. The method takes its name from
Service-Oriented Architecture (SOA), in which developers create applications from a collection of loosely coupled,
independent software services. In the SOSD methodology, sub-teams within the overall project team act as service
providers performing independent tasks in the software development process. Interfaces between services or
activities are explicitly defined, but the providers of one service do not need to understand the inner workings of any
other service. As a result, sub-teams can perform each service required by the overall project plan using their own
unique methodology, whether plan-based or agile.

For example, a typical project has design, code, test, and deploy phases. Teams can divide each phase into distinct
services to be performed by individuals or small groups. Within the services, sub-services exist to provide specific
functionality. One type of sub-service for the development phase would be application development with a database
component. Another would be an application component with no database.

When a project is in its planning stages, the team can select and code needed services. The project managers can
then map available resources from the organization to the project services. In this way, project planners can easily
see the resources available to meet their needs. Although the overall process of coordinating service providers’
individual efforts is formal and plan-driven, each unique service can be executed using the methodology of the
service provider’s choice, including agile methods.

3
 One example, based on Turk et al., 2005, is that agile team members need to be those whose personalities, demographics, skills, etc. will

enable them to become well-connected or embedded in the agile team’s informal advice network.

38
Volume 29 Article 2

In summary, the hybrid approaches we highlight provide an appropriate alternative for organizations in which
projects are often large and complex. The risk-mitigating features of traditional methods merge with the iterative,
customer-focused, more flexible features of agile methods, and strengths of both approaches emerge. In merging
approaches, however, some of the risks otherwise mitigated by traditional methods can surface more easily.
Organizations must carefully select the best approach that provides a good balance between benefits of traditional
and agile, given their risk tolerance and the goals of the project.

Implementation Recommendations

In addition to selecting or developing the right hybrid methodology, the actual implementation of a hybrid
methodology requires significant attention. As with any other organizational change in policy or processes, careful
change management techniques are necessary in order to switch from plan-based approaches to agile approaches
or even hybrid methodologies. Regarding the implementation of hybrid development methodologies, we have
several specific recommendations.

Based on our theoretical framework and a review of relevant literature, we first identify two essential requirements
for implementing a hybrid solution. First, project managers must recognize the level of, and differences between,
interdependencies among project tasks. Doing so allows the appropriate selection of agile vs. plan-based
methodologies to coordinate interdependencies for each software process module. Second, to make the first
objective possible, managers should accurately modularize the project process into a set of finely granular
independent tasks. Teams should separate these tasks along natural breakpoints that also accurately separate the
high- versus low-risk tasks and the reciprocal versus sequential interdependency tasks. From our review of existing
techniques, these objectives might be accomplished, for example, by adopting Boehm’s [2010] risk-based model for
the former and Keith et al.’s [2009] SOSD framework for the latter.

In addition, organizations can use pilot tests to determine the effectiveness of hybrid techniques within the
organization with reduced risk. Developers should use pilot tests with small projects specifically selected to fit the
criteria for hybrid methods as shown in the framework. Selecting well-suited projects will contribute to project
success and ensure that hybrid methods are as effective as possible. These pilot tests give insights concerning
which practices work and which do not. Also, teams can apply lessons learned during pilot tests when larger
portions of the organization are implementing agile methods. Further, organizations need to change some business
processes to reflect the agile development process. For example, traditional performance reviews are ineffective
when programming is done in pairs [Bowers et al., 2002]. Organizations should adapt policies and processes during
pilot testing to measure the effectiveness of the change. In addition, managers should create teams of various levels
of experience and expertise. However, we do not recommend including programming novices on the pilot teams
[Boehm and Turner, 2005].

Next, organizations should identify specific responsibilities or project types to address with agile methods. Boehm
and Turner [2005] suggest using ―small, GUI-intensive applications with short life cycles‖ (p. 32) to begin
experimenting with agile techniques within an organization. By limiting the use of agile methods to the right type of
projects as specified within our framework, agile methods are more likely to succeed.

The movement from plan-based to agile hybrid methodologies is far from trivial. As our theory and discussion show,
having the correct mechanisms in place in an organization to address the volatility and interdependencies of the
situation is key. The change will affect all parts of the development process, from project managers and developers
to customers. As with any change effort, detractors will arise. Some people might be apprehensive to work in an
agile environment. One of the benefits of implementing hybrid methods on select projects is that projects using
primarily traditional methods will remain. This benefit should help mitigate some of the antagonism that comes with
the change effort.

All parts of the organization that participate in pilots will need to be aware of changes that agile practices bring to the
organization. Helping people accept changes can be harder than making the changes [Cockburn and Highsmith,
2001]. Customers need to be more available to consult with project teams. Developers must be more flexible and
willing to accept evolving user requirements. Project managers must adapt to new roles when managing an agile
team. The role of the project manager could change from one of making decisions to one of facilitating decision-
making [McAvoy and Butler, 2009]. In some cases, culture can be so engrained in a project team that some teams
might be better off using a methodology that is not necessarily suited to their interdependencies and uncertainties.
For example, development teams that are accustomed to clearly defined roles and policies, especially for decision
making, should stick primarily to more traditional methods if the culture is such that team members cannot adjust to
the change [Boehm and Turner, 2003]. These extreme cases are the exceptions to the framework we present.

Volume 29 Article 2
39

VII. FUTURE RESEARCH

Our review of literature and theory concerning agile development shows the importance of continued research on
the topic. While our theory-based literature review supports several recommendations concerning agile development
in large organizations, more empirical research is needed to test these recommendations and to further explore the
causes and effects of successful agile development processes in mature organizations.

Our theoretical model and recommendations are also based on a reduced set of fundamental factors that influence
methodology selection. We recognize that many other factors identified in the existing literature also impact IT
project success, such as team culture [Walsham, 2002], top management support [Schmidt et al., 2001], and
alignment with organizational strategy [Slaughter et al., 2006]. Future research should demonstrate how these
factors also help to shape software methodology choice.

Future research should also explore agile development success as a function of the density of the project team’s
advice network, moderated by the cost of maintaining informal relationships. Current literature and theory suggest
that an organization’s support of informal and formal communication affects the outcomes of the type of
development life cycles used. Similarly, researchers should examine whether the collation of roles with reciprocal
interdependencies can moderate the effect of a poor social network, and whether investments in knowledge
management systems for project knowledge can mitigate the impact of high team volatility.

Finally, additional research should empirically test the antecedents of successful agile development. Most research
focuses on limited case studies.

VIII. CONCLUSION

Both plan-based and agile methodologies can be effective ways to develop software. Each method has strengths
and weaknesses. By combining the two to create a hybrid methodology, development teams can mitigate
weaknesses and create a development methodology even more effective than either one alone. An examination of
project interdependencies and volitility allows managers to determine the best type of methodology for a given
situation. Accordingly, we recommend that large, mature organizations use our framework to select the appropriate
methodology for development. Those facing high uncertainty and reciprocal interdependencies in their software
projects should implement a hybrid methodology that combines the strengths of their current software development
life cycle with complementary agile practices. Hybrid methodologies allow large, mature organizations to enjoy the
benefits of agile development in areas where purely agile methodologies have not previously been successful.

REFERENCES

Editor’s Note: The following reference list contains hyperlinks to World Wide Web pages. Readers who have the
ability to access the Web directly from their word processor or are reading the article on the Web, can gain direct
access to these linked references. Readers are warned, however, that:

1. These links existed as of the date of publication but are not guaranteed to be working thereafter.
2. The contents of Web pages may change over time. Where version information is provided in the

References, different versions may not contain the information or the conclusions referenced.
3. The author(s) of the Web pages, not AIS, is (are) responsible for the accuracy of their content.
4. The author(s) of this article, not AIS, is (are) responsible for the accuracy of the URL and version

information.

Abrahamsson, P., K. Conboy, and X. Wang (2009) "Lots Done, More to Do: The Current State of Agile Systems
Development Research‖, European Journal of Information Systems (18)4, pp. 281–284.

Ambler, S.W. (2008) "Scaling Scrum: Meeting Real-World Development Needs‖, Dr. Dobb's Journal (33)5, pp. 52–
54.

Austin, R. and L. Devin (2009) "Weighing the Benefits and Costs of Flexibility in Making Software: Toward a
Contingency Theory of the Determinants of Development Process Design‖, Information Systems Research
(20)3, pp. 462–477.

Bardhan, I.R. et al. (2010) "An Interdisciplinary Perspective on IT Services Management and Service Science‖,
Journal of Management Information Systems (26)4, pp. 13–64.

Beck, K. (1999) "Embracing Change with Extreme Programming‖, IEEE Computer (32)10, pp. 70–77.

Beck, K. and C. Andres (2004) Extreme Programming Explained: Embrace Change, 2nd edition, Boston, MA:
Addison-Wesley Professional.

40
Volume 29 Article 2

Beck, K. et al. (2001) "Agile Manifesto: Manifesto for Agile Software Development‖, Agile Alliance,
http://agilemanifesto.org (current Feb. 8, 2011).

Berger, H. and P. Beynon-Davies (2009) "The Utility of Rapid Application Development in Large-Scale, Complex
Projects‖, Information Systems Journal (19)6, pp. 549–570.

Boehm, B. and R. Turner (2003) "Using Risk to Balance Agile and Plan-Driven Methods‖, IEEE Computer (36)6, pp.
57–66.

Boehm, B. and R. Turner (2005) "Management Challenges to Implementing Agile Processes in Traditional
Development Organizations‖, IEEE Software (22)5, pp. 30–39.

Boehm, B.W. (2010) "A Risk-Driven Decision Table for Software Process Selection‖, Proceedings of the 2010
International Conference on New Modeling Concepts for Today's Software Processes: Software Process,
Paderborn, Germany, p. 1.

Bowers, J. et al. (2002) "Tailoring XP for Large Mission Critical Software Development‖, Proceedings of the Second
XP Universe and First Agile Universe Conference, Chicago, IL, pp. 100–111.

Braithwaite, K. and T. Joyce. (2005) "XP Expanded: Distributed Extreme Programming‖, Proceedings of the 6th
International Conference on Extreme Programming and Agile Processes in Software Engineering, Sheffield,
UK, pp. 180–188.

Cao, L., K. Mohan, and B. Ramesh. (2004) "How Extreme Does Extreme Programming Have to Be? Adapting XP
Practices to Large-Scale Projects‖, Proceedings of the 37th Hawaii International Conference on System
Sciences, Waikoloa, Hawaii, pp. 1–10.

Cao, L. et al. (2009) "A Framework for Adapting Agile Development Methodologies‖, European Journal of
Information Systems (18)4, pp. 332–343.

Cockburn, A. and J. Highsmith (2001) "Agile Software Development: The People Factor‖, IEEE Computer (34)11,
pp. 131–133.

Cohn, M. (2007) "Advice on Conducting the Scrum of Scrums Meeting‖, Scrum Alliance, http://www.scrumalliance
.org/articles/46-advice-on-conducting-the-scrum-of-scrums-meeting (current Feb. 8, 2011).

Conboy, K. (2009) "Agility from First Principles: Reconstructing the Concept of Agility in Information Systems
Development‖, Information Systems Research (20)3, pp. 329–354.

Dennis, A.R., R.M. Fuller, and J.S. Valacich (2008) "Media, Tasks, and Communication Processes: A Theory of
Media Synchronicity‖, MIS Quarterly (32)3, pp. 575–600.

Donaldson, L. (2001) The Contingency Theory of Organizations, London, England: Sage Publications.

Dyba, T. and T. Dingsoyr (2008) "Empirical Studies of Agile Software Development: A Systematic Review‖,
Information and Software Technology (50)9–10, pp. 833–859.

Erickson, J., K. Lyytinen, and K. Siau (2005) "Agile Modeling, Agile Software Development, and Extreme
Programming: The State of Research‖, Journal of Database Management (16)4, pp. 88–100.

Faraj, S. and S. Lee (2000) "Coordinating Expertise in Software Development Teams‖, Management Science
(46)12, pp. 1554–1568.

Fitzgerald, B., G. Hartnett, and K. Conboy (2006) "Customising Agile Methods to Software Practices at Intel
Shannon‖, European Journal of Information Systems (15)2, pp. 200–213.

Galbraith, J.R. (1973) Designing Complex Organizations, Reading, MA: Addison-Wesley.

Harris, M., R. Collins, and A. Hevner (2009) "Control of Flexible Software Development Under Uncertainty‖,
Information Systems Research (20)3, pp. 400–419.

Holmstrom, H. et al. (2006) "Agile Practices Reduce Distance in Global Software Development‖, Information
Systems Management (23)3, pp. 7–18.

Kahkonen, T. (2004) "Agile Methods for Large Organizations: Building Communities of Practice‖, Proceedings of the
2nd Annual Agile Development Conference, Salt Lake City, UT, pp. 2–10.

Karlsson, F. and P. Agerfalk (2009) "Exploring Agile Values in Method Configuration‖, European Journal of
Information Systems (18)4, pp. 300–316.

Keith, M., H. Demirkan, and M. Goul. (2009) "Service-Oriented Software Development‖, Proceedings of the 15th
Americas Conference on Information Systems, San Francisco, CA, pp. 1–10.

Volume 29 Article 2
41

Keith, M., H. Demirkan, and M. Goul (2010) "The Influence of Collaborative Technology Knowledge on Advice
Network Structures‖, Decision Support Systems (50)1, pp. 140–151.

Kettunen, P. (2009) "Adopting Key Lessons from Agile Manufacturing to Agile Software Product Development—A
Comparative Study‖, Technovation (29)6–7, pp. 408–422.

Klein, K.J. et al. (2004) "How Do They Get There? An Examination of the Antecedents of Centrality in Team
Networks‖, Academy of Management Journal (47)6, pp. 952–963.

Kraut, R.E. and L.A. Streeter (1995) "Coordination in Software Development‖, Communications of the ACM (38)3,
pp. 69–81.

Kussmaul, C., R. Jack, and B. Sponsler (2004) "Outsourcing and Offshoring with Agility: A Case Study‖ in Zannier,
C., H. Erdogmus, and L. Lindstrom (eds.) Extreme Programming and Agile Methods—XP/Agile Universe
2004, Heidelberg, Germany: Springer, pp. 147–154.

Lee, G. and W. Xia (2010) "Toward Agile: An Intergrated Analysis of Quantitative and Qualitative Field Data on
Software Development Agility‖, MIS Quarterly (34)1, pp. 87–114.

Lindvall, M. et al. (2004) "Agile Software Development in Large Organizations‖, IEEE Computer (37)12, pp. 26–34.

Mangalaraj, G., R. Mahapatra, and S. Nerur (2009) "Acceptance of Software Process Innovations—The Case of
Extreme Programming‖, European Journal of Information Systems (18)4, pp. 344–354.

Maruping, L., V. Venkatesh, and R. Agarwal (2009a) "A Control Theory Perspective on Agile Methodology Use and
Changing User Requirements‖, Information Systems Research (20)3, pp. 377–399.

Maruping, L., X. Zhang, and V. Venkatesh (2009b) "Role of Collective Ownership and Coding Standards in
Coordinating Expertise in Software Project Teams‖, European Journal of Information Systems (18)4, pp. 355–
371.

McAvoy, J. and T. Butler (2009) "The Role of Project Management in Ineffective Decision Making within Agile
Software Development Projects‖, European Journal of Information Systems (18)4, pp. 372–383.

Nonaka, I. (1994) "A Dynamic Theory of Organizational Knowledge Creation‖, Organization Science (5)1, pp. 14–37.

Panzar, J.C. and R.D. Willig (1981) "Economies of Scope‖, American Economic Review (71)2, pp. 268–272.

Pikkarainen, M. et al. (2008) "The Impact of Agile Practices on Communication in Software Development‖, Empirical
Software Engineering (13)3, pp. 303–337.

Pikkarainen, M. and U. Passoja. (2005) "An Approach for Assessing Suitability of Agile Solutions: A Case Study‖,
Proceedings of the 6th International Conference of eXtreme Programming and Agile Process in Software
Engineering, Sheffield University, UK, pp. 171–171.

Port, D. and T. Bui (2009) "Simulating Mixed Agile and Plan-Based Requirements Prioritization Strategies: Proof-of-
Concept and Practical Implications‖, European Journal of Information Systems (18)4, pp. 317–331.

Rising, L. and N.S. Janoff (2000) "The Scrum Software Development Process for Small Teams‖, IEEE Software
(17)4, pp. 26–32.

Royce, W.W. (1970) "Managing the Development of Large Software Systems: Concepts and Techniques‖,
Proceedings of the 9th International Conference on Software Engineering, Monterey, CA, pp. 328–338.

Sarker, S. (2009) "Exploring Agility in Distributed Information Systems Development Teams: An Interpretive Study in
an Offshoring Context‖, Information Systems Research (20)3, pp. 440–461.

Sarker, S., C. Munson, and S. Chakraborty (2009) "Assessing the Relative Contribution of the Facets of Agility to
Distributed Systems Development Success: An Analytic Hierarchy Process Approach‖, European Journal of
Information Systems (18)4, pp. 285–299.

Schmidt, R. et al. (2001) "Identifying Software Project Risks: An International Delphi Study‖, Journal of Management
Information Systems (17)4, pp. 5–36.

Schwaber, K. and M. Beedle (2002) Agile Software Development with Scrum, Upper Saddle River, NJ: Prentice-
Hall.

Selic, B. (2009) "Agile Documentation, Anyone?" IEEE Software (26)6, pp. 11–12.

Slaughter, S.A. et al. (2006) "Aligning Software Processes with Strategy‖, MIS Quarterly (30)4, pp. 891–918.

42
Volume 29 Article 2

Sutherland, J. et al. (2007) "Distributed Scrum: Agile Project Management with Outsourced Development Teams‖,
Proceedings of the 40th Annual Hawaiian International Conference on Systems Sciences, Waikoloa, Hawaii,
pp. 271–283.

Thompson, J.D. (1967) Organizations in Action, New York, NY: McGraw-Hill.

Turk, D., R. France, and B. Rumpe (2005) "Assumptions Underlying Agile Software-Development Processes‖,
Journal of Database Management (16)4, pp. 62–87.

Tushman, M.L. and D.A. Nadler (1978) "Information Processing as an Integrating Concept in Organizational
Design‖, The Academy of Management Review (3)3, pp. 613–624.

Vidgen, R. and X. Wang (2009) "Coevolving Systems and the Organization of Agile Software Development‖,
Information Systems Research (20)3, pp. 355–376.

Walsham, G. (2002) "Cross-Cultural Software Production and Use: A Structurational Analysis‖, MIS Quarterly (26)4,
pp. 359–380.

APPENDIX A

Table A-1: Previous Research on Agile Methods

Experimental Case Study Theory-building

Design
Science

Review/
Commentary

Agile None that we
are aware of

Berger and Beynon-Davies, 2009
Bowers et al., 2002
Braithwaite and Joyce, 2005
Cao et al., 2004
Cao et al., 2009
Conboy, 2009
Fitzgerald et al., 2006
Kahkonen, 2004
Kussmaul et al., 2004
Lee and Xia, 2010
Lindvall et al., 2004
Mangalaraj et al., 2009
Maruping et al., 2009a
Maruping et al., 2009b
Pikkarainen and Passoja, 2005
Pikkarainen et al., 2008
Rising and Janoff, 2000
Sarker, 2009
Selic, 2009
Sutherland et al., 2007
Turk et al., 2005

Austin and Devin,
2009
Harris et al., 2009
Sarker, 2009
Vidgen and Wang,
2009

Ambler,
2008
Beck, 1999
Bowers et
al., 2002
Braithwaite
and Joyce,
2005
Cao et al.,
2009
Port and
Bui, 2009
Rising and
Janoff,
2000]
Schwaber
and
Beedle,
2002

Abrahamsson et
al., 2009
Cockburn and
Highsmith, 2001
Dyba and
Dingsoyr, 2008
Erickson et al.,
2005
Holmstrom et al.,
2006
Kettunen, 2009

Hybrid Port and Bui,
2009

Ambler, 2008
Boehm and Turner, 2003
Kahkonen, 2004
Karlsson and Agerfalk, 2009
McAvoy and Butler, 2009

Cao et al., 2009 Keith et al.,
2009

Boehm and
Turner, 2005

Volume 29 Article 2
43

ABOUT THE AUTHORS

Jordan B. Barlow is a graduate of the Masters of Information Systems program of the Marriott School of
Management of Brigham Young University where he was enrolled in the Information Systems Ph.D. Preparation
Program. He will be starting his Ph.D. in Information Systems at Indiana University during Fall 2011. His research
interests include virtual communication and collaboration, HCI, knowledge management, trust, and IT security and
risk. He has worked in IT training and management at the LDS Missionary Training Center and as a research
assistant at BYU. He is currently employed as a small business/technology consultant at Squire & Co., PC, in Orem,
Utah.

Justin Scott Giboney is a graduate of the Masters of Information Systems program of the Marriott School of
Management of Brigham Young University, where he completed the Information Systems Ph.D. Preparation
Program. He is currently working on a Ph.D. in Management Information Systems at the University of Arizona’s Eller
College of Management. His research interests include trust, expectations in computer interactions, and group
collaboration.

Mark Jeffrey Keith is an Assistant Professor in the Computer Information & Decision Management Department at
the College of Business at West Texas A&M University. He completed his doctorate in Information Systems at
Arizona State University. He received a BS in Information Systems and a Master of Information Systems
Management (while enrolled in the Ph.D. Preparation Program) from Brigham Young University. His recent research
interests concern IT project effectiveness including the impact of advice networks and service-oriented principles on
project success, IT switching costs, and mobile computing. His research has appeared in the Journal of the
Association for Information Systems, Decision Support Systems, Decision Analysis, and the International Journal of
Human-Computer Studies.

David W. Wilson is a graduate of the Masters of Information Systems program of the Marriott School of
Management of Brigham Young University, where he completed the Information Systems Ph.D. Preparation
Program. He is a doctoral student at Washington State University in the Department of Entrepreneurship and
Information Systems. His research interests include social computing systems, collaboration, trust, and HCI.

Ryan M. Schuetzler is a graduate of the Masters of Information Systems program of the Marriott School of
Management of Brigham Young University, where he completed the Information Systems Ph.D. Preparation
Program. He is currently working on a Ph.D. in Management Information Systems at the University of Arizona’s Eller
College of Management. His research interests include trust and distrust, computer-mediated collaboration, and
deception detection.

Paul Benjamin Lowry is an Associate Professor of Information Systems at City University of Hong Kong. His
research interests include Human-Computer Interaction (HCI) (collaboration, culture, communication, adoption,
entertainment, decision support, deception), e-commerce (privacy, security, trust, branding, electronic markets), and
scientometrics of Information Systems research. He received his Ph.D. in Management Information Systems from
the University of Arizona. He published articles in MIS Quarterly; Journal of Management Information Systems;
Journal of the Association for Information Systems; Information Systems Journal; European Journal of Information
Systems; Communications of the ACM; Information Sciences; Decision Support Systems; IEEE Transactions on
Systems, Man, and Cybernetics; IEEE Transactions on Professional Communication; Small Group Research; Expert
Systems with Applications; Communications of the Association for Information Systems; and others. He currently
serves as a guest associate editor for MIS Quarterly, and regularly appointed associate editor at European Journal
of IS, Electronic Commerce Research and Applications, Communications of the Association for Information
Systems, and AIS Transactions on HCI.

Anthony Vance is an Assistant Professor of Information Systems in the Marriott School of Management of Brigham
Young University. He has earned Ph.D. degrees in Information Systems from Georgia State University, US; the
University of Paris–Dauphine, France; and the University of Oulu, Finland. He received a B.S. in IS and Masters of
Information Systems Management (MISM) from Brigham Young University, during which he was enrolled in the IS
Ph.D. preparation program. His previous experience includes working as a visiting research professor in the
Information Systems Security Research Center at the University of Oulu, where he remains a research fellow. He
also worked as an information security consultant for Deloitte. His work is published in MIS Quarterly, Journal of
Management Information Systems, and European Journal of Information Systems. His research interests are
information security, trust in information systems, and internal control.

44
Volume 29 Article 2

Copyright © 2011 by the Association for Information Systems. Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for
components of this work owned by others than the Association for Information Systems must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists
requires prior specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O.
Box 2712 Atlanta, GA, 30301-2712, Attn: Reprints; or via e-mail from ais@aisnet.org.

Volume 29 Article 2

 .

 ISSN: 1529-3181

EDITOR-IN-CHIEF
Ilze Zigurs

University of Nebraska at Omaha

AIS PUBLICATIONS COMMITTEE
Kalle Lyytinen
Vice President Publications
Case Western Reserve University

Ilze Zigurs
Editor, CAIS

University of Nebraska at Omaha

Shirley Gregor
Editor, JAIS

The Australian National University

Robert Zmud
AIS Region 1 Representative
University of Oklahoma

Phillip Ein-Dor
AIS Region 2 Representative
Tel-Aviv University

Bernard Tan
AIS Region 3 Representative
National University of Singapore

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

Ken Kraemer
University of California at Irvine

M. Lynne Markus
Bentley University

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
University of Groningen

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
University of San Francisco

Jane Fedorowicz
Bentley University

Jerry Luftman
Stevens Institute of Technology

CAIS EDITORIAL BOARD
Monica Adya
Marquette University

Michel Avital
University of Amsterdam

Dinesh Batra
Florida International
University

Indranil Bose
University of Hong Kong

Thomas Case
Georgia Southern
University

Evan Duggan
University of the West
Indies

Mary Granger
George Washington
University

Åke Gronlund
University of Umea

Douglas Havelka
Miami University

K.D. Joshi
Washington State
University

Michel Kalika
University of Paris
Dauphine

Karlheinz Kautz
Copenhagen Business
School

Julie Kendall
Rutgers University

Nancy Lankton
Marshall University

Claudia Loebbecke
University of Cologne

Paul Benjamin Lowry
City University of Hong
Kong

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Fred Niederman
St. Louis University

Shan Ling Pan
National University of
Singapore

Katia Passerini
New Jersey Institute of
Technology

Jan Recker
Queensland University of
Technology

Jackie Rees
Purdue University

Raj Sharman
State University of New
York at Buffalo

Mikko Siponen
University of Oulu

Thompson Teo
National University of
Singapore

Chelley Vician
University of St. Thomas

Padmal Vitharana
Syracuse University

Rolf Wigand
University of Arkansas,
Little Rock

Fons Wijnhoven
University of Twente

Vance Wilson
Worcester Polytechnic
Institute

Yajiong Xue
East Carolina University

DEPARTMENTS
Information Systems and Healthcare
Editor: Vance Wilson

Information Technology and Systems
Editors: Sal March and Dinesh Batra

Papers in French
Editor: Michel Kalika

ADMINISTRATIVE PERSONNEL
James P. Tinsley
AIS Executive Director

Vipin Arora
CAIS Managing Editor
University of Nebraska at Omaha

Sheri Hronek
CAIS Publications Editor
Hronek Associates, Inc.

Copyediting by
S4Carlisle Publishing
Services

	Overview and Guidance on Agile Development in Large Organizations
	Recommended Citation
	Authors

	tmp.1459189997.pdf.ODs43

