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Fages� Theorem
and Answer Set Programming

Yuliya Babovich� Esra Erdem and Vladimir Lifschitz
Department of Computer Sciences
University of Texas at Austin

Austin� TX ������ USA
Email� fyuliya�esra�vlg�cs	utexas	edu

Abstract

We generalize a theorem by Fran�cois Fages that de�
scribes the relationship between the completion seman�
tics and the answer set semantics for logic programs
with negation as failure� The study of this relationship
is important in connection with the emergence of an�
swer set programming� Whenever the two semantics
are equivalent� answer sets can be computed by a sat�
is�ability solver� and the use of answer set solvers such
as smodels and dlv is unnecessary� A logic program�
ming representation of the blocks world due to Ilkka
Niemel�a is discussed as an example�

Introduction

This note is about the relationship between the comple

tion semantics �Clark ����
 and the answer set ��sta

ble model�
 semantics �Gelfond � Lifschitz ����
 for
logic programs with negation as failure	 The study
of this relationship is important in connection with
the emergence of answer set programming �Marek
� Truszczy�nski ����� Niemel�a ����� Lifschitz ����
	
Whenever the two semantics are equivalent� answer sets
can be computed by a satis�ability solver� and the use
of �answer set solvers� such as smodels� and dlv

� is
unnecessary	
Consider a �nite propositional �or grounded
 pro


gram � without classical negation� and a set X of
atoms	 If X is an answer set for � then X � viewed
as a truth assignment� satis�es the completion of �	
The converse� generally� is not true	 For instance� the
completion of

p� p ��


is p � p	 This formula has two models �� fpg� the
�rst is an answer set for ��
� but the second is not	
Fran�cois Fages ������ de�ned a syntactic condition on
logic programs that implies the equivalence between
the two semantics��positive
order
consistency�� also
called �tightness� �Lifschitz ����
	 What he requires
is the existence of a function � from atoms to nonneg

ative integers �or� more generally� ordinals
 such that�

�http���saturn�hut�fi�pub�smodels� �
�http���www�dbai�tuwien�ac�at�proj�dlv� �

for every rule

A� � A�� � � � � Am�not Am��� � � � �not An

in ��
��A�
� � � � � ��Am
 � ��A�
�

It is clear� for instance� that program ��
 is not tight	
Fages proved that� for a tight program� every model of
its completion is an answer set	 Thus� for tight pro

grams� the completion semantics and the answer set
semantics are equivalent	
Our generalization of Fages� theorem allows us to

draw similar conclusions for some programs that are
not tight	 Here is one such program�

p� not q�
q � not p�
p� p� r�

��


It is not tight	 Nevertheless� each of the two models
fpg� fqg of its completion

p � �q � �p � r
�
q � �p�
r � �

is an answer set for ��
	
The idea of this generalization is to make function

� partial	 Instead of tight programs� we will consider
programs that are �tight on a set of literals	�
First we relate answer sets to a model
theoretic coun


terpart of completion introduced in �Apt� Blair� �
Walker ����
� called supportedness	 This allows us to
make the theorem applicable to programs with both
negation as failure and classical negation� and to pro

grams with in�nitely many rules	� Then a corollary
about completion is derived� and applied to a logic pro

gramming representation of the blocks world due to
Ilkka Niemel�a	 We show how the satis�ability solver
sato �Zhang ����
 can be used to �nd answer sets for
that representation� and compare the performance of
smodels and sato on several benchmarks	

�The familiar de�nition of completion �see Appendix	 is
applicable to �nite programs only� unless we allow in�nite
disjunctions in completion formulas�



Generalized Fages� Theorem
We de�ne a rule to be an expression of the form

Head � L�� � � � � Lm�not Lm��� � � � �not Ln ��


�n 	 m 	 �
 where each Li is a literal �propositional
atom possibly preceded by classical negation �
� and
Head is a literal or the symbol �	 A rule ��
 is called a
fact if n � �� and a constraint if Head � �	 A program
is a set of rules	 The familiar de�nitions of answer sets�
closed sets and supported sets for a program� as well
as the de�nition of the completion of a program� are
reproduced in the appendix	
Instead of �level mappings� used by Fages� we con


sider here partial level mappings�partial functions
from literals to ordinals	 A program � is tight on a
set X of literals if there exists a partial level mapping
� with the domain X such that� for every rule ��
 in ��
if Head � L�� � � � � Lm 
 X then

��L�
� � � � � ��Lm
 � ��Head 
�

�For the constraints in � this condition holds trivially�
because the head of a constraint is not a literal and thus
cannot belong to X 	


Theorem� For any program � and any consistent set
X of literals such that � is tight on X � X is an answer
set for � i� X is closed under and supported by ��

The proof below is almost unchanged from the proof
of Fages� theorem given in �Lifschitz � Turner �����
Section �	�
	

Lemma� For any program � without negation as fail�
ure and any consistent set X of literals such that � is
tight on X � if X is closed under and supported by ��
then X is an answer set for ��

Proof� We need to show that X is minimal among the
sets closed under �	 Assume that it is not	 Let Y be a
proper subset of X that is closed under �� and let � be
a partial level mapping establishing that � is tight on
X 	 Take a literal L 
 X nY such that ��L
 is minimal	
Since X is supported by �� there is a rule

L� L�� � � � � Lm

in � such that L�� � � � � Lm 
 X 	 By the choice of ��

��L�
� � � � � ��Lm
 � ��L
�

By the choice of L� we can conclude that

L�� � � � � Lm 
 Y�

Consequently Y is not closed under �� contrary to the
choice of Y 	

Proof of the Theorem� Left
to
right� the proof is
straightforward	 Right
to
left� assume that X is closed
under and supported by �	 Then X is closed under
and supported by �X 	 Since � is tight on X � so is �X 	
Hence� by the lemma� X is an answer set for �X � and
consequently an answer set for �	

In the special case when � is a �nite programwithout
classical negation� a set of atoms satis�es the comple

tion of � i it is closed under and supported by �	 We
conclude�

Corollary �� For any �nite program � without clas�
sical negation and any set X of atoms such that � is
tight on X � X is an answer set for � i� X satis�es the
completion of ��

For instance� program ��
 is tight on the model fpg
of its completion� take ��p
 � �	 By Corollary �� it
follows that fpg is an answer set for ��
	 In a similar
way� the theorem shows that fqg is an answer set also	
By pos��
 we denote the set of all literals that occur

without negation as failure at least once in the body of
a rule of �	

Corollary �� For any program � and any consistent
set X of literals disjoint from pos��
� X is an answer
set for � i� X is closed under and supported by ��

Corollary �� For any �nite program � without clas�
sical negation and any set X of atoms disjoint from
pos��
� X is an answer set for � i� X satis�es the
completion of ��

To derive Corollary � from the theorem� and Corol

lary � from Corollary �� take ��L
 � � for every L 
 X 	
Consider� for instance� the program

p� not q�
q � not p�
r � r�
p� r�

��


The completion of ��
 is

p � �q � r�
q � �p�
r � r�

The models of these formulas are fpg� fqg and fp� rg	
The only literal occurring in the bodies of the rules
of ��
 without negation as failure is r	 In accordance
with Corollary �� the models of the completion that
do not contain r�sets fpg and fqg�are answer sets
for ��
	

Planning in the Blocks World

As a more interesting example� consider a logic pro

gramming encoding of the blocks world due to Ilkka
Niemel�a	 The main part of the encoding consists of the
following schematic rules�

goal �� time�T�� goal�T��
�� not goal�

goal�T�� �� nextstate�T��T	�� goal�T	��

moveop�X�Y�T���
time�T�� block�X�� object�Y�� X 
� Y�
on�something�X�T�� available�Y�T��
not covered�X�T�� not covered�Y�T��
not blocked�move�X�Y�T��



on�X�Y�T�� ��
block�X�� object�Y�� nextstate�T��T	��
moveop�X�Y�T	��

on�something�X�T� ��
block�X�� object�Z�� time�T�� on�X�Z�T��

available�table�T� �� time�T��

available�X�T� ��
block�X�� time�T�� on�something�X�T��

covered�X�T� ��
block�Z�� block�X�� time�T�� on�Z�X�T��

on�X�Y�T�� ��
nextstate�T��T	�� block�X�� object�Y��
on�X�Y�T	�� not moving�X�T	��

moving�X�T� �� time�T�� block�X�� object�Y��
moveop�X�Y�T��

blocked�move�X�Y�T���
block�X�� object�Y�� time�T�� goal�T��

blocked�move�X�Y�T� ��
time�T�� block�X�� object�Y��
not moveop�X�Y�T��

blocked�move�X�Y�T� ��
block�X�� object�Y�� object�Z�� time�T��
moveop�X�Z�T�� Y 
� Z�

blocked�move�X�Y�T� ��
block�X�� object�Y�� time�T�� moving�Y�T��

blocked�move�X�Y�T� ��
block�X�� block�Y�� block�Z�� time�T��
moveop�Z�Y�T�� X 
� Z�

�� block�X�� time�T�� moveop�X�table�T��
on�X�table�T��

�� nextstate�T��T	�� block�X�� object�Y��
moveop�X�Y�T	�� moveop�X�table�T���

nextstate�Y�X� �� time�X�� time�Y��
Y � X 
 	�

object�table��
object�X� �� block�X��

To solve a planning problem� we combine these rules
with

�i
 a set of facts de�ning time�	 as an initial segment of
nonnegative integers� for instance

time���� time�	�� time����

�ii
 a set of facts de�ning block�	� such as

block�a�� block�b�� block�c��

�iii
 a set of facts encoding the initial state� such as

on�a�b���� on�b�table����

�iv
 a rule that encodes the goal� such as

goal�T� �� time�T�� on�a�b�T�� on�b�c�T��

The union is given as input to the �intelligent ground

ing� program lparse� and the result of grounding is
passed on to smodels �Niemel�a ����� Section �
	 The
answer sets for the program correspond to valid plans	
Concurrently executed actions are allowed in this for


malization as long as their e ects are not in con!ict� so
that they can be arbitrarily interleaved	
The schematic rules above contain the variables T�

T	� T�� X� Y� Z that range over the object constants
occurring in the program� that is� over the nonnega

tive integers that occur in the de�nition of time�	� the
names of blocks a� b�� � � that occur in the de�nition of
block�	� and the object constant table	
The expressions in the bodies of the schematic rules

that contain � and 
� restrict the constants that are
substituted for the variables in the process of grounding	
For instance� we understand the schematic rule

nextstate�Y�X� �� time�X�� time�Y��
Y � X 
 	�

as an abbreviation for the set of all ground instances of

nextstate�Y�X� �� time�X�� time�Y��

in which X and Y are instantiated by a pair of consecu

tive integers	 The schematic rule

blocked�move�X�Y�T� ��
block�X�� object�Y�� object�Z�� time�T��
moveop�X�Z�T�� Y 
� Z�

stands for the set of all ground instances of

blocked�move�X�Y�T� ��
block�X�� object�Y�� object�Z�� time�T��
moveop�X�Z�T��

in which Y and Z are instantiated by di erent object
constants	
According to this understanding of variables and

�built
in predicates�� Niemel�a�s schematic program� in

cluding rules �i
"�iv
� is an abbreviation for a �nite pro

gram BW in the sense de�ned above	
In the proposition below we assume that schematic

rule �iv
 has the form

goal�T� �� time�T�� ���

where the dots stand for a list of schematic atoms with
the predicate symbol on and the last argument T	

Proposition� Program BW is tight on each of the
models of its completion�



Lemma� For any atom of the form nextstate�Y�X�
that belongs to a model of the completion of pro�
gram BW � Y � X# ��

Proof� The completion of BW contains the formula

nextstate�Y� X
� false

for all Y� X such that Y �� X# �	

Proof of the Proposition� Let X be an answer set
for BW 	 By Tmax we denote the largest argument of
time�	 in its de�nition �i
	 Consider the partial level
mapping � with domain X de�ned as follows�

��time�T

 � ��
��block�X

 � ��
��object�X

 � ��
��nextstate�Y� X

 � ��
��covered�X� T

 � � � T# ��
��on something�X� T

 � � � T# ��
��available�X� T

 � � � T# ��
��moveop�X� Y� T

 � � � T# $�
��on�X� Y� T

 � � � T# ��
��moving�X� T

 � � � T# ��
��goal�T

 � � � T# ��
��blocked move�X� Y� T

 � � � T# ��
��goal
 � � � Tmax # ��

This level mapping satis�es the inequality from the def

inition of a tight program for every rule of BW � the
lemma above allows us to verify this assertion for the
rules containing nextstate in the body	

According to Corollary �� we can conclude that the
answer sets for program BW can be equivalently char

acterized as the models of the completion of BW 	

Answer Set Programming

with CCALC and SATO

The equivalence of the completion semantics to the an

swer set semantics for program BW shows that it is not
necessary to use an answer set solver� such as smodels�
to compute answer sets for BW � a satis�ability solver
can be used instead	 Planning by giving the completion
of BW as input to a satis�ability solver is a form of an

swer set programming and� at the same time� a special
case of satis�ability planning �Kautz � Selman ����
	
The Causal Calculator� or ccalc�� is a system that

is capable� among other things� of grounding and com

pleting a schematic logic program� clausifying the com

pletion� and calling a satis�ability solver �for instance�
sato
 to �nd a model	 We have conducted a series of
experiments aimed at comparing the run times of sato�
when its input is generated from BW by ccalc� with
the run times of smodels� when its input is generated
from BW by lparse	
Because the built
in arithmetic of ccalc is somewhat

di erent from that of lparse� we had to modify BW

�http���www�cs�utexas�edu�users�tag�ccalc� �

Problem Blocks Steps Run time Run time
of of

smodels sato

large	c �$ � �	�� �	��
� ��	�$ �	��

large	d �� � ��	�$ �	��
� ��	�� �	��

large	e �� � ��	�� $	��
�� ���	� �	��

Figure �� Planning with BW � sato vs	 smodels

slightly	 Our ccalc input �le uses variables of sorts
object� block and time instead of the unary predicates
with these names	 The rules of BW that contain those
predicates in their bodies are modi�ed accordingly	 For
instance� rule

on�something�X�T� ��
block�X�� object�Z�� time�T�� on�X�Z�T��

turns into

on�something�B	�T� �� on�B	�O��T��

The macro expansion facility of ccalc expands

nextstate�T��T	�

into the expression

T� is T	 
 	

that contains Prolog�s built
in is	
Figure � shows the run times of smodels �Version

�	�$
 and sato �Version �	�	�
 in seconds� measured
using the Unix time command� on the benchmarks
from �Niemel�a ����� Section �� Table �
	 For each prob

lem� one of the two entries corresponds to the largest
number of steps for which the problem is not solvable�
and the other to the smallest number of steps for which
a solution exists	 The experiments were performed on
an UltraSPARC with ��� MB main memory and a ���
MHz CPU	
The numbers in Figure � are �search times��the

grounding and completion times are not included	 The
computation involved in grounding and completion
does not depend on the initial state or the goal of the
planning problem and� in this sense� can be viewed
as �preprocessing	� lparse performs grounding more
e%ciently than ccalc� partly because the former is
written in C## and the latter in Prolog	 The last
benchmark in Figure � was grounded by lparse �Ver

sion �	��	��
 in �� seconds� ccalc �Version �	��
 spent
$� seconds in grounding and about the same amount
of time forming the completion	 But the size of the
grounded program is approximately the same in both
cases� lparse generated ������ rules containing �����
atoms� and ccalc generated ������ rules containing
����� atoms	



Discussion

Fages� theorem� and its generalization proved in this
note� allow us to compute answer sets for some pro

grams by completing them and then calling a satis�abil

ity solver	 We showed that this method can be applied�
for instance� to the representation of the blocks world
proposed in �Niemel�a ����
	 This example shows that
satis�ability solvers may serve as useful computational
tools in answer set programming	
There are cases� on the other hand� when the com


pletion method is not applicable	 Consider comput

ing Hamiltonian cycles in a directed graph �Marek �
Truszczy�nski ����
	 We combine the rules

in�U�V� �� edge�U�V�� not out�U�V��
out�U�V� �� edge�U�V�� not in�U�V��

�� in�U�V�� in�U�W�� V 
� W�
�� in�U�W�� in�V�W�� U 
� V�

reachable�V� �� in�v��V��
reachable�V� �� reachable�U�� in�U�V��

�� vertex�U�� not reachable�U��

with a set of facts de�ning the vertices and edges of the
graph� v� is assumed to be one of the vertices	 The
answer sets for the resulting program correspond to
the Hamiltonian cycles	 Generally� the completion of
the program has models di erent from its answer sets	
Take� for instance� the graph consisting of two disjoint
loops�

vertex�v��� vertex�v	��
edge�v��v��� edge�v	�v	��

This graph has no Hamiltonian cycles� and� accordingly�
the corresponding program has no answer sets	 But the
set

vertex�v��� vertex�v	�� edge�v��v���
edge�v	�v	�� in�v��v��� in�v	�v	��
reachable�v��� reachable�v	�

is a model of the program�s completion	
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Appendix� De�nitions
The notion of an answer set is de�ned �rst for programs
whose rules do not contain negation as failure	 Let �
be such a program� and let X be a consistent set of
literals	 We say that X is closed under � if� for every
rule

Head � Body

in �� Head 
 X whenever Body 
 X 	 �For a constraint�
this condition means that the body is not contained
in X 	
 We say that X is an answer set for � if X
is minimal among the sets closed under � w	r	t	 set
inclusion	 It is clear that a program without negation
as failure can have at most one answer set	
To extend this de�nition to arbitrary programs� take

any program �� and let X be a consistent set of literals	
The reduct �X of � relative to X is the set of rules

Head � L�� � � � � Lm

for all rules ��
 in � such that Lm��� � � � � Ln �
 X 	 Thus
�X is a program without negation as failure	 We say
that X is an answer set for � if X is an answer set
for �X 	
A set X of literals is closed under � if� for ev


ery rule ��
 in �� Head 
 X whenever L�� � � � � Lm 
 X
and Lm��� � � � � Ln �
 X	 We say that X is sup�
ported by � if� for every L 
 X� there is a rule ��

in � such that Head � L� L�� � � � � Lm 
 X and
Lm��� � � � � Ln �
 X	



Let � be a �nite program without classical negation	
If H is an atom or the symbol �� by Comp��� H
 we
denote the formula

H �
�
�A� � � � � � Am � �Am�� � � � � � �An


where the disjunction extends over all rules

H � A�� � � � � Am�not Am��� � � � �not An

in � with the head H 	 The completion of � is set of
formulas Comp��� H
 for all H 	
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