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RESEARCH ARTICLE Open Access

Differences in the transcriptome signatures of
two genetically related Entamoeba histolytica cell
lines derived from the same isolate with different
pathogenic properties
Laura Biller1†, Paul H Davis2†, Manuela Tillack1, Jenny Matthiesen1, Hannelore Lotter1, Samuel L Stanley Jr3,
Egbert Tannich1, Iris Bruchhaus1*

Abstract

Background: The availability of two genetically very similar cell lines (A and B) derived from the laboratory isolate
Entamoeba histolytica HM-1:IMSS, which differ in their virulence properties, provides a powerful tool for identifying
pathogenicity factors of the causative agent of human amoebiasis. Cell line A is incapable inducing liver abscesses
in gerbils, whereas interaction with cell line B leads to considerable abscess formation. Phenotypic characterization
of both cell lines revealed that trophozoites from the pathogenic cell line B have a larger cell size, an increased
growth rate in vitro, an increased cysteine peptidase activity and higher resistance to nitric oxide stress. To find
proteins that may serve as virulence factors, the proteomes of both cell lines were previously studied, resulting in
the identification of a limited number of differentially synthesized proteins. This study aims to identify additional
genes, serving as virulence factors, or virulence markers.

Results: To obtain a comprehensive picture of the differences between the cell lines, we compared their
transcriptomes using an oligonucleotide-based microarray and confirmed findings with quantitative real-time PCR.
Out of 6242 genes represented on the array, 87 are differentially transcribed (≥two-fold) in the two cell lines.
Approximately 50% code for hypothetical proteins. Interestingly, only 19 genes show a five-fold or higher
differential expression. These include three rab7 GTPases, which were found with a higher abundance in the non-
pathogenic cell line A. The aig1-like GTPasesare of special interest because the majority of them show higher levels
of transcription in the pathogenic cell line B. Only two molecules were found to be differentially expressed
between the two cell lines in both this study and our previous proteomic approach.

Conclusions: In this study we have identified a defined set of genes that are differentially transcribed between the
non-pathogenic cell line A and the pathogenic cell line B of E. histolytica. The identification of transcription profiles
unique for amoebic cell lines with pathogenic phenotypes may help to elucidate the transcriptional framework of
E. histolytica pathogenicity and serve as a basis for identifying transcriptional markers and virulence factors.

Background
The human protozoan parasite E. histolytica resides in
the large bowel and can persist there for months or
even years, causing asymptomatic luminal gut infection.
Occasionally, E. histolytica trophozoites penetrate the
intestinal mucosa, causing amoebic colitis and spread

via portal circulation to other organs, most commonly
to the liver, where they induce abscess formation.
Currently, the factors determining the clinical out-

come of E. histolytica infection are unknown, although a
number of different hypotheses have been made. Host
or parasite genetic factors could play a role, but so
could the nature of the immune response, as well as
concomitant infections or even diet.
The mechanisms and processes that allow Entamoeba

to penetrate the tissue of its host and induce colitis and
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liver abscesses are not completely understood. Several
studies have dealt with the identification of pathogeni-
city factors of E. histolytica. In particular, the galactose/
N-acetyl D-galactosamine-inhibitable (Gal/GalNAc) lec-
tins, the cysteine peptidases and amoebapores have been
related to pathogenicity (for review [1]). However, these
molecules cannot exclusively be responsible for amoebic
virulence, because they are found in pathogenic as well
as in non-pathogenic E. histolytica isolates. Beside the
characterization of individual molecules, different
approaches comparing the transcriptomes or proteomes
of virulent and non-virulent isolates have been per-
formed. In nearly all of these studies, a comparison was
made between the pathogenic E. histolytica isolate HM-
1:IMSS and the non-pathogenic isolate Rahman [2-5].
HM-1:IMSS was isolated in 1967 from a patient with
amoebic dysentery, whereas Rahman was originally iso-
lated in England 1973, from an asymptomatic individual.
In contrast to HM-1:IMSS, Rahman does not form liver
abscesses in animal models and has a defect in causing
amoebic colitis in human colonic xenografts. In addi-
tion, a reduced cytotoxicity in vitro for epithelial cell-
sand a defect in erythrophagocytosis was observed [6,7].
However, due to the high genetic variability of E. histo-
lytica isolates, differences between pathogenic and non-
pathogenic isolates might simply reflect inter-isolate var-
iation rather than specific differences linked to
virulence.
To circumvent the problem of substantial genetic

inter-isolate variation, we have recently analyzed two
cell lines derived from the E. histolytica isolate HM-1:
IMSS, called cell line A and cell line B. Genetically, both
share identity in the highly polymorphic tandem repeat
DNA sequences tested, but cell line B consistently pro-
duces large liver abscesses in a gerbil model of disease,
whereas cell line A does not [8].
Phenotypic analysis of both cell lines revealed in cell

line A an increased hemolytic activity, a lower growth
rate, smaller cell size, a reduced cysteine peptidase activ-
ity and a lower resistance to nitric oxide stress. Proteo-
mic comparison by two-dimensional difference gel
electrophoresis (2D-DIGE) followed by mass spectrome-
try, identified a total of 21 proteins with higher abun-
dance in cell line A and ten proteins with higher
abundance in cell line B. Notably, in the case of only
two differentially regulated proteins, namely a Fe-hydro-
genase 2 and a C2 domain protein, was a differential
expression also found on the level of transcription [8].
Here we compare the transcriptomes of cell line A

and cell line B to get a more complete picture of the
biomolecular differences between these cell lines. For
this we used a custom 70-mer oligonucleotide-based
microarray, previously applied to compare the transcrip-
tomes of Rahman and HM-1:IMSS [3].

Our data indicate that there are significant and repro-
ducible transcriptional differences between these cell
lines. Most differentially expressed genes belong to the
family of small GTPases. These are of special interest as
putative E. histolytica pathogenicity factors, because
most members of the family coding for the AIG1-
GTPases are upregulated in the pathogenic cell line B.
On the other hand, some Rab GTPases were found in
higher levels in the non-pathogenic cell line A. The
determination of the specific expression profiles of the
non-pathogenic cell line A and the pathogenic cell line
B may help provide new insights into the mechanisms
that have enabled E. histolytica to become a pathogen.

Results
The aim of this work is to identify potential pathogeni-
city factors, by comparing the transcriptional profiles of
two genetically related Entamoeba histolytica HM-1:
IMSS cell lines with different virulence phenotypes.
Both cell lines are derived from the E. histolytica iso-

late HM-1:IMSS as both were originally obtained from
the American Type Culture Collection (ATCC) under
the catalogue number 30459. To examine whether the
cells from the two cell lines are genetically related and
indeed derived from isolate HM-1:IMSS, tRNA-linked
short tandem repeat (STR) sequences from six different
loci were analyzed [8].
When these cells are used for infection experiments to

induce amoebic liver abscesses in gerbils, cell line A
produces very small lesions of pin-head size only,
whereas cell line B induces significant abscesses affect-
ing up to 30% of the liver [8]. The pathogenic pheno-
type of cell line B appears to be a constant property as
it has been maintained without any animal passage for
at least five years. The stability of the phenotype was
tested routinely every six month.
Comparison of the transcriptomes of E. histolytica cell line
A and cell line B
To identify differences between cell lines A and B on a
molecular level, we compared their transcriptomes. For
this study, a custom-made 70-mer oligonucleotide
microarray was used containing 6242 unique genes
found in the E. histolytica genome dataset of February
2004. The microarray data are deposited in the public
database ArrayExpress http://www.ebi.ac.uk/arrayexpress
under the accession number E-MEXP-2504.
Using this array and analyzing two biological repli-

cates, 87 gene transcripts were detected that show a
two-fold or greater difference in expression between
cell line A and cell line B. Out of these, 47 genes were
significantly upregulated in the non-pathogenic cell
line A and 40 genes were transcribed at significantly
higher levels in the pathogenic cell line B (additional
file 1).
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We used quantitative real-time PCR to confirm the
differential transcription of 27 selected genes that
showed at least a three-fold higher level of transcription
in one or other cell line. For all 27 analyzed genes, the
real-time PCR results matched the microarray data
(additional file 1).
Of the 87 differentially transcribed genes, 39 could be

classified by putative biological function, namely stress
response, trafficking/targeting, transporter, signaling,
kinases, RNA/DNA metabolism, cell cycle, cell metabo-
lism, peptidases, lectins, and AIG1 family proteins. The
remaining 48 genes were categorized as genes coding
for proteins of unknown function in E. histolytica (addi-
tional file 1).
Altogether, 17 of the deduced proteins of the 87 iden-

tified differentially transcribed genes contain one to ele-
ven transmembrane domains. Interestingly, of these, five
have no predicted signal peptide or signal anchor
sequence, including two of the four AIG1 transcripts
identified (additional file 1).
The majority of the differentially transcribed genes

show only a two- to four-fold difference in expression.
These include 39 genes for cell line A and 29 genes for
cell line B. Only a limited number of genes (19 in total)
show a five-fold or higher differential expression

between the cell lines, as determined by microarray ana-
lyses and/or real time-PCR. Due to their highly signifi-
cant differential expression (1000-fold in some cases),
and comparative observation of nearly all other tran-
scripts in the parasite, it is likely that these identified
molecules are involved in the large difference in viru-
lence observed between cell lines A and B. Three of the
highly differentially expressed genes are rab7 gtpases,
which are transcribed in higher levels in cell line A.
This was confirmed using quantitative real-time PCR.
Here, the differential transcription was between 50- and
740-fold. In addition, two genes coding for C2 domain-
containing proteins were also expressed in higher levels
in cell line A. Like the Rab proteins, molecules contain-
ing a C2 domain may be involved in regulating mem-
brane traffic pathways. Quantitative real-time PCR
indicates that together with one hypothetical protein
[GenBank:XM_649962], a C2 domain-containing protein
shows the highest differential transcription (approxi-
mately 1000-fold) of all analyzed genes (Table 1, addi-
tional file 1).
Furthermore, transcript levels for a cell surface pro-

tease gp63 (ehmp8-2) [GenBank:XM_647540] are also
found in much higher levels in cell line A compared to
cell line B (Table 1). Within the E. histolytica genome,

Table 1 List of genes differentially transcribed (≥ 5-fold) in E. histolytica HM-1:IMSS cell lines A and B identified by
microarray analyses and real-time PCR

Gene name Accession-No. Gene Microarry results (x-fold) Real time-PCR results (x-fold)

Cell line A Cell line B Cell line A Cell line B

EhRab7E protein XM_646110 62.00 743.45

Hypothetical protein XM_648456 52.11 866.52

EhRab7D protein XM_646823 25.37 125.00

EhMP8-2 (gp63) XM_647540 21.44 70.58

C2 domain containing protein XM_650207 16.65 1000.00

EhRab7G protein XM_651385 14.50 50.00

C2 domain containing protein XM_650951 6.62 33.35

Hypothetical protein XM_644469 3.52 5.71

Hypothetical protein XM_643681 3.46 7.53

AIG1 family protein XM_648725 14.29 100.00

Hypothetical protein XM_645291 14.28 50.00

AIG1 family protein XM_645223* 12.50 4.76

Hypothetical protein (AIG) XM_648115* 12.50 100.00

Hypothetical protein XM_645139 9.09 5.00

Hypothetical protein XM_647137 8.33 7.14

Serine-threonine-isoleucine rich protein XM_648869 6.25 3.85

Hypothetical protein XM_649962 5.26 980.00

Hypothetical protein XM_646695 5.3 4.5

AIG1 family protein XM_643009* 4.34 100.00

(Fe-hydrogenase 2 XM_647747 2.44 3.22)#

* Removed from NCBI
# Identified as differential in proteomic and transcriptomic approach
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two gp63 genes are present, which are termed ehmp8-1
[GenBank: XM_650302] and ehmp8-2. These molecules
show 34% identity to each other and contain both a sig-
nal peptide and a transmembrane domain. In contrast
to ehmp8-2, the expression of ehmp-8-1 is similar in
both isolates as indicated by microarray analyses and
real-time PCR (data not shown).
Additionally, three transcripts representing hypotheti-

cal proteins were found in higher abundances in cell
line A. One shows a 50-fold higher expression level in
cell line A in comparison to cell line B. This gene
encodes for a protein of 105 amino acids, and 80% of
the protein consists of the amino acids Pro, Gly, Met,
Tyr and Ala. The stretch Gyl-Ala-Tyr-Pro-Pro-Met is
present four times within the sequence and homology
searches indicates an approximate 50% identity to the
N-terminal region of annexins.
In the pathogenic cell line B, six genes coding for

hypothetical proteins could be identified that show a 5-
fold or higher expression level in comparison to cell line
A. For two of the respective proteins, a signal anchor as
well as a transmembrane domain could be predicted
(Table 1, additional file 1).
Identification of the E. histolytica AIG1 protein family
The oligonucleotide array that was used in this study
covers about 75% of the annotated amoebic genes. It
includes oligonucleotides for four putative aig1-GTPase
genes, all expressed in higher levels in the pathogenic
cell line B (Table 1, additional file 1). Basic Local Align-
ment Search Tool (BLAST) analyses indicated that the
E. histolytica aig1 gene family consists of 47 members.
The composed list of aig1genes includes 17 members
where the RefSeq record was removed from NCBI as a
result of standard genome annotation processes (Table
2). Nevertheless, some of the removed genes have been
cloned in our laboratory [GenBank: XM_649824,
XM_643009, XM_645223, XM_648115] and the respec-
tive sequences were also found in whole genome shot-
gun reads (Entamoeba histolytica HM-1:IMSS,
taxid:294381). The E. histolyticaAIG1 family members
show structural similarity to the GTPases of immunity-
associated protein (GIMAPS)/immune-associated
nucleotide-binding protein (IAN) family of AIG1-like
GTPases, which are conserved between vertebrates and
angiosperm plants [9]. The members of this family com-
prise 30-80 kDa proteins, characterized by an AIG1
domain (a GTP-binding motif) and coiled-coil motifs.
The GTP-binding motif is composed of the G1 to G5
sequences and two conserved motifs (CB, consensus box
and IAN motif) [9]. The E. histolytica AIG1 family
members have a calculated molecular mass between 20
and 45 kDa. Most of the amoebic AIG1 molecules have
the first three of the five GTP-binding sites. The CB
motif and the IAN motif are not present within the

amoebic proteins; instead they contain three specific
domains, which are conserved throughout the amoebic
protein family. As described for the GIMAP molecules,
some amoebic AIG1 proteins have one or two putative
coiled-coil domains. In addition, there is a subgroup
that contains one to three C-terminal transmembrane
domains. Some of the GIMAP members also contain
hydrophobic regions at the C-terminus, which are
thought to be involved in membrane anchoring [9]
(Table 2; Figure 1).
Transcription profiles of aig1 genes in cell line A and cell
line B
Using quantitative real-time PCR, the transcription pro-
files of 34 aig1 genes were analyzed. Interestingly, 18 of
these analyzed genes are transcribed at higher levels in
the pathogenic cell line B, whereas only one gene was
more highly transcribed in the non-pathogenic cell line
A. For three aig1 genes, the transcription level was at
least 100-fold higher, and for eight genes more than 10-
fold higher in cell line B compared to cell line A. The
transcription level of the remaining 15 genes was similar
in the two cell lines (Table 2).

Discussion
In order to identify transcripts that are involved in or
even responsible for pathogenicity, we compared two
highly related E. histolytica isolates that differ substan-
tially in their pathogenicity. The E. histolytica HM-1:
IMSS cell line B is highly pathogenic and produces large
liver abscesses in an animal model, whereas HM-1:IMSS
cell line A appears to have lost its ability to induce
abscess formation [8].
The microarray applied in this study had already been

used to identify the differences between the non-patho-
genic isolate Rahman and the pathogenic isolate HM-1:
IMSS [3]. Using this array, which covers 75% of E. histo-
lytica genes, 1.4% of the analyzed genes showed a two-
fold or greater difference in expression between cell line
A and cell line B. Only 0.3% of the genes showed a five-
fold and higher differential transcription.
Astonishingly, there is only a small overlap between

our transcriptomic and proteomic studies that compare
the two cell lines. Only two genes were fond to be dif-
ferentially expressed both on a transcript and protein
level; Fe-hydrogenase 2 [GenBank:XM_647747] at higher
abundance in cell line B and one C2 domain protein
[GenBank:XM_650207] at a higher abundance in cell
line A [8]. A similar phenomenon was also observed
when comparing the transcriptomes and proteomes of
Rahman and HM-1:IMSS with each other [2,3]. Davis
and colleagues identified only one molecule (alcohol
dehydrogenase 3, [GenBank:XM_650038]), where the
expression profile was comparable on protein and RNA
levels. This discrepancy between regulation at the
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transcript- and proteome level appears therefore to be a
general characteristic of Entamoeba, indicating that this
primordial eukaryote has a more complex way of
expression regulation.
The strategy of identifying pathogenicity genes in E.

histolytica by comparing pathogenic and non-pathogenic
strains has already been used applied by other groups.
They compared the pathogenic isolate HM-1:IMSS and
the non-pathogenic isolate Rahman using microarray
techniques [3-5]. A direct comparison of our results
with all three microarray studies exhibits only poor
overlaps. Of the 152 transcripts that were found in
higher levels in the pathogenic isolate HM-1:IMSS in
comparison to Rahman in microarray study performed
by Davis and colleagues, only five are expressed in
higher levels in the pathogenic cell line B (EhCP-A4
[GenBank:XM_651510], AIG family proteins [GenBank:
XM_648115, XM_643009, homolog to HSP70

[GenBank:XM_648787], hypothetical protein [GenBank:
XM_648447]). We identified only one gene expressed at
higher rates in the non-pathogenic cell line A (hypothe-
tical protein [GenBank:XM_644469]) among the 201
genes that are expressed in higher levels in Rahman
compared to HM-1:IMSS [3].
Only 22 of the genes found to be differentially

expressed between cell line A and cell line B were also
found to be regulated in the study of Ehrenkaufer and
colleagues and only eleven of them are regulated in
both studies in the same direction [5]. These molecules
include one of the two identified C2 domain proteins
[GenBank:XM_650951], cell surface gp63 [GenBank:
XM_647540], AIG family protein [GenBank:
XM_648725] and eight hypothetical proteins [Gen-
Bank:XM_645291, XM_649962, XM_644469,
XM_646066, XM_647129, XM_651187, XM_645139,
XM_649961].

Figure 1 Schematic description of the putative AIG-Proteins of E. histolytica. GTP-binding motifs: G1 = GxxxxGKS, G2 = SET; G3 = VIDTPGL;
Conserved domains: C1 = GL/I/VQG/AIV/II/LV/TL/MN, C2 = HVCIVWTKC, C3 = RSExEIERLI; TM: predicted transmembrane domain; Cc: Predicted
coiled-coil motif.
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Table 2 List of AIG1-like family members

GenBank Accession
no. Gene

GenBank Accession
no. Protein

Size
aa

G1 G2 G3 C1 C2 C3 Cc**
(position aa)

TM***
(position aa)

Real-time PCR
data (x-fold)

Cell
line A

Cell
line B

A >
B

1* XM_643035 XP_648127 364 + + + + + + 12.5

A <
B

2 XM_648725 XP_653817 335 + + + + + + 307 - 324 100.00

3* XM_643009 XP_648101 364 + + + + + + 100.00

4* XM_648115 XP_653207 80 - - - - - - Th**** 50%:
14 - 24

100.00

5* XM_643380 XP_648472 400 + + + + + + Th 50%:
150 - 175
262 - 265

327 - 350
372 - 393

20.00

6* XM_643637 XP_648729 414 + + + + + + Th 50%:
152 - 174
203 - 265

334 - 360
386 - 406

20.00

7 XM_643379 XP_648471 308 + + + + + + 284 - 305 16.67

8 XM_644114 XP_649206 309 + + + + + + 285 - 306 12.50

9 XM_642923 XP_648015 306 + + + + + + 283 - 305 11.11

10* XM_645021 XP_650113 364 + + + + + + 11.11

11 XM_643798 XP_648890 247 - - - + + + 211 - 232 10.00

12* XM_649824 XP_654916 362 + + + + + + 10.00

13* XM_648140 XP_653232 359 + + + + + + Th 90%:
221 - 235

5.56

14* XM_645223 XP_650315 407 + + + + + + Th 90%:
302 - 313

324 - 345
351 - 369

4.76

15 XM_643164 XP_648256 304 + + + + + + 3.57

16* XM_643099 XP_648191 180 + + + + + - 2.70

17 XM_643163 XP_648255 324 + + + + + + 2.94

18 XM_643194 XP_648286 314 + + + + + + 290 - 311 2.63

19 XM_643240 XP_648332 294 + + + + + + 2.63

A =
B

20* XM_643464 XP_648556 304 + + + + + + 1.25

21* XM_643462 XP_648554 289 + + + + + + 1.22

22* XM_642922 XP_648014 403 + + + + + + 288 - 309
315 - 341
352 - 374

1.12

23 XM_643102
XM_001914071

XP_648194
XP_001914106

303 + + + + + + Th 90%:
227 - 251

1.06

24* XM_642959 XP_648051 291 + + + + + + 1.04

25 XM_643063 XP_648155 386 + + + + + + Th 90%:
148 - 167

286 - 313
316 - 341
348 - 372

1.92

26 XM_643097 XP_648189 298 + + + + + + 1.89

27 XM_644113 XP_649205 198 + - + + + + 1.79

28 XM_644115 XP_649207 383 + + + + + + Th 90%:
194 - 208
211 - 217

287 - 308
310 - 335
341 - 369

1.67

29 XM_643463 XP_648555 319 + + + + + + 1.64

30* XM_643100 XP_648192 328 + - + + + + Th 50%:
149 - 166

1.61
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The low level of consensus between our study com-
paring two cell lines with the same genetic background
and the remaining studies comparing two isolates with a
different genetic backgrounds, leads to the assumption
that the mechanism that determine the loss of virulence
in Rahman differs from that observed for HM-1:IMSS
cell line A.
Interestingly, only 19 of the investigated genes (0.3%

of the predicted transcriptome) show a differential
expression higher than five-fold between non-pathogenic
cell line A and pathogenic cell line B. It can be assumed
that genes where the level of respective transcripts dif-
fers to such an extent are involved in virulence. One of
these molecules is a cell surface protease gp63 (EhMP8-
2), which is transcribed at a more than 20-fold higher
level in cell line A than in cell line B. In contrast to
ehmp8-2, ehmp8-1 transcripts are found in similar abun-
dance in both cell lines. In E. histolytica, neither of the
gp63 proteases (EhMP8-1 and EhMP8-2) have been
characterized. In Leishmania, the homolog, named leish-
manolysin, occurs predominantly as a heavily-glycosy-
lated protein that is attached to the outer membrane of
Leishmaniapromastigates by a glycosylphosphatidylinosi-
tol anchor. It has been demonstrated that

leishmanolysin plays a role in resistance of promasti-
gotes to complement-mediated lysis and in receptor-
mediated uptake of the parasite by phagocytic host cells
[10]. It appears that most eukaryotes have homologs of
this protein [11,12].
Transcripts of three genes coding for members of the

Rab7 GTPase family (EhRab7D, 7E, 7G) were detected
at much higher levels in the non-pathogenic cell line A.
Rab proteins are essential for the regulation of vesicular
trafficking in the endocytic and exocytic/secretory path-
ways of eukaryotic cells [13]. E. histolytica possesses
more than 90 rab genes and therefore seems to be an
organism with extremely diverse and complex Rab func-
tions [14]. Rab7 in particular, has been described as one
of the most important molecules involved in lysosomal
biogenesis [15]. In different organisms it plays divergent
roles in several distinct steps of endosomal or lysosomal
trafficking [16]. E. histolytica encodes nine EhRab7 iso-
types (EhRab7A-I), which show 40-65% identity to each
other. It was shown that EhRab7A is associated with the
post-Golgi compartment and is involved in the fusion of
late endosomes. EhRab7B is localized to late endo-
somes/lysosomes and associated with the formation of
lysosomes or the fusion to lysosomes. There is further

Table 2: List of AIG1-like family members (Continued)

31 XM_643195 XP_648287 367 + + + + + + Th 90%:
150 - 169
196 - 233

286 - 313
315 - 336
341 - 365

1.54

32 XM_643795 XP_648887 315 + - + + + + Th 90%:
153 - 166

1.30

33 XM_643721 XP_648813 291 + + + + + + Th 50%:
195 - 206

1.27

34 XM_648158 XP_653250 178 + + + + + - 1.01

n.d.

35 XM_643797 XP_648889 287 + + + + + +

36 XM_643634 XP_648726 290 + + + + + +

37 XM_001914268 XP_001914303 298 + + + + + +

38 XM_643632 XP_648724 308 + + + + + + 286 - 305

39 XM_001914588 XP_001914623 203 + + + + + +

40 XM_001914580 XP_001914615 285 - + + + + + 260 - 282

41 XM_001914532 XP_001914567 145 + + + + + -

42 XM_643239 XP_648331 163 + + + - - +

43 XM_001914473 XP_001914508 179 + + + + + -

44 XM_001914282 XP_001914317 188 - - + + + +

45* XM_643794 XP_648886 250 + + + + + +

46* XM_643014 XP_648106 290 - - - + + +

47* XM_643378 XP_648470 289 + + + + + + Th 50%:
212 - 241

GTP-binding motifs: G1 = GxxxxGKS; G2 = SET; G3 = VIDTPGL; G4 and G5 = not present; Conserved domains: C1 = GL/I/VQG/AIV/II/LV/TL/MN; C2 = HVCIVWTKC;
C3 = RSExEIERLI; n.d.: not determined; *Removed from NCBI; **Prediction of coiled-coil domains using Marcoil1.0 http://www.isrec.isb-sib.ch/webmarcoil/
webmarcoilC1.html[28]
***Prediction of transmembrane domains (TM) using TMHMM Server http://www.cbs.dtu.dk/services/TMHMM
****Treshold (Th)
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evidence that all the EhRab7 isotypes are sequentially
and coordinately involved in phagosome biogenesis [17].
In addition, we found that Vps35, is also transcribed at
higher levels in cell line A (2.6-fold). Together with
Vps26 and Vps29, it forms the amoebic retromer-like
complex and functions as a EhRab7A-binding protein.
This retromer-like complex is linked to the retrograde
transport of putative hydrolase receptors from prepara-
tory vacuoles and phagosomes to the Golgi apparatus.
Nakada-Tsukui and colleagues showed that overexpres-
sion of EhRab7A caused enlargement of lysosomes and
a decrease in cellular cysteine peptidase activity. The
reduced cysteine peptidase activity was restored by co-
expression of EhVps26. Thus, the EhRab7A-mediated
transport of cysteine peptidases to phagosomes seems to
be regulated by the retromer-like complex [18]. As men-
tioned above, phenotypic characterization of cell line A
and cell line B showed a reduced cysteine peptidase
activity in cell line A due to a reduced amount of
mature EhCP-A1 and -A2 [8]. Although, it has been
described that the interaction of EhRab7A with the ret-
romer-like complex is specific as no association was
observed with other isotypes such as EhRab7B or
EhRab7D, an altered expression of molecules involved
in vesicular trafficking may be responsible for the
observed differences in cysteine peptidase activity [18].
We found two different transcripts of C2 domain-con-

taining proteins in higher levels in the non-pathogenic
cell line A. The C2 domain is a Ca2+-dependent mem-
brane-targeting module found in proteins involved in
membrane trafficking. Both molecules contain one N-
terminal C2 domain and the C-terminal domains show
high similarity to the P30 adhesin protein of Myco-
plasma pneumoniae and to a hypothetical protein of
Paramecium tetraurelia [GenBank:XP_001426443],
respectively. P30 is a membrane-bound protein that is
oriented with its N-terminus in the cytoplasm and its
C-terminus on the cell surface, and is required for
cytoadherence. The protein has three types of proline-
containing repeats at its carboxy end [19-21]. Similar
repeats were also found in the C2 domain-containing
protein of E. histolytica [GenBank:XP_655299], giving
rise to an overall 56% sequence identity. Nevertheless,
the amoebic molecule seems not to be membrane-
anchored, since it does not contain a signal sequence or
a transmembrane domain. Additionally, the C-terminal
region of the second C2-domain containing protein
[GenBank:XP_656043] has a repetitive structure consist-
ing of two main stretches.
In contrast to the transcripts described above, most

members of the so far uncharacterized family of putative
small GTPases, the AIG1 proteins, were found in higher
levels in the pathogenic cell line B. At least 47 genes
coding for AIG1 molecules are present in the E.

histolytica genome. Quantitative real-time PCR analysis
indicates that 18 of the 34 investigated aig1 genes are
expressed at higher levels in cell line B. So far, the phy-
siological relevance of these molecules is completely
unknown in E. histolytica. They share partial homology
to the GIMAP/IAN family molecules of vertebrates.
Additionally, they have relatives in higher plants but not
in most other well studied organisms, including bacteria,
nematodes, and the amoeba Dictyostelium discoideum
[9]. Nevertheless, aig1 genes are also present in the gen-
ome of E. invadens, E. dispar and E. moshkovskii, indi-
cating that this family is conserved within the genus
Entamoeba (data not shown). Structurally, all members
of the family contain a GTP-binding cassette and several
coiled-coil motifs [9]. In the E. histolytica homologs,
only a part of the GTP-binding cassette is conserved
and coiled-coil motifs are only predicted for some family
members. GIMAP proteins are thought to be regulators
of cell death in lymphomyeloid cells. It is suggested that
the plant homolog AIG1 is involved in cell death regula-
tion following self-defence responses to bacterial infec-
tion. Therefore, GIMAP proteins might be involved in
self-defence machineries common to vertebrates and
plants [9]. There are two further studies that discuss a
link between pathogenicity and expression of aig1 genes.
Davis and colleagues found aig1 genes expressed at
much higher levels in HM-1:IMSS than in Rahman [3].
Additionally, the expression of aig1 genes was highly
regulated in HM-1:IMSS trophozoites, obtained from a
murine model of amoebic colitis. Trophozoites isolated
from the cecal lumen of mice early in infection (day 1)
showed either an unregulated or an increased expression
of aig1 genes. Late in the infection (day 29), a decrease
in the expression was observed [22]. Although this body
of evidence points to an important role of aig1 genes
for amoebic pathogenicity, their physiological role has to
be determined.

Conclusions
The availability of two syngenic E. histolytica cell lines
(A and B), which differ constantly in their virulence,
provides a powerful tool to identify pathogenicity factors
of the causative agent of human amoebiasis. In addition
to the proteomes, which have previously been compared
between the cell lines, the differences observed in the
transcriptomes were analyzed in the present study using
microarray technology and quantitative real-time PCR.
We identified a set of genes differentially transcribed
between the non-pathogenic cell line A and the patho-
genic cell line B. Most notably, various members of a
family of putative aig1 GTPase genes are transcribed at
higher levels in the pathogenic cell line B, whereas some
rab GTPase genes are found in higher abundance in the
non-pathogenic cell line A. The identification of
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transcription profiles unique for amoebic cell lines with
specific virulent phenotypes, may aid the understanding
of the transcriptional framework of E. histolytica
pathogenicity.

Methods
E. histolytica cell lines and cell culture
In this study we used two genetically related E. histoly-
tica cell lines (cell line A and cell line B). Both cell lines
are derived from the E. histolytica isolate HM-1:IMSS as
both were originally obtained from the American Type
Culture Collection (ATCC) under the catalogue number
30459. HM-1:IMSS was originally isolated from a colo-
nic biopsy of rectal ulcer from an adult male patient
with amebic dysentry in 1967, Mexico City, Mexico.
The monoxenic cultured HM-1:IMSS isolate was passed
from Margarita de la Torre to Louis S. Diamond who
adapted it to axenic cultivation. Thereafter, this axeni-
cally cultivated HM-1:IMSS isolate was transferred to
the ATCC library. Cell line A was sent to us in 2001 by
Barbara Mann, Charlotteville, University of Virginia, as a
batch of cells from the same culture that was used for
DNA preparation to sequence the E. histolytica genome
[23]. Cell line B was obtained directly from ATCC in
1991.
The identical genetic background of both cell lines

was confirmed by genotyping using tRNA-linked short
tandem repeats from different chromosomal loci (tRNA
primers D-A5+D-A3, N-K5, N+K3, R-R5+R-R3, STGA-
D5+STGA-D3 and S-Q5+S-Q3) as described by Ali and
colleagues [1,24].
Trophozoites were cultured axenically in TYI-S-33

medium supplemented with 10% adult bovine serum
(ABS) at 35°C [25].
Amebic liver abscess formation in gerbils
An amount of 1 × 106 amoeba trophozoites of E. histo-
lytica cell line A or cell line B, respectively, in a volume
of 100 μL were injected into the left liver lobe of eight
week old male gerbils (Charles River) as previously
described [26]. After seven days, sizes and weights of
liver abscesses were determined. The experiment was
repeated in intervals of 5-6 month during the last three
years. Each time at least six gerbils were infected with
cell line A or cell line B trophozoites, respectively. The
cell population of both E. histolytica cell lines used for
RNA extraction was tested in parallel for liver abscess
formation.
Microarray analyses
For transcription comparison, we used the E. histolytica
70-base oligonucleotide two-channel microarray to ana-
lyze 6242 unique genes as described by Davis and col-
leagues [4].
RNA was isolated from approximately 5 × 106 pre-sta-

tionary phase E. histolytica cell line A and cell line B

trophozoites grown in 75 mL culture flasks using Trizol
reagent (Invitrogen) following the manufacturer’s proto-
col. The total RNA was purified using the Qiagen
RNeasy kit (Valencia, California) under modified proto-
col conditions without b-mercaptoethanol, including
DNase treatment (Qiagen). RNA quantity and quality
were obtained from an absorbance ratio at 260 and 280
nm. RNA quality was confirmed for each sample using
an Agilent 2100 Bioanalyzer (Palo Alto, California)
according to the manufacturer’s instructions.
Cy3 or Cy5 labeled cDNA from cell line A and cell

line B was cohybridized on one microarray. Altogether,
four RNA samples (two biological replicates of each cell
line) were competitively hybridized on four individual
microarrays. Both Cy3 and Cy5 labeled cDNAs were
created from each RNA sample using the Genisphere
3DNA array350 kit (Hatfield, Pennsylvania). Each pair of
biological replicates was hybridized to two chips in
which the Cy fluorescent channel was alternated in
order to reduce dye-specific effects (dye swap). The pri-
mary and secondary cDNA hybridizations employed the
3DNA Array 350 kit for labeling, as previously described
[4]. Slides were scanned on a ScanArray Express HT
scanner (Perkin-Elmer, Boston, MA) to detect Cy3 and
Cy5 fluorescence. Log2 ratios of cell line B versus cell
line A samples were calculated, local background sub-
tracted, and Loess normalized. Data analysis was accom-
plished with SQL scripts to calculate average and
standard deviation for each transcript. Transcripts con-
sidered significant showed a 2.0-fold or more increase
or decrease from control (cell line A), expression above
the 10th percentile, and a normalized standard deviation
ratio (standard deviation/average) <1 to eliminate overly
varying probes between biological and technical (dye-
swapped and spotted in triplicate spotted) replicates.
Quantitative real-time PCR
1 × 106 E. histolytica trophozoites were cultivated in 75
mL culture flasks for 24 h. The cells were harvested via
chilling on ice for 5 min and sedimented at 200 × g for
5 min at 4°C. The cells were washed twice with PBS.
For isolation of total RNA trophozoites were treated
with TRIZOL reagent (Invitrogen) following the manu-
facturer’s instructions. Extracted RNA was purified
using the RNeasy mini kit (Qiagen) without b-mercap-
toethanol and DNA was digested with DNase (Qiagen).
cDNA synthesis was accomplished with SuperScriptIII
Reverse Transcriptase (Invitrogen). In a final volume of
20 μL, 1 μg of RNase-free and DNase-treated total RNA
was mixed with 5 × First-Strand buffer, 500 μM dNTPs,
500 nM OdT-T71 (5’-GAG AGA GGA TCC AAG TAC
TAA TAC GAC TCA CTA TAG GGA GAT24), 2 mM
DTT, 40 U RNaseOut (Invitrogen) and SuperScriptIII
(200 U/μL). Reaction was incubated for 1 h at 42°C. For
quantitative real-time PCR experiments sense- and anti
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sense primer were designed by amplifying approximately
120 base pairs of the accordant gene sequences (addi-
tional file 2).
Quantitative amplification was performed in a Rotor-

Gene (Rotor-Gene 3000, Corbett) using RealMasterMix
SYBR Green kit (Eppendorf). 1 μL cDNA was mixed
with 2.5 × RealMasterMix/20 × SYBR and 5 pmol/μL of
appropriate sense- and anti sense primer to a final
volume of 20 μL. Amplification conditions were as fol-
lows: 35 cycles at 95°C for 15 s, 58°C for 20 s (1°C
touch down for the first six cycles), 68°C for 20 s and
an adjacent melting step (67°C-95°C). Two biological
replicates were analyzed in duplicates. Analyzing relative
changes in gene expression between cell line A and cell
line B the 2-ΔΔCT method, provided by Rotor-Gene soft-
ware was used [27]. Accordingly, cell line A was repre-
senting the calibrator cell line and actin was chosen as
normalizer gene. Efficiency ≥ 0.95 was empirically
approved for selected primer and cDNA. Threshold for
differentially expressed genes was set on 2.5.

Additional file 1: List of genes differentially transcribed in E.
histolytica HM-1:IMSS cell lines A and B identified by microarray
analyses. Using an microarray and analyzing two biological replicates, 87
gene transcripts were detected that show a two-fold or greater
difference in expression between cell line A and cell line B. Out of these,
47 genes were significantly upregulated in the non-pathogenic cell line
A and 40 genes were transcribed at significantly higher levels in the
pathogenic cell line B.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
63-S1.DOC ]

Additional file 2: List of oligonucleotides used for real-time PCR.
Quantitative real-time PCR was used to confirm the differential
transcription of 27 selected genes that showed at least a three-fold
higher level of transcription in one or other cell line.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
63-S2.DOC ]
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