
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Proceedings &
Presentations Department of Computer Science

2010

Representing Synonymity in Causal Logic and in Logic Representing Synonymity in Causal Logic and in Logic

Programming Programming

Joohyung Lee
Arizona State University

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Vladimir Lifschitz
University of Texas at Austin

Fangkai Yang
University of Texas at Austin

Follow this and additional works at: https://digitalcommons.unomaha.edu/compsicfacproc

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Lee, Joohyung; Lierler, Yuliya; Lifschitz, Vladimir; and Yang, Fangkai, "Representing Synonymity in Causal
Logic and in Logic Programming" (2010). Computer Science Faculty Proceedings & Presentations. 36.
https://digitalcommons.unomaha.edu/compsicfacproc/36

This Conference Proceeding is brought to you for free
and open access by the Department of Computer Science
at DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Proceedings &
Presentations by an authorized administrator of
DigitalCommons@UNO. For more information, please
contact unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsicfacproc
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compsicfacproc?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compsicfacproc/36?utm_source=digitalcommons.unomaha.edu%2Fcompsicfacproc%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Representing Synonymity
in Causal Logic and in Logic Programming

Joohyung Lee1, Yuliya Lierler2, Vladimir Lifschitz2, Fangkai Yang2

1School of Computing, Informatics and Decision Systems Engineering
Arizona State University

email:joolee@asu.edu
2Department of Computer Sciences
The University of Texas at Austin

email:{yuliya,vl,fkyang}@cs.utexas.edu

Abstract

We investigate the relationship between rules repre-
senting synonymity in nonmonotonic causal logic and
in answer set programming. This question is of interest
in connection with current work on modular languages
for describing actions.

Introduction
This paper is about representing the important idea
of synonymity in knowledge representation formalisms
with nonmonotonic semantics. In classical logic, we can
express that, under a certain condition, atom p is syn-
onymous to atom q by a formula of the form

Condition → (p ↔ q). (1)

What are the counterparts of this formula in the lan-
guage of logic programming under the answer set se-
mantics (Gelfond and Lifschitz 1991) and in nonmono-
tonic causal logic (McCain and Turner 1997)?

This question is closely related to current research
on modular action description languages. In STRIPS
(Fikes and Nilsson 1971) and similar formalisms, ac-
tions are described in terms of their effects and precon-
ditions. As observed in (Erdoğan and Lifschitz 2006),
informal descriptions of actions that humans give are
often strikingly different in their content. For instance,
the dictionary defines pushing as moving by steady
pressure. This phrase explains the meaning of the word
push not by listing the effects of this action, but by
referring to another action, move, that is supposed to
be already familiar to the reader. It tells us that, un-
der some conditions, push is synonymous to move. Re-
lationships of this kind can be expressed in modular
action description languages MAD (Lifschitz and Ren
2006) and ALM (Gelfond and Inclezan 2009). The se-
mantics of MAD is defined in terms of a translation
into nonmonotonic causal logic; the semantics of ALM
is based on answer sets. Representing synonymity in
these formalisms plays an important role in the defini-
tions of MAD and ALM.

A causal theory in the sense of (McCain and Turner
1997) is a set of rules F ⇐ G (“there is a cause for F to
hold if G holds”), where the head F and the body G are

propositional formulas. Under the approach adopted in
the semantics of MAD, the counterpart of (1) in this
language is the rule

p ↔ q ⇐ Condition. (2)

On the other hand, a (nondisjunctive) logic program
in the sense of (Gelfond and Lifschitz 1991) is a set of
rules

Head ← Body ,

where Head is a literal (an atom possibly preceded by
the classical, or strong, negation symbol ¬), and Body
is a list consisting of expressions of the forms

l, not l,

where l is a literal. Under the ALM approach, the
counterpart of (1) is the set of 4 rules:

p ← q,Condition,
q ← p,Condition,

¬p ← ¬q,Condition,
¬q ← ¬p,Condition.

(3)

We are interested in the relationship between causal
rule (2) and logic programming rules (3).

Any attempt to relate causal rules in the sense
of (McCain and Turner 1997) to logic programming
rules in the sense of (Gelfond and Lifschitz 1991) has
to deal with two difficulties. One is syntactic: each
of these languages uses some constructs that are not
available in the other. In a causal rule, the head and
the body can be arbitrary propositional formulas; on
the other hand, that language does not distinguish be-
tween strong negation and negation as failure (and this
distinction is a crucial element of the answer set seman-
tics). In particular, restrictions on the syntactic form
of Condition in (2) are not the same as in (3).

Second, there is a semantic difficulty: models of a
causal theory and answer sets are objects of two dif-
ferent kinds. A model in the sense of causal logic is
an interpretation, as this term is understood in classi-
cal propositional logic, that is, a truth assignment. An
answer set, on the other hand, is a consistent set of
literals.

The earliest result on the relationship between non-
monotonic causal logic and answer sets (McCain 1997,

Proposition 6.7) handles these difficulties in the follow-
ing way. It is limited to causal rules of the form

l0 ⇐ l1 ∧ · · · ∧ ln, (4)

where each li is a literal. The logic programming coun-
terpart of this rule, according to McCain, is

l0 ← not l1, . . . ,not ln, (5)

(l stands for the literal complementary to l). Gener-
ally, (5) contains both strong negation and negation as
failure. Furthermore, McCain’s theorem asserts that
the models of a causal theory are identical to the an-
swer sets of the corresponding logic program that are
complete (that is, contain one member of every com-
plementary pair of literals), provided that we identify
a complete set of literals with the corresponding truth
assignment.

In this paper, McCain’s theorem is extended to
causal theories consisting of any number of rules of
the form (4) and one “synonymity rule,” which has an
equivalence between two atoms (or, more generally, be-
tween two literals) in the head and a conjunction of
literals in the body. In the corresponding logic pro-
gram, the synonymity rule is represented by a group
of rules similar to (3), with every conjunctive term l
of its body rewritten as not l, as in McCain’s trans-
lation. We show that the models of the given causal
theory are identical to the complete answer sets of the
corresponding logic program. In this sense, expressing
synonymity by causal rules of the form (2) has the same
effect as expressing it by (3) in the language of answer
set programming.

Clarifying the relationship between the MAD and
ALM approaches to synonymity is one part of the mo-
tivation behind the work presented in this paper. The
other part is related to implementing MAD. The exist-
ing implementation (Erdoğan 2008) translates MAD ac-
tion descriptions into the input language of the Causal
Calculator (CCalc)1. That system is a partial imple-
mentation of nonmonotonic causal logic, and it is lim-
ited to definite causal rules, that is, to rules F ⇐ G such
that F is a literal. Rules (4), for instance, are definite,
but synonymity rules (2) are not. Erdoğan’s translation
eliminates synonymity rules in favor of definite rules,
and it is only applicable when the synonymity rules are
“unconditional”—have tautological bodies. We plan to
design a more versatile implementation of MAD that
will use an answer set solver for search (in the style
of the coala approach to action languages2), instead
of CCalc. Research on representing synonymity rules,
such as (2), by logic programs provides a theoretical
foundation for this future work.

Our proof of the theorem on synonymity uses loop
formulas, defined in (Lin and Zhao 2004) for logic pro-
grams and in (Lee 2004) for causal theories. The logic
programs that we deal with contain both negation as

1http://www.cs.utexas.edu/users/tag/ccalc/
2http://www.cs.uni-potsdam.de/∼tgrote/al2asp/

failure and strong negation, and, as a preliminary step,
we extend the Lin-Zhao theorem to logic programs with
strong negation. (An alternative approach would be to
eliminate strong negation in favor of additional atoms,
but that would have made the proof more complicated.)
Since our extension of the Lin-Zhao theorem can be of
interest in its own right, we present it in a slightly more
general form than strictly necessary for our present pur-
poses: the formulation below covers disjunctive pro-
grams.3

Preliminaries
Logic Programs
We begin with a propositional signature—a finite set
of atoms. A literal is an atom possibly preceded by
the strong negation sign ¬. A head expression is an
expression of the form

l1; . . . ; ln (6)

(n ≥ 0), where each li is a literal. Sometimes we will
identify a head expression (6) with the set {l1, . . . , ln}.
A body expression is an expression of the form

l1, . . . , lm,not lm+1, . . . ,not ln (7)

(n ≥ m ≥ 0), where each li is a literal. A rule is an
expression of the form H ← B, where H is a head
expression and B is a body expression. A rule is called
a constraint if its head is empty. A logic program is a
finite set of rules.

Answer sets for programs of this type are defined in
(Gelfond and Lifschitz 1991).

Causal Theories
A causal theory T is a finite set of causal rules of the
form F ⇐ G, where F and G are propositional formulas
(the head and the body of the rule). The semantics of
causal theories defines when an interpretation I of the
underlying signature (that is, a truth assignment) is
a model of a causal theory T . The reduct of T with
respect to I is the set of the heads of the rules of T
whose bodies are satisfied by I. We say that I is a
model of T if I is the unique interpretation satisfying
the reduct of T with respect to I (McCain and Turner
1997).

The McCain Translation
If C is a conjunction of literals l1 ∧ · · · ∧ ln then the
McCain translation of C, denoted by MC(C), is the
body expression

not l1, . . . ,not ln.

Let T be a causal theory such that all its rules have
the form (4). The McCain translation MC(T) of T is
the logic program consisting of the rules l ← MC(C) for

3The definitions of completion (Clark 1978) and loop
formulas were extended to disjunctive programs (without
strong negation) in (Lee and Lifschitz 2003).

all rules l ⇐ C from T . In the statement of the theorem
below, we identify an interpretation I of the underlying
signature with the set of literals satisfied by I.

Theorem ((McCain 1997), Proposition 6.7). An in-
terpretation I is a model of T iff I is an answer set for
MC(T).

Example. Consider the causal theory
p ⇐ q,
q ⇐ q,

¬q ⇐ ¬q.

It has one model:

I(p) = I(q) = t. (8)

The corresponding logic program
p ← not ¬q,
q ← not ¬q,

¬q ← not q
(9)

has the answer sets {p, q} and {¬q}. The first of them
is identical to I; the second is incomplete.

Theorem on Synonymity
A synonymity rule is a rule of the form

l0 ↔ l1 ⇐ Condition, (10)

where l0, l1 are literals, and Condition is a conjunction
of literals. We extend the McCain translation to syn-
onymity rules as follows: if R is (10) then MC(R) is the
logic program

l1 ← l0, MC(Condition),
l0 ← l1, MC(Condition),
l1 ← l0, MC(Condition),
l0 ← l1, MC(Condition).

(11)

In the statement of the theorem below, T is a causal
theory such that all its rules have the form (4), and R
is a synonymity rule.

Theorem on Synonymity. An interpretation I is a
model of causal theory T ∪{R} iff I is an answer set of
logic program MC(T) ∪ MC(R).

Example. Consider the causal theory
p ⇐ q,
q ⇐ q,
r ⇐ ¬q,

r ↔ ¬p ⇐ 	,

(12)

where 	 is the empty conjunction. It has one model:

I(p) = I(q) = t, I(r) = f.

The corresponding logic program is
p ← not ¬q,
q ← not ¬q,
r ← not q,
r ← ¬p,

¬p ← r,
¬r ← p,
p ← ¬r.

The only answer set of this program is {p, q,¬r}; it is
identical to interpretation I.

We will now outline a proof of the theorem stated
above. The first step is to extend the Lin-Zhao the-
orem on loop formulas to logic programs with strong
negation.

Completion and Loop Formulas
for Programs with Strong Negation

If B is a body expression (7) then by pf (B) we denote
the propositional formula

l1 ∧ . . . ∧ lm ∧ lm+1 ∧ . . . ∧ ln.

The literal completion4 of a logic program Π is the set
of propositional formulas that includes
• for each literal l, the equivalence

l ↔
∨

H←B ∈ Π

l ∈ H

⎛
⎝pf (B) ∧

∧
l′∈H\{l}

l′

⎞
⎠ ; (13)

• the formula ¬pf (B) for each constraint ←B in Π.
If Π is nondisjunctive (at most one literal in the head
of each rule) then (13) can be written as

l ↔
∨

H←B ∈ Π

H = l

pf (B).

Example. The literal completion of program (9) con-
sists of the formulas

p ↔ q,
¬p ↔ ⊥,

q ↔ q,
¬q ↔ ¬q

where ⊥ is the empty disjunction. If we extend (9) by
adding the rules

p; r ← ¬q,
← p,not r

then the literal completion will become

p ↔ q ∨ (¬q ∧ ¬r),
¬p ↔ ⊥,

q ↔ q,
¬q ↔ ¬q,

r ↔ ¬q ∧ ¬p,
¬r ↔ ⊥,
¬(p ∧ ¬r).

If B is a body expression (7) then B+ denotes the
set {l1, . . . , lm}. The dependency graph of a logic pro-
gram Π is the directed graph that has arbitrary literals

4This term was introduced originally by McCain and
Turner (1997) in the context of causal logic. Their defi-
nition is reviewed in the next section.

as its vertices and has an edge from each element of H
to each element of B+ for each rule H ← B of Π. A
nonempty set L of literals is called a (nontrivial) loop
of Π if, for every pair l, l′ of literals in L, there exists a
path of non-zero length from l to l′ in the dependency
graph of Π such that all vertices in this path belong
to L.5 The external support formula for a loop L of Π,
denoted by ESΠ(L), is the disjunction of the formulas

pf (B) ∧
∧

l∈H\L

l

for all rules H ← B of Π such that

H ∩ L = ∅ and B+ ∩ L = ∅. (14)

Example. The only loop L of the program

¬p ← q,
q ← ¬p, r,

q; r ← not p, s
(15)

is {¬p, q}. The first of conditions (14) is satisfied for
each of the rules (15), but the second is satisfied for
the last rule only (the support for L provided by the
other rules is “not external”). Consequently, the exter-
nal support formula for this loop has only one disjunc-
tive term ¬p∧s∧¬r. If we replace not p with ¬p in the
body of the last rule of (15) then the external support
formula for L will turn into the empty disjunction ⊥.
On the other hand, if we replace ¬p with not p in the
body of the second rule of (15) then {¬p, q} will not be
a loop anymore.

In the definition of loop formulas below, L∨ stands for
the disjunction of the elements of L. The (disjunctive)6
loop formula for L, denoted by LF (L,Π), is

L∨ → ESΠ(L).

Theorem on Loop Formulas. A consistent complete
set of literals is an answer set of a program Π iff it
satisfies the literal completion of Π and the formulas
LF (L,Π) for all loops L of Π.

The proof is based on the theorem from (Lee 2005,
Section 2.2).

Review: Literal Completion
of a Causal Theory

Our proof of the theorem on synonymity uses the con-
cept of the literal completion of a definite causal theory,
introduced in (McCain and Turner 1997). Recall that
a causal theory is called definite if the head of each of

5The adjective “nontrivial” here reflects the fact that
paths of length 0 are not allowed. Loops in a more general
sense, without this limitation, are studied in (Lee 2005).

6The concept of a conjunctive loop formula, introduced
in (Lee and Lifschitz 2003), can be extended to programs
with strong negation in a similar way.

its rules is a literal. The literal completion of a definite
causal theory T is the set of formulas

l ↔
∨

H⇐B ∈ T

H = l

B

for all literals l.
According to a theorem from (McCain and Turner

1997), the models of a definite causal theory can be
equivalently described as the models of its completion.

Review: Loop Formulas
of a Causal Theory

The proof of the theorem on synonymity uses also the
concept of a loop formula for causal theories, introduced
in (Lee 2004). Its definition, for the case when the
head of every causal rule is a non-empty disjunction
of distinct literals, is reproduced below. The head de-
pendency graph of a causal theory T consisting of such
rules is the directed graph that has arbitrary literals as
its vertices and has an edge from l to l′ for each pair
of distinct literals l, l′ from the head of the same rule
of T . A nonempty set L of literals is called a loop of T
if, for every pair l, l′ of literals in L, there exists a path
of non-zero length from l to l′ in the head dependency
graph of T such that all vertices in this path belong to
L. Clearly, if L is a loop of T then the set L of literals
complementary to the elements of L is a loop of T also.

The (disjunctive) loop formula of a loop L is

L∨ →
∨

F⇐G ∈ T

F ∩ L �= ∅, F ∩ L = ∅

⎛
⎝G ∧

∧
l∈F\L

l

⎞
⎠ . (16)

According to Theorem 1 from (Lee 2004), an inter-
pretation I is a model of T iff
• I is a model of the definite causal theory consisting

of the rules
l ⇐ G ∧

∧
l′∈F\{l}

l′ (17)

for all rules F ⇐ G of T and all l ∈ F , and
• I satisfies the loop formulas of all loops of T .

Proof of the Theorem on Synonymity
In the proof, the characterization of the models of a
causal theory quoted above is applied to the causal the-
ory T1 obtained from T by adding rule (10) rewritten
as the pair of rules

l0 ∨ l1 ⇐ Condition,
l0 ∨ l1 ⇐ Condition.

(18)

If l0 and l1 are equal to each other or complementary
then the assertion of the theorem on synonymity eas-
ily follows from McCain’s theorem. Otherwise the four
literals in the heads of (18) are pairwise distinct. The

corresponding set of rules (17) consists of two parts: the
rules of T and the rules

l0 ⇐ l1 ∧ Condition,
l1 ⇐ l0 ∧ Condition,
l0 ⇐ l1 ∧ Condition,
l1 ⇐ l0 ∧ Condition.

(19)

We will show, first, that the literal completion of the
causal theory consisting of the rules of T and rules (19)
is identical to the literal completion of the logic pro-
gram Π consisting of the rules of MC(T) and rules (11).
Second, the set of loop formulas of all loops of causal
theory T1 is identical to the set of loop formulas of all
nontrivial loops of Π. In view of the theorem on loop
formulas stated above, the assertion of the theorem on
synonymity follows from these two claims.

Take an arbitrary literal l, and assume first that l is
different from l0, l1, l0, l1. The equivalence correspond-
ing to l in the literal completion of Π is

l ↔
∨

C : l⇐C∈T

pf (MC(C)).

Since
pf (MC(C)) = C,

it can be written as

l ↔
∨

C : l⇐C∈T

C.

This is the equivalence corresponding to l in the literal
completion of the theory consisting of the rules of T
and rules (19).

If l is l0 then the equivalence corresponding to l in
the literal completion of Π is

l0 ↔(∨
C : l0⇐C∈T

pf (MC(C))

)
∨ pf (l1 ∧ MC(Condition)),

which can be written as

l0 ↔
(∨

C : l0⇐C∈T

C

)
∨ (l1 ∧ Condition).

This is the equivalence corresponding to l0 in the literal
completion of the theory consisting of the rules of T and
rules (19). When l is one of the literals l1, l0, l1, the
reasoning is similar.

To prove the second claim, note that the dependency
graph of Π is identical to the head dependency graph
of T1: each of them has 4 edges, from l0 to l1 and back,
and from l0 to l1 and back. Consequently, the nontrivial
loops of Π are the same as the loops of T1: {l0, l1} and
{l0, l1}. The loop formula of {l0, l1} is

(l0 ∨ l1) → ESΠ({l0, l1}).
Recall that Π consists of rules of two types: l ← MC(C)
for all causal rules l ⇐ C from T and rules (11). If

H ← B is l ← MC(C) then conditions (14) are sat-
isfied whenever l is l0 or l1. If H ← B is one of the
first two rules (11) then the second of conditions (14) is
violated. If H ← B is one of the last two rules (11)
then the first of conditions (14) is violated. Conse-
quently, ESΠ({l0, l1}) is the disjunction of the formulas
pf (MC(C)) for the bodies C of all rules of the forms
l0 ⇐ C and l1 ⇐ C from T . Hence the loop formula of
{l0, l1} is

(l0 ∨ l1) →
∨

l ⇐ C ∈ T

l ∈ {l0, l1}

pf (MC(C)),

or
(l0 ∨ l1) →

∨
l ⇐ C ∈ T

l ∈ {l0, l1}

C. (20)

The loop formula (16), in the case when L is {l0, l1}
and T is T1, can be simplified in a similar way. The
conditions

F ∩ {l0, l1} = ∅ and F ∩ {l0, l1} = ∅
cannot be both satisfied if F ⇐ G is one of the
rules (18). On the other hand, if F ⇐ G is l ⇐ C then
these conditions turn into l ∈ {l0, l1}, and G∧∧l∈F\L l

turns into C. Consequently, (16) becomes (20). For the
loop {l0, l1} the reasoning is similar.

Related and Future Work
Ferraris (2007) showed how to translate an arbitrary
causal theory into the language of nested logic programs
in the sense of (Lifschitz et al. 1999), and his translation
can be applied, in particular, to synonymity rules. For
instance, the result of applying Ferraris’s translation to

p ↔ q ⇐ r

is the pair of rules

p;¬q ← not not r, (¬p;not ¬p), (q;not q),
q;¬p ← not not r, (¬q;not ¬q), (p;not p).

It looks quite different from the translation proposed in
this paper:

p ← q,not ¬r,
q ← p,not ¬r,

¬p ← ¬q,not ¬r,
¬q ← ¬p,not ¬r.

However, the result of (Ferraris 2007) can be used as
a basis for an alternative proof of our theorem on syn-
onymity.7

In the future, we plan to extend the theorem on syn-
onymity in several ways, with the eye on applying this
line of research to re-implementing MAD, as discussed
in Introduction. First, we would like to allow several
synonymity rules, and not just one as in this paper.

7Paolo Ferraris, personal communication, July 18, 2009.

Furthermore, in connection with the semantics of vari-
ables in action descriptions proposed in (Lifschitz and
Ren 2007) and (Ren 2009, Chapter 10), the theorem
needs to be extended to first-order causal logic in the
sense of (Lifschitz 1997) and to the version of the stable
model semantics developed in (Ferraris et al. 2007) and
(Ferraris et al. 2010).

We will also investigate the possibility of using the
extension of the theory of loop formulas presented in
this paper for improving the computational method of
the answer set solver cmodels when the goal is to gen-
erate complete answer sets.

Acknowledgements
We are grateful to Selim Erdoğan, Paolo Ferraris, and
Michael Gelfond for comments on a draft of this note.
This research was partially supported by the National
Science Foundation under grants IIS-0712113 and IIS-
0916116 and by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), through US army. All
statements of fact, opinion or conclusions contained
herein are those of the authors and should not be con-
strued as representing the official views or policies of
IARPA, the ODNI or the U.S. Government.

References
Keith Clark. Negation as failure. In Herve Gallaire
and Jack Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, New York, 1978.
Selim T. Erdoğan and Vladimir Lifschitz. Actions as
special cases. In Proceedings of International Confer-
ence on Principles of Knowledge Representation and
Reasoning (KR), pages 377–387, 2006.
Selim T. Erdoğan. A Library of General-Purpose Ac-
tion Descriptions.8 PhD thesis, University of Texas at
Austin, 2008.
François Fages. A fixpoint semantics for general logic
programs compared with the well–supported and sta-
ble model semantics. New Generation Computing,
9:425–443, 1991.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
A new perspective on stable models. In Proceedings
of International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 372–379, 2007.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
Stable models and circumscription.9 Artificial Intelli-
gence, 2010. To appear.
Paolo Ferraris. A logic program characterization of
causal theories. In Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), pages
366–371, 2007.

8http://www.cs.utexas.edu/users/tag/mad/erdogan-
dissertation.pdf

9http://peace.eas.asu.edu/joolee/papers/smcirc.
pdf

Richard Fikes and Nils Nilsson. STRIPS: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2(3–4):189–208,
1971.
Michael Gelfond and Daniela Inclezan. Yet another
modular action language. In Proceedings of the Second
International Workshop on Software Engineering for
Answer Set Programming10, pages 64–78, 2009.
Michael Gelfond and Vladimir Lifschitz. Classical
negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.
Joohyung Lee and Vladimir Lifschitz. Loop formulas
for disjunctive logic programs. In Proceedings of Inter-
national Conference on Logic Programming (ICLP),
pages 451–465, 2003.
Joohyung Lee. Nondefinite vs. definite causal theories.
In Proceedings 7th Int’l Conference on Logic Program-
ming and Nonmonotonic Reasoning, pages 141–153,
2004.
Joohyung Lee. A model-theoretic counterpart of loop
formulas. In Proceedings of International Joint Con-
ference on Artificial Intelligence (IJCAI), pages 503–
508. Professional Book Center, 2005.
Vladimir Lifschitz and Wanwan Ren. A modular ac-
tion description language. In Proceedings of National
Conference on Artificial Intelligence (AAAI), pages
853–859, 2006.
Vladimir Lifschitz and Wanwan Ren. The semantics of
variables in action descriptions. In Proceedings of Na-
tional Conference on Artificial Intelligence (AAAI),
2007.
Vladimir Lifschitz, Lappoon R. Tang, and Hudson
Turner. Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence, 25:369–389,
1999.
Vladimir Lifschitz. On the logic of causal explanation.
Artificial Intelligence, 96:451–465, 1997.
Fangzhen Lin and Yuting Zhao. ASSAT: Computing
answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence, 157:115–137, 2004.
Norman McCain and Hudson Turner. Causal theories
of action and change. In Proceedings of National Con-
ference on Artificial Intelligence (AAAI), pages 460–
465, 1997.
Norman McCain. Causality in Commonsense Reason-
ing about Actions.11 PhD thesis, University of Texas
at Austin, 1997.
Wanwan Ren. A Modular Language for Describing
Actions.12 PhD thesis, University of Texas at Austin,
2009.
10http://www.sea09.cs.bath.ac.uk/downloads/

sea09proceedings.pdf
11ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.

ps.gz
12http://www.cs.utexas.edu/users/rww6/

dissertation.pdf

	Representing Synonymity in Causal Logic and in Logic Programming
	Recommended Citation

	DPS-Paper2.pdf

