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Abstract 18 

Objective. Claudication is the most common presentation of peripheral arterial disease producing 19 

significant ambulatory compromise. Claudicating patients, the majority of which are elderly, 20 

have reduced mobility and poor health outcomes, including increased risk of falls. The gait of 21 

elderly fallers is characterized by increased variability. Increase in the variability of the 22 

locomotor system makes gait more noisy and unstable. The purpose of this study is to investigate 23 

gait variability in PAD patients. 24 

Design/Methods: Nineteen symptomatic PAD patients (age: 63.6 ± 9.8 years, body mass: 82.1 ± 25 

18.5 kg, body height: 1.71 ± 0.06 m) walked on a treadmill in the absence of pain or claudication 26 

symptoms while joint flexion and extension kinematics were captured. Results were compared to 27 

those obtained from 17 matched healthy controls (age: 65.2 ± 12.5 years, body mass: 82.0 ± 28 

25.9.5 kg, body height: 1.73 ± 0.08 m). Relative joint angles were calculated for the ankle, knee 29 

and hip flexion/extension and the stride to stride variability of joint flexion and extension was 30 

calculated from at least 30 consecutive footfalls. Variability was expressed using the largest 31 

Lyapunov Exponent, standard deviation and coefficient of variation. Independent t-tests were 32 

used to compare gait variability between groups.  33 

Results. Symptomatic PAD patients had significantly higher Lyapunov Exponent values and 34 

coefficient of variation values for all joints, and higher standard deviation values at the ankle and 35 

the hip (P < 0.05).  36 

Conclusions: Symptomatic PAD patients have increased gait variability at the ankle, knee, and 37 

hip joints at baseline ambulation in the absence of claudication pain. Our findings indicate 38 

significant baseline deterioration in the locomotor system of symptomatic PAD patients. This 39 

deterioration results in increased noise and instability of gait and is a potential contributing factor 40 

to the falls and mobility problems experienced by the symptomatic PAD patients. 41 



 

 

Introduction 42 

Peripheral arterial disease (PAD) is a manifestation of atherosclerosis producing 43 

blockages in the arteries supplying the lower extremities. PAD affects eight to twelve million 44 

people in the Unites States, the majority of which are elderly (1, 2).  Patients with significant PAD 45 

cannot increase the blood flow to their legs during exercise and experience a combination of 46 

ischemic muscle pain and inability to walk normally called intermittent claudication. 47 

Claudicating patients, most of which are elderly, have reduced mobility and poor health 48 

outcomes, including increased risk of falls. Although gait in PAD patients with a history of falls 49 

has not been previously investigated, it has been the subject of considerable research in the 50 

elderly population. Advanced biomechanical analysis has demonstrated that one of the most 51 

important changes noted in the gait of elderly fallers is increased variability (3- 5).  Because PAD 52 

patients tend to be older and to fall (6,7) we hypothesized that they also have increased gait 53 

variability.   54 

Variability is inherent within all biological systems and can be described as the normal 55 

variations that occur in motor performance across multiple repetitions of a specific task. In 56 

healthy adults, the way leg joints flex and extend changes from one stride to the next (Figure 1), 57 

in a variable manner (8,9). Mathematical techniques from chaos theory or nonlinear applications 58 

have demonstrated that such variations are not random but have a deterministic pattern. In a 59 

biological system such as the ambulating normal lower extremities there is an “optimal” amount 60 

of variability. This variability has highly organized form and its maintenance at the “optimal” 61 

level is associated with health. Both a decrease and an increase in the form of the variability are 62 

associated with malfunction and disease. A decrease or loss of form makes the locomotor system 63 

more rigid and less adaptable to different perturbations (“robot-like” walking), while an increase 64 
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makes the system more noisy and unstable (“drunken-like” walking). Study of variability in 65 

different organ systems has demonstrated that alterations in heart rhythm variability can predict 66 

arrhythmias (10) and sudden cardiac death syndrome (11), while alterations in brain wave 67 

variability are associated with ischemic brain syndromes (12) and epileptic seizures (13) . Similarly, 68 

analysis of the variability of the gait patterns of PAD patients may provide a window into the 69 

status of the locomotor system of the patient. It can allow insight into the intricate strategies 70 

PAD patients use to control movement and eventually help develop appropriate prognostic and 71 

diagnostic tools. Gait variability can be measured using advanced biomechanical analysis and 72 

can be described by using linear and nonlinear tools. Linear tools measure magnitude or amount 73 

of variation and include the standard deviation and the coefficient of variation. Standard 74 

deviation shows how much are a series of data spread around a central point (i.e. mean), while 75 

coefficient of variation is a normalized measure of this dispersion to the mean. Nonlinear tools 76 

measure how variability changes over time (from one stride to the next) and tell us about the 77 

structure of variability. A commonly used nonlinear tool is the largest Lyapunov exponent (8.14) 78 

(16, 27, 28). The purpose of this study was to determine the gait variability by evaluating the joint 79 

kinematic variability of the lower extremities in claudicating patients as compared to age, height, 80 

mass, and gender matched controls.   81 

82 
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Methods 83 

Subjects 84 

Nineteen symptomatic PAD patients (age: 63.6  9.8 years, body mass: 82.118.4 kg, body 85 

height: 1.710.06 m) diagnosed with moderate arterial occlusive disease and bilateral 86 

claudication were recruited from the vascular surgery clinics of the Veterans Affairs Medical 87 

Center of Nebraska and Western Iowa and the University of Nebraska Medical Center, Omaha, 88 

NE. In addition, seventeen height, mass, gender, and age matched healthy controls (age: 65.2  89 

12.5 years, body mass: 82.0  25.9 kg, body height: 1.73  0.08m) were recruited from the 90 

community and volunteered to participate.  Informed consent was obtained from all subjects 91 

prior to data collection according to the guidelines of the respective institutions’ Institutional 92 

Review Boards. Patients and controls were screened and evaluated by two board certified 93 

vascular surgeons. Patient evaluation included detailed history, physical exam and direct 94 

assessment/observation of the patient’s walking impairment. A vascular surgeon observed the 95 

patient walking to insure limitation was secondary to claudication pain. Those PAD patients with 96 

ambulation limiting cardiac, pulmonary, neuromuscular or musculoskeletal disease or those who 97 

experienced pain or discomfort during walking for any reason other than claudication (i.e. 98 

arthritis, low back pain, musculoskeletal problems, neuropathy) were excluded.   99 

Control subjects had an Ankle Brachial Index ≥ 1.0 and no subjective or objective 100 

ambulatory dysfunction. Controls were screened in a similar fashion as PAD patients and were 101 

excluded for the same ambulation limiting co-morbidities or if pain was experienced during 102 

walking. The gait of all recruited participants was tested in the biomechanics laboratory.  103 

Experimental Procedure and Data Collection 104 
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Prior to data collection, reflective markers were placed at specific anatomical locations of 105 

each subject’s lower limb utilizing the systems used by Vaughan (15) and Nigg (16). Subjects wore 106 

a tightly fitting running suit to allow markers to be placed as close to the anatomical position as 107 

possible.  Following the marker placement, subjects were allowed to get accustomed to the 108 

treadmill prior to recording data.  During this familiarization period, subjects started walking at 109 

0.45 m/sec and were free to increase or decrease the speed until a comfortable speed was found; 110 

this speed was identified as the self-selected speed. Subjects were given up to 10 minutes to get 111 

used to the treadmill, this time has previously been found to be adequate for subjects to achieve a 112 

proficient treadmill walking pattern (17). The patient was then allowed to rest to insure absence of 113 

claudication pain before data collection began.  Three dimensional kinematics were acquired at 114 

60 Hz using EVART software (Motion Analysis Corp., Santa Rosa CA) while subjects walked 115 

on a treadmill at their self-selected speed.  Self-selected speed is the most comfortable and 116 

natural walking speed and is the optimal speed to evaluate gait variability (18).  A predetermined 117 

speed could put subjects into an uncomfortable situation, which may be manifested with 118 

increased variability, as opposed to the more stable state that occurs with the self-selected speed 119 

(18).  Patients walked on the treadmill for three minutes or until the onset of claudication pain, 120 

whichever came first.  All kinematic measurements were taken prior to the onset of claudication 121 

symptoms. For safety purposes, blood pressure was monitored before and after the treadmill test.  122 

Data Analysis 123 

Data was exported and processed in custom software using Matlab (Mathworks Inc., 124 

MA).  This software was used to calculate the relative joint angle time series for the ankle, knee 125 

and hip flexion/extension. The within and between session repeatability of kinematic gait 126 

parameters is high with intraclass correlation coefficients ranging between 0.82 and 0.99, and 127 
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coefficients of multiple comparisons ranging from 0.82 to 0.99 (19). Furthermore, joint kinematic 128 

variability was examined, because it has been shown that variability of stride characteristics (i.e. 129 

stride length, stride time) offer a less sensitive measure of differences between groups than 130 

variability of joint kinematics (20). A trial with a minimum of 30 footfalls was considered 131 

adequate for nonlinear and linear analysis (9, 21-24).  All joint angle time series were graphed and 132 

the number of data points required to reach 30 strides was counted.  After the minimum data 133 

points for 30 strides were determined for all subjects, all data were cropped to that number, 134 

insuring each time series included at least 30 gait cycles.  All subjects in the study were able to 135 

complete 30 strides prior to the onset of claudication pain. The data was analyzed unfiltered to 136 

obtain a more accurate representation of the variability within the locomotor system.  Because 137 

the same collection system was used for all subjects, we assumed a consistent level of 138 

measurement noise exists. Therefore any differences between groups could be attributed to the 139 

differences in the locomotor system itself (8,25).  Time series of these values were exported in 140 

ASCII format and used for further analysis.  141 

Linear analysis 142 

From each time series, range of motion was calculated for every gait cycle for the ankle, 143 

knee and hip angles.  Means were then calculated for each variable and for each subject, as well 144 

as standard deviations and coefficients of variation.  The calculation of these parameters was 145 

performed in Matlab (Mathworks Inc., MA). This analysis supplemented the nonlinear analysis 146 

and provided answers regarding the magnitude of variability present in the gait patterns. 147 

Largest Lyapunov Exponent 148 

The largest Lyapunov exponent quantifies the mean rate of divergence of neighbored state-space 149 

trajectories and estimates the amount of variability in the a system (Figure 1). The calculation of 150 
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the largest Lyapunov Exponent takes into consideration the entire time series of the joint angle 151 

(it does not occur at a specific time point in each time series).   It was calculated for all joint 152 

angle time series and for both groups.   153 

 154 

 155 

 156 

 157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

Further description of the actual calculation of this measure is included in Appendix A. The 166 

largest Lyapunov Exponent quantifies the exponential separation of nearby trajectories in the 167 

reconstructed state space of the joint angle time series. As nearby points of the state space 168 

separate, they diverge rapidly and can produce instability (Figure 1). The largest Lyapunov 169 

Exponent from a stable system with little to no divergence will be zero (e.g. since wave). 170 

Alternatively, the largest Lyapunov Exponent for an unstable system that has a high amount of 171 

divergence will be positive with a larger value (above 0.5; Figure 2) (8-9,23). The Chaos Data 172 
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Figure 1. A graphical representation of the state space of an 

ankle joint angle time series and the calculation of the largest 

Lyapunov Exponent. (A) An original ankle plantarflexion-

dorsiflexion time series from a control subject. (B) A two-

dimensional state space created by the position and velocity 

time series from the same ankle angle. Each step (from heel 

touchdown to heel touchdown in the same foot) includes both a 

large and a small circle. The large circle corresponds to the 

maximum ankle plantarflexion and dorsiflexion positions 

around toe off, while the small circle corresponds to the 

relatively smaller ankle plantarflexion and dorsiflexion 

positions around heel touchdown. This becomes apparent by 

comparing the maximum and minimum values from part A to 

the position values from part B. They range from about -20 

degrees to 20 degrees for the absolute maximums (large circle) 

and from about -5 degrees to 5 degrees for the local maximums 

(small circle). (C) A section of the state space where the 

divergence of neighboring trajectories is outlined. The 

largest Lyapunov exponent is calculated as the slope 

of the average logarithmic divergence of the 

neighboring trajectories (9).  
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Analyzer (professional version, American Institute of Physics (21) was used to numerically 173 

calculate the largest Lyapunov Exponent for each joint angle time series for each subject. 174 

One of the assumptions made when calculating the largest Lyapunov Exponent is that the 175 

source of the variation in a given time series is actually deterministic in nature (8-9,26). A 176 

deterministic time series is one that has an ordered pattern (each point in the series is related to 177 

its preceding points). Therefore, to ensure our time series met this assumption, we used the 178 

method of surrogation. Surrogation compares the original time series data set to an equivalent 179 

random data set with similar structure. Essentially, surrogation removes the deterministic 180 

characteristics from the actual joint angle data set by shuffling the data to and produces a random 181 

series with the same mean, variance and power spectra as the original data. The surrogated data 182 

set includes the same values as the original time series, but the values are in a different order, so 183 

that the points are no longer related with each other (random). Significant differences in largest 184 

Lyapunov Exponent values between the original and surrogate counterparts reveal show that the 185 

variations in the original time series are not randomly derived, but they are deterministic in 186 

nature (9)(17). 187 

Surrogated data sets were created for each original joint angle time series analyzed. This 188 

procedure was performed in Matlab (Mathworks Inc, MA) using the pseudoperiodic surrogation 189 

algorithm (9,26). The pseudoperiodic algorithm is used to determine if there is additional 190 

determinism in the fluctuations present in a time series that have inherent periodicity (e.g. gait 191 

cycles).  Largest Lyapunov Exponent values were calculated for both the surrogated and original 192 

joint angle time series data and compared using a dependent t-test (alpha=0.05).  Significant 193 

differences between data sets indicate that the variations present in the original data set are not 194 

random, but they are deterministic in nature. 195 
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Statistical Analysis 196 

Means for the standard deviation and the coefficient of variation of the range of motion 197 

and the largest Lyapunov Exponent were calculated for the ankle, knee and hip joints for both 198 

patient and control groups.  Independent t-tests were used to compare the group means between 199 

the two groups. Statistical comparisons were performed using SPSS (SPSS Inc., 12.0).  The level 200 

of significance was set at α = 0.05. 201 

202 
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Results 203 

Group means for age (P=.986), height (P=.281), weight (P=.397) and body mass index 204 

(BMI; P=.605) did not differ between patients and controls, verifying that the two groups were 205 

well matched (Table 1), whereas clinical characteristics of the two groups were quite different 206 

(Table 1). 207 

For the nonlinear analysis, PAD patients had significantly higher largest Lyapunov 208 

Exponent values than controls for the ankle, knee and hip joints (Table 2). These findings 209 

demonstrate that joint movement patterns in PAD patients were farther apart in consecutive 210 

strides (Figure 2) and indicate altered neuromuscular organization.  For the linear analysis, PAD 211 

patients had higher coefficient of variation values than controls for all three joints (Table 3 2).  212 

PAD patients also had significantly higher standard deviation values than controls for the ankle 213 

Table 1. Baseline characteristics of PAD patients and healthy control subjects. 

 Patient 

(N= 19) 

Control 

(N=17) 

P values 

Clinical characteristics    

Gender (Male/Female) 18/1 12/5 .054 

Age (years) 63.6 ± 9.8 65.2 ± 12.5 .986 

Body mass (kg) 82.1 ± 18.4 82.0 ± 25.9 .397 

Body height (m) 1.71 ± 0.06 1.73 ± 0.08 .281 

Disease duration (years) 6.25 ± 3.84 0 NA 

Ankle Brachial Index    

Right limb 0.52±0.22 1.1±0.10 <.001 

Left limb 0.50±0.25 1.1±0.09 <.001 

Smokers (%) 73.68 0 <.001 

Hypertension (%) 84.21 13.33 <.001 

Diabetes mellitus (%) 21.05 6.67 .199 

Hyperlipidemia (%) 89.47 6.67 <.001 

Body Mass Index 28.0 ± 5.6 27.2 ± 7.1 .605 

Self-selected treadmill speed (km/hr) 0.63 ± 0.13 1.03 ± 0.26 <.001 
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and the hip.  Thus, the linear analysis indicated an increased amount of variability in the gait 214 

patterns of the PAD patients. Regarding the surrogation analysis, in the control group the 215 

surrogate data series had significantly higher largest Lyapunov Exponent values than the original 216 

data at the ankle and the knee (Table 2).  In the PAD group, the surrogated largest Lyapunov 217 

Exponent values were significantly higher than the original data only for the ankle (Table 2).   218 

219 
Table 2. Group means for the Lyapunov Exponent of the original time series (LyE) and 

the surrogate time series (LyE-S) for Peripheral Arterial Disease (PAD) and control 

groups. 

Group Ankle Knee Hip 

PAD LyE (n=16) .105 ± 0.02* .098 ± 0.01* .095 ± 0.02* 

Control LyE 

(n=17) 

.078 ± 0.02 .074 ± 0.02 .078 ± 0.01 

PAD LyE-S .118 ± 0.02
+
 .103 ± 0.01 .092 ± 0.02 

Control LyE-S .088 ± 0.02
+
 .093 ± 0.02

+
 .081 ± 0.03 

Data are reported as Mean ± SD.  Significant differences (P < 0.05) between PAD and 

control groups are marked with an asterisk (*).  Significant differences between the 

original time series and their surrogate counterparts are marked with a plus sign (
+
).   

 

Table 3. Group means for the standard deviation (SD) and coefficient of 

variation (CoV) for Peripheral Arterial Disease (PAD) and control groups. 

Group Ankle Knee Hip 

PAD SD 

(n=18) 

3.99 ± 2.08* 2.44 ± 0.82 2.09 ± 0.76* 

Control SD 

(n=17) 

2.84 ± 1.06 2.03 ± 0.79 1.47 ± 0.45 

PAD CoV 18.80 ± 10.31* 5.16 ± 2.29* 6.60 ± 2.54* 

Control CoV 8.29 ± 5.60 3.61 ± 1.44 3.98 ± 1.38 

Data are reported as Mean ± SD.  Significant differences (P < 0.05) between 

groups are marked with an asterisk (*).   
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Figure 2. A graphical comparison of 

variability between a (A) periodic signal (sine 

wave), (C) Control subject ankle joint, (E) 

PAD ankle joint, and (G) a random signal 

(white noise). Graphs A, C, E, and G are the 

time series and graphs B, D, F, and H are 

two-dimensional state spaces created by 

plotting the position (X(t)) versus the velocity 

(X’ (t)) from the corresponding signals. The 

largest Lyapunov Exponent (LyE) for each 

signal is also shown. It is clear that the PAD 

patient has much more divergence in the 

movement trajectories which results in a 

larger Lyapunov Exponent. 
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Discussion 220 

The purpose of this study was to determine the kinematic variability of the lower 221 

extremities in symptomatic PAD patients while walking in the absence of claudication pain and 222 

to compare them to controls matched for age, height, mass, and gender.  Our data demonstrate 223 

that the gait of claudicating patients is abnormal even when walking in the absence of 224 

claudication symptoms. Literally the gait of PAD patients is abnormal from the first step they 225 

take (27). The character of PAD gait is disorganized with the changes becoming apparent at the 226 

level of all lower extremity joints (ankle, knee and hip) suggesting multilevel neuromuscular 227 

deterioration in the locomotor system. For the linear measures of variability, five out of six 228 

comparisons were significantly different, indicating a significant increase in the gait variability 229 

of PAD patients. Furthermore, for our nonlinear analysis all comparisons were significantly 230 

different indicating an increase in the noise and randomness of the PAD gait and instability in the 231 

locomotor system (5). This increased noise in the neuromuscular system may result in inability to 232 

correctly select the required response when faced with a perturbation. Similar findings in the 233 

elderly and in patients with Parkinson’s and Huntington’s disease have been linked to increased 234 

risks of falling and decreased physical function (3,8,25). Likewise, the altered variability may be 235 

contributing to the increased rate of falls and mobility problems in patients with PAD.  236 

The data from the surrogation analysis demonstrate that the largest Lyapunov Exponent 237 

values of the original data series were significantly different than their surrogate counterparts for 238 

the ankle and knee in the control group.  For the PAD group when surrogation was applied, we 239 

found that only the ankle showed significant differences from its surrogate counterpart. Our 240 

findings indicate that the variability present in healthy controls is deterministic, and that this is 241 

much less the case with the PAD patients. The deterministic properties of the normal gait are 242 
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important because they allow individuals to successfully adapt to changing environmental 243 

conditions (i.e. slippery surfaces, obstacles) during walking.  This degradation of the variability 244 

structure in the PAD patients is further evidence of the effect of the disease on the gait patterns 245 

of these patients. These results are in agreement with Buzzi et al. (8), which found significant 246 

differences between the original and surrogate data sets for all three joints in healthy elderly 247 

individuals.  Buzzi et al. (8) also hypothesized that the deterministic behavior of joint angle 248 

variability may degrade with disease, which is precisely what happened in the patients with 249 

PAD. It should be noted that lack of significant differences between original and surrogate data 250 

series at the hip in controls could be due to limitations in calculating the hip angle. This includes 251 

marker placement at the hip area that has a large amount of adipose tissue which increases 252 

marker movement. Also, the markers used for hip calculations are sometimes covered up by the 253 

arms as they swing in front of them blocking the cameras views. Then, their location has to be 254 

interpolated using mathematical algorithms since the actual coordinate data are lost. 255 

The current study compared gait variability between patients with PAD and matched 256 

healthy controls.  Although the groups are different, the trends of increasing variability found in 257 

this study are similar to those found between healthy young and elderly (3,8), healthy elderly and 258 

elderly fallers  and in studies comparing healthy subjects with Parkinson’s and Huntington’s 259 

disease patients (25).  Healthy (optimal) joint angle variability reflects a coordinated neuro-260 

musculo-skeletal system able to make flexible adaptations to demands placed on the body.  261 

Based on this notion, the altered gait variability present in PAD patients demonstrates that 262 

symptomatic PAD degrades the ability of the locomotor system to make adaptations to 263 

perturbations and may be responsible for the increased rate of falls in this group of patients. 264 
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Similarly, because of the high prevalence of PAD among the elderly it is also possible that PAD 265 

is one of the underlying comorbidities predisposing older people to falls. 266 

It has previously been shown that patients with PAD have impaired balance and 267 

increased risk of falls (6,7), mobility problems (28,29) and altered gait patterns (30,21) as compared to 268 

healthy individuals. Specifically functional outcomes measures such as the six minute walk test, 269 

physical activity level, chair rises, etc. have repeatedly shown PAD patients to have diminished 270 

functioning as compared to those without PAD (2,29), however the mechanisms for these changes 271 

are unclear. Previous studies have suggested that muscle weakness or lack of endurance, 272 

abnormal muscle metabolism and muscle denervation as caused by chronic muscle ischemia or 273 

the onset of claudication pain itself maybe the reason for these impairments (28,31). The results of 274 

the current study suggest that gait is altered prior to the onset of claudication pain, and is not 275 

caused by the pain itself. Our data provide considerable support for a well described muscle 276 

metabolic myopathy (32,33) and an axonal polyneuropathy in the lower extremities of PAD 277 

patients (34). Specifically, a number of reports have documented a metabolic myopathy in the 278 

PAD muscle that appears to be secondary to defective mitochondrial bioenergetics and related 279 

oxidative damage to skeletal muscle structures and components (35). Mitochondria in PAD 280 

muscle have abnormal ultrastructure, damaged DNA, altered enzyme expression and activity, 281 

and abnormally high intermediates of oxidative metabolism (32,33). Most importantly, evaluation 282 

of claudicating muscle mitochondrial bioenergetics demonstrates specific defects in the 283 

complexes of the electron transport chain with associated compromised mitochondrial respiration 284 

and ATP production (35-37) that is very similar to those seen in mitochondrial myopathies (32,33). 285 

Recent work also demonstrates that the mitochondriopathy of PAD muscle is associated with 286 

evidence of significant oxidative damage to the myofibers (35). Furthermore, there is 287 
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accumulating evidence suggesting that chronic ischemia in PAD patients results in a consistent 288 

pattern of electrodiagnostic abnormalities indicating axonal nerve loss (34). Therefore, the 289 

impairments in gait variability prior to the onset of pain likely reflect a combination of myopathy 290 

and neuropathy in limbs with PAD. The nature of these myopathic and neuropathic changes and 291 

the way they are associated to the clinical and biomechanical findings of leg dysfunction should 292 

be the focus of intense future investigation and may hold the key to understanding PAD 293 

pathophysiology. 294 

A potential limitation of our study is that the present findings are limited to PAD patients 295 

with intermittent claudication and may not be applicable to patients with different symptoms and 296 

presentations of the disease. However, our study is unique because detailed screening was used 297 

to exclude patients with any gait dysfunction other than claudication.  Therefore, our data 298 

accurately reflect gait variability changes due to the presence only of PAD, and not of other 299 

comorbidities such as neurogenic claudication or osteoarthritis (38,39). 300 

Our results demonstrate that PAD patients have increased and abnormal gait variability at 301 

baseline ambulation in the absence of claudication pain.  The larger Lyapunov Exponent values 302 

observed in the PAD patients indicate increased randomness in their gait patterns and loss of 303 

motor control. The surrogation analysis indicated that PAD patients also exhibit a degradation of 304 

the deterministic and nonlinear characteristics in their gait patterns.  The pathophysiology of 305 

PAD includes damage to muscle and nerves of the lower extremities which maybe interfering 306 

with the cooperative strategies of the locomotor system producing altered gait variability in 307 

patients with PAD. Collectively these results indicate decline of the overall health of the 308 

locomotor system, which may contribute to falls and mobility limitations seen in PAD patients. 309 

The current study provides the basis for future work that will examine specific mechanisms 310 
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contributing to gait abnormalities in PAD patients, including the effect of claudication pain and 311 

the role of myopathic and neuropathic changes.   312 

313 
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