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Murine Models of Splenic Marginal 
Zone Lymphoma: A Role for Cav1?
Chelsey L. Patten and Christine E. Cutucache*

University of Nebraska at Omaha, Omaha, NE, USA

Dozens of murine models of indolent and aggressive B-cell lymphomas have been 
generated to date. These include those manifesting chronic lymphocytic leukemia (CLL), 
diffuse large B-cell lymphoma (DLBCL), as well as xenografts of mantle cell lymphoma 
(MCL). These models have led to an improved understanding of disease etiology, B-cell 
biology, immunomodulation, and the importance of the tumor microenvironment. Despite 
these efforts in CLL, DLBCL, and MCL, considerably little progress toward a model of 
splenic marginal zone lymphoma (SMZL) has been accomplished. Herein, we describe 
the similarities and differences between CLL, MCL, and SMZL and highlight effective 
murine models that mimic disease in the two former, in hopes of informing a poten-
tial model of the latter. At the time of writing this review, the precise molecular events 
of SMZL remain to be determined and a treatment regimen remains to be identified. 
Therefore, based on the efforts put forth in the B-cell lymphoma field throughout the past 
three decades, the established role of caveolin-1 in B- and T-cell biology as an oncogene 
or tumor suppressor, and the recurrent deletion or loss of heterozygosity (LOH) of 7q in 
many cancers, we make recommendations for a murine model of SMZL.

Keywords: splenic marginal zone lymphoma, 7q minimally deleted region, 7q LOH, genetically engineered, 
neoplasms

BACKGROUnD

Splenic marginal zone lymphoma (SMZL) is a newly acknowledged cancer that effects primarily 
middle-aged and elderly patients. This disease primarily effects patients ages 60 and older without 
evidence of gender predominance (1). Since SMZL is less than a quarter-century old in terms of 
recognition by the World Health Organization, little progress has been made regarding disease 
pathogenesis.

Although multiple B-cell lymphoma murine models have been created, currently there is no 
mouse model dedicated specifically to understanding the disease pathology of SMZL. With no 
definitive clues as to what drives this disease, the development of a reliable and replicable in vivo 
model is needed in order to understand the basic oncogenic factors leading to SMZL. In this review, 
we discuss possible contributing factors in tumorigenesis, highlight three similar B-cell malignancies 
[i.e., chronic lymphocytic leukemia (CLL), mantle cell lymphoma (MCL), and SMZL]—including 
their shared immunophenotype, as well as currently existing murine models of these neoplasms—
and finally we discuss the role for 7q in SMZL. Ultimately, we make a recommendation for the 
generation of a murine model with a knockout at 7q involving caveolin-1 (CAV1), based on its role 
in related B-cell malignancies.
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POSSiBLe COnTRiBUTinG FACTORS 
LeADinG TO TUMORiGeneSiS

When designing a mouse model that can accurately recapitulate 
SMZL, it is imperative to understand all of the factors that may 
contribute to the tumorigenesis of the disease. To shed light 
on which factors specifically contribute to the occurrence of 
SMZL, a population-based study was conducted in the United 
States on a cohort from 2001–2008 on SMZL incidence and 
patient survival. Several possible contributing factors emerged 
from this study, including autoimmune disease (20% of cases), 
environmental factors, and aging-related effects, such as chronic 
inflammation, DNA damage, and a diminished immune 
response (1, 2). In addition to these, specific factors that might 
influence oncogenic events can include regulatory elements, 
infection, genetic mutations (transcriptomic), or epigenetics 
(methylation patterns).

Differences in disease drivers can distinguish SMZL into two 
different subtypes. Approximately half of SMZL cases are likely 
caused by infectious disease, more specifically, the hepatitis C 
virus [HCV; (3)]. This infectious disease-driven subtype suggests 
that virally transformed animal models might be an effective way 
to study disease onset and progression. However, chromosomal 
aberrations are present in the vast majority (>70%) of all SMZL 
cases, implying that a genetic component may serve as the major 
driver of tumorigenesis (4). Clinically, these two subtypes of 
SMZL are distinct in terms of disease progression and prognosis 
for patients.

infections
Many studies suggest an antigenic role for tumorigenesis of 
SMZL. In fact, 30–40% of cases have shown to be disease driven 
(5). The possible causative role of HCV has been suggested both 
based on high prevalence as well as multiple epidemiologic and 
therapeutic studies (1, 3, 6). The etiology of HCV and its rela-
tion to B-cell lymphomas in general has been correlated to the 
geographic distribution in a few studies with small case numbers, 
mainly in Japan and Southern Italy. Overall, local HCV preva-
lence along with genetic and environmental factors may play a 
part in the geographically diverging results (3). Although geo-
graphic distribution has not yet been shown to have a significant 
impact on prevalence rates, an increase in HCV-positive persons 
from 2.7 million to 3.2 million from 1994–1998 to 1999–2002 
mirrored increased prevalence rates of SMZL during this same 
time frame (2). Furthermore, from 2001 to 2008, the incidence 
of SMZL continued to steadily climb (2) and now comprises 2% 
of all lymphoid neoplasms (7). Although the exact pathogenesis 
mechanism is unknown, both chronic antigen stimulation and 
viral lymphotropism may contribute to progression of the malig-
nant cell (3).

Findings that intraclonal diversification caused by ongoing 
somatic hypermutation was identified in 81% of the rearrange-
ments using the IGHV1-2*04 genes versus only 40% of rear-
rangements using other IGHV genes. This supports the idea of 
antigen selection in SMZL ontogeny, as well as the possibility 
of ongoing antigen involvement throughout the progression 

of the disease, even possibly toward diffuse large B-cell lym-
phoma (DLBCL) like suggested in the “Multistep Theory of 
Lymphomagenesis” (7–10). The 14q32 band holds IGHV, and 
translocations involving the 14q32 band have been detected 
less frequently in SMZL than in non-Hodgkin lymphomas. 
Half of SMZL patients carry an increased load of IGHV somatic 
mutations, which is associated with improved prognosis (11). 
Combined, this supports the argument that IGHV1-2*04 SMZL 
is, in fact, a distinct molecular SMZL subtype that needs to be 
recognized and studied in vivo (8–11).

Genetic Mutations
Although many SMZL cases have shown a possibility for a 
disease-driven etiology, more than 70% of SMZL cases show 
some form of chromosomal aberration, most predominantly 
a loss of heterozygosity (LOH) at 7q (2). This 7q LOH is 
observed in 40–50% of total cases, and the 7q31–32 deletion is 
present in approximately 45% of all cases, serving as the most 
common cytogenetic abnormality, thus suggesting a genetic 
driver (8, 9, 12–16). Many studies have been done in hopes of 
finding exactly which genes and pathways are altered in SMZL, 
therefore serving as potential targets on the development of 
SMZL murine models. A summary of these studies can be 
found in Table 1 (8, 9, 11, 13–15, 17–25). Although many genes 
(most notably NOTCH2, KLF2, KLF4, and BIRC3) have been 
reported as mutated in SMZL, we suggest that the 7q deletion 
is of primary importance, as it is possible this deletion serves as 
a marker for disease progression and may even be a causative 
event, rather than a pro-survival function as was previously 
speculated (9).

Methylation Patterns
In a genome-wide DNA-promoter methylation profiling study 
by Arribas et  al., two main clusters were distinguished based 
on the degree of promoter DNA methylation (15). This high-M 
cluster not only had an inferior outcome and showed high risk 
for histologic transformation to DLBCL but suggests that DNA 
hypermethylation could act together with 7q31-32 deletion, 
NOTCH2 mutation, and IGHV1-02, to determine a distinct 
genetic and epigenetic subgroup of SMZL (11).

BiRDS OF A FeATHeR: B-CeLL 
neOPLASMS CLL, MCL, AnD SMZL

Chronic lymphocytic leukemia, MCL and SMZL are all neo-
plasms that affect mature B-cells; yet, in contrast to its B-cell 
counterparts, SMZL is the least studied. These three malignan-
cies have major commonalities (27–30), including some shared 
surface markers, shared pathways for disease progression (15), 
and hypothesized infectious disease drivers, including HCV 
(Figure 1).

Figure  1 depicts immunophenotypical similarities and dif-
ferences across CLL, MCL, and SMZL. The expression of CD5, 
CD19, BCL2, and rarely CD23 along with the absence of CD10 
and BCL1 with diminished CD20 set CLL apart from its close 
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TABLe 1 | Summary of reported genomic mutations or deletions in splenic marginal zone lymphoma (SMZL) (8, 9, 11, 13–15, 17–25).

Study Genes Prominent pathways

Arcaini  
et al. (23)

IGH, CDKN21, TRAF5, REL, PKCA NF-κB pathway

Novak  
et al. (19)

TNFAIP3 (A20) NF-κB pathway, toll-like receptor responses

Rinaldi  
et al. (24)

POT1, TP53, TNFAIP3 (A20), BCL6, NFKBIZ NF-κB pathway, toll-like receptor responses, TP53 pathway

Salido  
et al. (26)

IGH, PAX5, IGK, IGL, ATM, POT1, SHH, MIR17HG, TP53, TNFAIP3 (A20) Apoptotic signaling, cell cycle regulation, TP53 pathway

Fresquet 
et al. (22)

PAX5, MIR17HG, TP53, IRF5, TNPO3, RBM28, SND1, TMEM209, CALU, 
COPG2, IMPDH1, CPA4, LRRC4, MYC, ZC3HC1, CDK6, CCND3, NFKB2, 
SOX5, RHOH, L324N, BCL6, BCL2, MALT1, CDKN21, MIR182

TP53 pathway, information-processing pathway at the IFN-beta 
enhancer, MAPK signaling, cyclins and cell cycle regulation, 
proliferation, anti-apoptotic

Kiel et al. (18) MLL2, MLL3 Chromatin remodeling and transcriptional regulation

Rossi  
et al. (17)

TP53, NOTCH2, NOTCH1, SPEN, DTX1, SWAP70, EGR2, EGR1, IKBKB, 
TRAF 3, TNFAIP3 (A20), MAP3K14, MYD88, BIRC3, CD79A, CARD11, 
TBL1XR1, SIN3A, EP300, ARID1A, TRRAP, GPS2, MCRS1, MSL2, HIST1H2AG, 
HIST1H2BK, WAC, MLL2

NOTCH pathway, TP53 pathway, NF-κB pathway, toll-like receptor 
responses, MAP KINASE, BCR pathway, anti-apoptotic, chromatin 
remodeling and transcriptional regulation

Watkins  
et al. (21)

IRF5, TNPO3, KLHDC10, RBM28, NIPA, SND1, TSGA14, TMEM209, UBE2H, 
NRF1, NAG8, ATP6V1F, CALU, AHCYL2, COPG2, HIG2, TSPAN33, IMPDH1, 
CPA4, OPN1SW, LRRC4, CPA5, CPA2, TSGA13, CPA1, C7orf45, NYD-SP18

Information-processing pathway at the IFN-beta enhancer

Arribas  
et al. (11)

TP53, IRF5, NOTCH2, BIRC3, RHOH, BCL2, TCL1A, SYK, BLNK, NFATC1, 
MUM1, AIM2, IL2RA, IL7, IL6, IL21, BCL2L10, FOXP1, CD40, CD70, TNFRSF9, 
TAC1, CD44, IL2RA, MMP12, MEST, MET, PTN, FCGR3A, FCGR3B, TNFAIP2, 
TNFAIP1, CXCL1, CXCL2, TGFBI, ICAM2, PIP5K2A, EIF2AK, MMP9

NOTCH pathway, information-processing pathway at the IFN-beta 
enhancer, TP53 pathway, proliferation, anti-apoptotic, NF-κB 
pathway, BCR signaling, interleukin, integrins TNF signaling, growth 
receptor factor signaling, B-cell function, cell adhesion, kinase, 
inhibition of protein metalloproteinases

Parry  
et al. (20)

TNFAIP3 (A20), MAP3K14, MLL2, AMOTL1, FAT4, FBXO11, PLA2G4D, 
TRRAP, USH2A, CBFA2T, CREBBP, CACNA1E, CACNAIH, CACNA2D2, FLNC, 
MAPK8IP3, RASA1, TAOK3, PIWIL3, NOTCH4, MAML3, CULI1, CDC27, FLT1, 
CRLF2, EZH2, CBFA2T3, ZNF434

NF-κB Pathway, toll-like receptor responses, MAP kinase, chromatin 
remodeling and transcriptional regulation, multistep regulation of 
transcription by Pitx2, the PRC2 complex sets long-term gene 
silencing through modification of histone tails, actions of nitric oxide, 
VEGF, cell cycle regulation

Piva et al. (8) NOTCH2 NOTCH pathway

Arribas  
et al. (15)

NOTCH2, CACNB2, HTRA1, KLF4 Notch pathway

Clipson  
et al. (25)

TP53, TRAF3, TNFAIP3 (A20), CARD11, KLF2 NF-κB pathway, toll-like receptor responses, BCR pathway, TP53 
pathway

Parry et al. (9) IGH, TP53, NOTCH2, TNFAIP3 (A20), MYD88, ARID1A, MLL2, CREBBP, BCL6, 
KLF2, P53

NOTCH pathway, TP53 pathway, NF-κB pathway and toll-like 
receptor responses, cell cycle, anti-apoptotic

Peveling-
Oberhag 
et al. (13)

NOTCH2, MYD88, KLF2, SMYD1, GRIN2C, CDC27, HERC2, APOA4, CSMD1, 
PRSS1, PCLO, PDE10A, ZNF451, ZNF608, FBXO44, LOC728888, CACNA1C, 
KRTAP5-2, STMN4, MUC12, POM121, BTN2A2, SLC6A7, TTC14, CEBPZ

NF-κB pathway, toll-like receptor responses, NOTCH1 signaling, 
nitric oxide signaling, synaptic protein signaling, MAPK signaling

Arcaini  
et al. (14)

NOTCH2, KLF2 NOTCH pathway
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relatives. However, the presence of CD5 and CD19 and the 
absence of CD23 can also indicate MCL, so it is important to run 
a multitude of panels in order to solidify a diagnosis. MCL can 
display variable expression of CD5, CD10, and CD23 and express 
CD20, CCND1, BCL1, and BCL2, while lacking CD25 and BCL6. 
SMZL expresses CD20 and CD79a but lacks CD5, CD10, CD23, 

CD43, and CCND1. Both CLL and SMZL are thought to originate 
from pre- or post-germinal center B-cells. This etiology differs 
from that of MCL, which is known to arise from pre-germinal 
center B-cells. Last, CLL and SMZL have a common prognostic 
factor with mutated IGVH, leading to improved outcome for 
patients (27–30).

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive


FiGURe 1 | Diagnostic factors of CLL, MCL, and SMZL. +/−, rarely 
expressed; CLL, chronic lymphocytic leukemia; MCL, mantle cell lymphoma; 
SMZL, splenic marginal zone lymphoma (27–30).
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eXiSTinG MURine MODeLS

The development and maintenance of murine models are impor-
tant due to (i) difficulty in gaining access to patient samples, (ii) 
inability to study host:tumor interactions in an ex vivo system, 
and (iii) lack of cell lines that adequately recapitulate human 
disease (31). Both CLL and MCL have been well-characterized, 
including having murine models developed, while a dedicated, 
specific SMZL murine model driven by a transgene is still absent. 
Although previous SMZL models have been attempted, they 
often lead to development of DLBCL and, therefore, do not serve 
as true SMZL models (since clinically when SMZL progresses to 
DLBCL, additional transcriptomic events occur). The current 
murine models for CLL and MCL, as well as those identified to-
date for SMZL are discussed below.

Chronic Lymphocytic Leukemia
Chronic lymphocytic leukemia is the most common adult leu-
kemia in the Western world, and consequently, in comparison 
to its B-cell counterparts, murine models for CLL are the most 
well-defined. This is in part due to their ability to accurately 
recapitulate human disease, specifically the tumor microenviron-
ment that is paramount for the maintenance of CLL cells. Because 
of this, it is imperative that CLL must harbor in supportive 
organs both in patients and in mouse models (31, 32). The most 
accurate recapitulation of CLL in vivo is arguably the Eμ-TCL1 
transgenic mouse from the C. Croce lab (31), and this argument 
is emphasized in a review by Bresin et al. (33). Conversely, the 
NZB-IRF4−/− model from R. Lu’s lab is reminiscent of the aggres-
sive phenotype of CLL (34). The NZB-IRF4−/− mice developed 
spontaneous CLL at 100% penetrance – thereby indicating 
a relationship between levels of IRF4 and CLL development. 

In these mice, CLL cells with VH11 proliferated predominantly 
in the spleen, thus allowing this model to serve as a successful 
study agent for molecular pathogenesis as well as for therapeutic 
techniques (35).

While the Eμ-TCL1 and NZB-IRF4−/− lines most accurately 
recapitulate human CLL, cell line xenografts have also been 
established. Kellner and colleagues developed the first long-term 
proliferative cell line for CLL from a (del)17p case and furthered 
this development by using this cell line to create a xenograft 
model that recapitulates CLL (31, 36). These are major strides 
in CLL research, as no other group has been able to create a reli-
able, actively replicating CLL cell line. Other examples include 
xenografts of peripheral blood CLL and MCL cells in alymphoid 
mice by other labs (37, 38) thoroughly reviewed by Chen and 
Chiorazzi (39).

Not surprisingly, as CLL is the most common adult leukemia 
and receives the greatest amount of work by clinicians and scien-
tists alike, major strides have been made to create reliable murine 
models for disease (including both the indolent and aggressive 
phenotypes).

Mantle Cell Lymphoma
Mantle cell lymphoma is an aggressive, yet rare, neoplasm that 
affects less than 200,000 people in the United States annually 
(10). In comparison to CLL cells, MCL cells are far less reliant 
on tumor microenvironment. Therefore, mouse models of MCL 
have largely come from xenografts that poorly mimic tumor 
microenvironmental conditions; however, MCL cells are less 
reliant on tumor microenvironment than CLL cells. By utilizing 
the method of tail vein injection, in  vivo models of metastatic 
human MCL were established as described herein, briefly. Both 
primary cell lines from MCL cases and MCL cell lines (including 
Jeko-1, Mino, Rec-1, Hbl-2, and Granta-519) were used to gen-
erate disease in immunodeficient NOD.Cg-Prkdcscid Il2rgtm1Wgl/
Szj mice or NOD.SCID mice (40–42). Hegde et  al. (41) and 
Ahrens et al. (40) in the S. S. Joshi’s lab created therapy-resistant 
models to study the impact of novel adjuvants for improving 
patient outcome. These xenografts were effective; namely, 7 out 
of 12 patient samples allowed for engraftment observation with 
the use of primary MCL cell lines, while all 5 of the MCL cell 
lines showed tumor engraftment. The overall survival of these 
mice varied with regards to the specific cell line used but ranged 
from 22  ±  1 to 54  ±  3  days (41, 42). Furthermore, the NOD.
Cg-Prkdcscid Il2rgtm1Wgl/Szj MCL mouse model has been shown 
to aid in testing systemic chemotherapy, monoclonal antibodies, 
and angiogenesis inhibitors, which will serve as a significant 
tool in understanding this disease and advancing diagnostic and 
therapeutic techniques. Moreover, the NOD/SCID IL2Rgamma-
null xenograft model was effective for studying p53-mutated CLL 
and ATM-mutated MCL (38).

Taken together, these studies have led to recapitulation of 
MCL (both from primary cells and cell lines) in  vivo, thereby 
providing effective murine models to use for drug testing as well 
as to increase the understanding of basic disease biology and 
disease progression.

http://www.frontiersin.org/Oncology/
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Splenic Marginal Zone Lymphoma
Like MCL, SMZL is a rare neoplasm. Due to its relatively 
recent identification, it is not surprising that many questions 
linger about its oncogenesis and pathogenesis. SMZL has been 
observed spontaneously in a few murine models, namely, NFS.N 
mice expressing murine leukemia virus (5, 43, 44) as well as a 
transcription factor-induced transgenic line with murine leu-
kemia virus (45). Although the latter model develops SMZL, 
it quickly progresses into full-blown DLBCL. Similarly, the 
loss of a potent tumor suppressor, p53, leads to a SMZL-like 
phenotype in mice (46). All of these mouse models aiming to 
recapitulate human SMZL in  vivo include a viral component 
or a major genomic hit that is non-reminiscent of the human 
presentation.

An in  vivo murine model to mimic SMZL remains to be 
created, but because of its potential at assisting hematologists in 
understanding basic B-cell biology, germinal center reactions, 
and ultimately tumorigenesis, a new model is most certainly 
warranted. The recent identification of the role for the 7q31-32 
region, a common minimally deleted region in human cancers, 
reignites the efforts to pursue causative mutations in a coding or 
non-coding region within that locus.

LOH AT 7q31: POTenTiAL FOR MURine 
MODeL DeveLOPMenT TO MiMiC SMZL

There are many regions of the genome considered “fragile” sites, 
and the long arm of chromosome 7 is one such region. Some stud-
ies have mapped the specific portions of this region that show 
causality with tumorigenesis, but others have simply recognized 
the region as a whole. LOH is observed at 7q31-34 in the following 
cancers: SMZL, meningioma, papillary thyroid carcinoma, ovar-
ian cancer, acute myeloid leukemia, myelodysplastic syndrome, 
and pancreatic carcinoma. Deletions at 7q have been reported in 
a variety of human neoplasias including leukemia, breast, ovary, 
colon, prostate, gastric, head and neck, pancreatic, and renal cell 
carcinomas (47).

Several groups have sought a “master regulator” within the 
commonly deleted 7q region (and corresponding downregulated 
genes) in severe cases of SMZL. However, despite valiant efforts 
at well-controlled experiments (9), a master regulator has yet to 
be identified. The development of such a model to explore driver 
mutations leading to SMZL would shed light on SMZL patho-
physiology as well as biological behavior, thereby serving as an 
effective model.

A Role for Cav1
Fragile site FRA7G holds two tumor suppressor genes, including 
CAV1 and TES. Cav1 has been shown to serve as an oncogene or 
tumor suppressor depending on cell or tissue type, microenvi-
ronmental influence, or disease progression (48). CAV1 7q31.2 
deletions/translocations appear to be downregulated in ovarian, 
lung, and mammary tumors while upregulated in prostate, blad-
der, thyroid, and esophageal carcinomas (47). Haploinsufficiency 
of CAV1 is enough to induce partial transformation of human 

breast epithelial cells (49). Additionally, the loss of Cav1 com-
bined with MMTV-PyMT leads to the acceleration of mammary 
tumors (47). Cav1-knockout mice do not spontaneously develop 
tumors, although the skin is more susceptible to chemical carci-
nogenic treatment. Specifically, when Cav1−/− mice were exposed 
to 7,12-dimethylbenz(a) anthracene, epidermal cells significantly 
upregulated CCND1 and ERK1/2 and mice developed hyperplas-
tic ductal epithelium (47, 50).

In addition to carcinogenic challenges in Cav1-null mice, 
recent studies identify a link between Cav1 and both B- and 
T-cell neoplasms. Specifically, CAV1 was identified as a major 
immunoregulator, which was significantly upregulated in 
aggressive CLL cases (48). When Eμ-TCL1-Tg-Cav1−/− mice 
were generated, they displayed a significantly more aggressive 
phenotype than the indolent Eμ-TCL1 model (51). Moreover, 
the role of Cav1 is well-documented in immune synapse for-
mation (48, 52), thereby suggesting another contribution to 
immune evasion and tumorigenesis. Most recently reported, 
CAV1 is deleted in up to 45% of SMZL cases (16). Additionally, 
CAV1 has been documented to play a key role as a potential 
diagnostic marker in T-cell malignancies as it is significantly 
upregulated in more than 67% of T-cell malignancies (53). 
Taken together, these data suggest a clear role for CAV1 in both 
B- and T-cell neoplasms. Therefore, as CAV1 is lost or mutated 
in up to half of all SMZL cases and the 7q region (where CAV1 
is located) is commonly deleted, we suggest that a murine model 
under an oncogenic driver, coupled with Cav1 LOH, could be 
an effective model.

SUMMARY

CAV1 resides at the 7q region and is heterogeneously expressed 
in cancer. Specifically, CAV1 is downregulated in SMZL cases, 
while upregulated in aggressive cases of chronic lymphocytic 
leukemia and five types of mature T-cell lymphomas. We (and 
others) have demonstrated a critical role for CAV1 in immune 
synapse formation, cellular proliferation, and cellular migration. 
Cav1−/− mice are immunosuppressed, but the mechanism by 
which this immune dysregulation occurs is currently unknown. 
Improving our understanding of the basic biology of CAV1 in 
the immune response will translate to (i) determining its role 
in the immune response governing antigen-presentation events 
in healthy and diseased immune responses and (ii) how CAV1 
controls immunophenotype/immune cell frequency. We have 
shown CAV1 to be significantly dysregulated across more than 
67% of cases of mature T-cell lymphomas as well as in aggressive 
cases of chronic lymphocytic leukemia. Recent data from others 
identify the 7q deletion in another mature B-cell lymphoma: 
SMZL. Therefore, results generated from this proposal would 
be applicable across lymphoid neoplasms. Taken together, our 
preliminary data support a hypothesized role for CAV1 in lym-
phoid tumor progression, likely through an immune regulatory 
method.

Based on the knockout studies involving p53, coupled 
with the high incidence of spontaneous Hodgkin’s lymphoma 
development on the Swiss Jim Lambert mice, we suggest the 
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without an oncogenic driver, such as p53−/− or MYC-Tg. Finally, 
the CAV1 deletion being present in up to 45% of all SMZL cases 
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AUTHOR COnTRiBUTiOnS

Both CP and CC conceptualized, wrote, and edited the manu-
script and approved this final version.

FUnDinG

The authors acknowledge the Department of Biology and the 
College of Arts and Sciences at the University of Nebraska at 
Omaha and the University of Nebraska Foundation for support-
ing this work.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
https://doi.org/10.1038/sj.leu.2405068
https://doi.org/10.1038/sj.leu.2405068
https://doi.org/10.3109/10428194.2012.743655
https://doi.org/10.3109/10428194.2012.743655
https://doi.org/10.1007/s12253-014-9845-z
https://doi.org/10.3109/10428194.2014.919636
https://doi.org/10.1182/blood-2002-07-2216
https://doi.org/10.1007/978-3-319-13150-4_9
http://seer.cancer.gov/seertools/hemelymph/51f6cf57e3e27c3994bd5327/
http://seer.cancer.gov/seertools/hemelymph/51f6cf57e3e27c3994bd5327/
https://doi.org/10.1038/leu.2014.294
https://doi.org/10.1038/leu.2014.294
https://doi.org/10.1158/1078-0432.CCR-14-2759
https://doi.org/10.1158/1078-0432.CCR-15-1170
https://doi.org/10.1038/modpathol.2012.220
https://doi.org/10.1186/s12885-015-1766-z
https://doi.org/10.1182/blood-2015-11-624312
https://doi.org/10.1182/blood-2015-11-624312
https://doi.org/10.1182/blood-2014-08-596247
https://doi.org/10.1182/blood-2004-10-3898
https://doi.org/10.1182/blood-2004-10-3898
https://doi.org/10.1084/jem.20120904
https://doi.org/10.1084/jem.20120910
https://doi.org/10.1182/blood-2008-08-174110
https://doi.org/10.1371/journal.pone.008324
https://doi.org/10.1371/journal.pone.008324
https://doi.org/10.1371/journal.pone.0044997
https://doi.org/10.1371/journal.pone.0044997
https://doi.org/10.1111/j.1365-2141.2012.09226.x
https://doi.org/10.1111/j.1365-2141.2012.09226.x
https://doi.org/10.1182/blood-2005-11-4659
https://doi.org/10.1182/blood-2010-01-264275
https://doi.org/10.1038/leu.2014.330
https://doi.org/10.1182/blood-2010-02-267476
https://doi.org/10.1182/blood-2010-02-267476


7

Patten and Cutucache Murine Models of SMZL: Role for Cav1

Frontiers in Oncology | www.frontiersin.org December 2016 | Volume 6 | Article 258

29. Savilo E, Campo E, Mollejo M, Pinyol M, Piris MA, Zukerberg LR, et  al. 
Absence of cyclin D1 protein expression in splenic marginal zone lymphoma. 
Mod Pathol (1998) 11(7):601–6. 

30. Ghia P, Guida G, Stella S, Gottardi D, Geuna M, Strola G, et al. The pattern of 
CD38 expression defines a distinct subset of chronic lymphocytic leukemia 
(CLL) patients at risk of disease progression. Blood (2003) 101(4):1262–9. 
doi:10.1182/blood-2002-06-1801 

31. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, et al. Human 
chronic lymphocytic leukemia modeled in mouse by targeted TCL1 
expression. Proc Natl Acad Sci U S A (2002) 99:6955–60. doi:10.1073/pnas. 
102181599 

32. Kurtova AV, Balabrishnan K, Chen R, Ding W, Schnabl S, Quiroga MP, 
et  al. Diverse marrow stromal cells protect CLL cells from spontaneous 
and  drug-induced apoptosis: development of a reliable and reproducible 
system to assess stromal cell adhesion-mediated drug resistance. Blood (2009) 
114:4441–50. doi:10.1182/blood-2009-07-233718 

33. Bresin A, D’Abundo L, Narducci MG, Fiorenza MT, Croce CM, Negrini M, 
et al. TCL1 transgenic mouse model as a tool for the study of therapeutic tar-
gets and microenvironment in human B-cell chronic lymphocytic leukemia. 
Cell Death Dis (2016) 7:e2071. doi:10.1038/cddis.2015.419 

34. Ma S, Shukla V, Fang L, Gould KA, Joshi SS, Lu R. Accelerated development 
of chronic lymphocytic leukemia in New Zealand Black mice expressing a low 
level of interferon regulatory factor 4. J Biol Chem (2013) 288(37):26430–40. 
doi:10.1074/jbc.M113.475913 

35. Shukla V, Ma S, Hardy RR, Joshi SS, Lu R. A role for IRF4 in the develop-
ment of CLL. Blood (2013) 122(16):2848–55. doi:10.1182/blood-2013-03- 
492769 

36. Kellner J, Wierda W, Shpall E, Keating M, McNiece I. Isolation of a novel 
chronic lymphocytic leukemic (CLL) cell lines and development of an in vivo 
mouse model of CLL. Leuk Res (2016) 40:54–9. doi:10.1016/j.leukres.2015. 
10.008 

37. Oldreive CE, Skowronska A, Davies NJ, Parry H, Agathanggelou A, Krysov S, 
et  al. T-cell number and subtype influence the disease course of primary 
chronic lymphocytic leukaemia xenografts in alymphoid mice. Dis Model 
Mech (2015) 8(11):1401–12. doi:10.1242/dmm.021147 

38. Verner J, Trbusek M, Chovancova J, Jaskova Z, Moulis M, Folber F, et al. NOD/
SCID IL2Rγ-null mouse xenograft model of human p53-mutated chronic 
lymphocytic leukemia and ATM-mutated mantle cell lymphoma using 
permanent cell lines. Leuk Lymphoma (2015) 56(11):3198–206. doi:10.3109/ 
10428194.2015.1034701 

39. Chen SS, Chiorazzi N. Murine genetically engineered and human xeno-
graft models of chronic lymphocytic leukemia. Semin Hematol (2014)  
51(3):188–205. doi:10.1053/j.seminhematol.2014.05.001 

40. Ahrens AK, Chaturvedi NK, Nordgren TM, Dave BJ, Joshi SS. Establishment 
and characterization of therapy-resistant mantle cell lymphoma cell lines 
derived from different tissue sites. Leuk Lymphoma (2012) 53(11):2269–78.  
doi:10.3109/10428194.2012.691481 

41. Hegde GV, Nordgren TM, Munger CM, Mittal AK, Bierman PJ, 
Weisenburger  DD, et  al. Novel therapy for therapy-resistant mantle cell 
lymphoma: multipronged approach with targeting of hedgehog signaling. Int 
J Cancer (2012) 131(12):2951–60. doi:10.1002/ijc.27602 

42. Klanova M, Soukup T, Jaksa R, Molinsky J, Lateckova L, Maswabi BCL, et al. 
Mouse models of mantle cell lymphoma, complex changes in gene expression 

and phenotype of engrafted MCL cells: implications for preclinical research. 
Lab Invest (2014) 94:806–17. doi:10.1038/labinvest.2014.61 

43. Tang JC, Ho FC, Chan AC, Chow EY, Srivastava G. Progression of spontaneous 
lymphomas in SJL mice: monitoring in vivo clonal evolution with molecular 
markers in sequential splenic samples. Lab Invest (1998) 78:1459–66. 

44. Fredrickson TN, Lennert K, Chattopadhyay SK, Morse HC III, Hatley JW. 
Splenic marginal zone lymphomas of mice. Am J Pathol (1999) 154:805–12. 
doi:10.1016/S0002-9440(10)65327-8 

45. Hough MR, Reis MD, Singaraja R, Bryce DM, Kamel-Reid S, Dardick I, 
et  al. A model for spontaneous B-lineage lymphomas in IgHmu-HOX11 
transgenic mice. Proc Natl Acad Sci U S A (1998) 95:13853–8. doi:10.1073/
pnas.95.23.13853 

46. Ward JM, Tadesse-Heath L, Perkins SN, Chattopadhyay SK, Hursting SD, 
Morse HC III. Splenic marginal zone B-cell and thymic T-cell lymphomas in 
p53-deficient mice. Lab Invest (1999) 50:3–14. 

47. Drusco A, Pekarsky Y, Costinean S, Antenucci A, Conti L, Volinia S, et  al. 
Common fragile site tumor suppressor genes and corresponding mouse mod-
els of cancer. J Biomed Biotechnol (2011) 4(6):1–10. doi:10.1155/2011/984505 

48. Gilling CE, Mittal AK, Chaturvedi NK, Iqbal J, Aoun P, Bierman PJ, 
et  al. Lymph node-induced immune tolerance in chronic lymphocytic 
leukaemia: a role for caveolin-1. Br J Haematol (2012) 158(2):216–31. 
doi:10.1111/j.1365-2141.2012.09148.x 

49. Zou W, McDanela L, Smith LM. Caveloin-1 haploinsufficiency leads to 
partial transformation of human breast epithelial cells. Anticancer Res (2003) 
23(6):4581–6. 

50. Lee H, Park DS, Razani B, Russel RG, Pestell RG, Lisanti MP. Caveolin-1 
mutations (P132L and null) behaves in a dominant-negative manner and 
caveolin01 (-/-) null mice show mammary epithelial cell hyperplasia. Am 
J Pathol (2002) 161(4):1357–69. doi:10.1016/S0002-9440(10)64412-4 

51. Shukla A, Cutucache CE, Sutton GL, Pitner MA, Rai K, Rai S, et al. Absence 
of caveolin-1 leads to delayed development of chronic lymphocytic leukemia 
in Eµ-TCL1 mouse model. Exp Hematol (2016) 44(1):30.e–7.e. doi:10.1016/ 
j.exphem.2015.09.005 

52. Tomassian T, Humphries LA, Liu SD, Silva O, Brooks DG, Miceli MC. 
Caveolin-1 orchestrates TCR synaptic polarity, signal specificity, and 
function in CD8 T cells. J Immunol (2011) 187(6):2993–3002. doi:10.4049/
jimmunol.1101447 

53. Herek TA, Shew TD, Spurgin HN, Cutucache CE. Conserved molecular 
underpinnings and characterization of a role for caveolin-1 in the tumor micro-
environment of mature T-cell lymphomas. PLoS One (2015) 10(11):e0142682. 
doi:10.1371/journal.pone.0142682 

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Copyright © 2016 Patten and Cutucache. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License (CC BY). The use, 
distribution or reproduction in other forums is permitted, provided the original 
author(s) or licensor are credited and that the original publication in this journal 
is cited, in accordance with accepted academic practice. No use, distribution or 
reproduction is permitted which does not comply with these terms.

http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
http://www.frontiersin.org/oncology/archive
https://doi.org/10.1182/blood-2002-06-1801
https://doi.org/10.1073/pnas.102181599
https://doi.org/10.1073/pnas.102181599
https://doi.org/10.1182/blood-2009-07-233718
https://doi.org/10.1038/cddis.2015.419
https://doi.org/10.1074/jbc.M113.475913
https://doi.org/10.1182/blood-2013-03-492769
https://doi.org/10.1182/blood-2013-03-492769
https://doi.org/10.1016/j.leukres.2015.10.008
https://doi.org/10.1016/j.leukres.2015.10.008
https://doi.org/10.1242/dmm.021147
https://doi.org/10.3109/10428194.2015.1034701
https://doi.org/10.3109/10428194.2015.1034701
https://doi.org/10.1053/j.seminhematol.2014.05.001
https://doi.org/10.3109/10428194.2012.691481
https://doi.org/10.1002/ijc.27602
https://doi.org/10.1038/labinvest.2014.61
https://doi.org/10.1016/S0002-9440(10)65327-8
https://doi.org/10.1073/pnas.95.23.13853
https://doi.org/10.1073/pnas.95.23.13853
https://doi.org/10.1155/2011/984505
https://doi.org/10.1111/j.1365-2141.2012.09148.x
https://doi.org/10.1016/S0002-9440(10)64412-4
https://doi.org/10.1016/j.exphem.2015.09.005
https://doi.org/10.1016/j.exphem.2015.09.005
https://doi.org/10.4049/jimmunol.1101447
https://doi.org/10.4049/jimmunol.1101447
https://doi.org/10.1371/journal.pone.0142682
http://creativecommons.org/licenses/by/4.0/

	University of Nebraska at Omaha
	DigitalCommons@UNO
	12-2016

	Murine Models of Splenic Marginal Zone Lymphoma: A role for Cav1?
	Chelsey L. Patten
	Christine E. Cutucache
	Recommended Citation


	Murine Models of Splenic Marginal Zone Lymphoma: A Role for Cav1?
	Background
	Possible Contributing Factors Leading to Tumorigenesis
	Infections
	Genetic Mutations
	Methylation Patterns

	Birds of a Feather: B-Cell Neoplasms CLL, MCL, and SMZL
	Existing Murine Models
	Chronic Lymphocytic Leukemia
	Mantle Cell Lymphoma
	Splenic Marginal Zone Lymphoma

	LOH AT 7q31: Potential for Murine Model Development to Mimic SMZL
	A Role for Cav1

	Summary
	Author Contributions
	Funding
	References


