12-2011

Endurance markers are related with local neuromuscular response for the intact but not for the ACL reconstructed leg during high intensity running

Kostas Patras
University of Ioannina

Giorgos Ziogas
University of Ioannina

Stavros Ristanis
University of Ioannina

Elias Tsepis
Technological Educational Institution of Patras at Aigion

Vasilis Tsiaras
University of Ioannina

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unomaha.edu/biomechanicsarticles

Part of the Biomechanics Commons

Recommended Citation

Patras, Kostas; Ziogas, Giorgos; Ristanis, Stavros; Tsepis, Elias; Tsiaras, Vasilis; Stergiou, Nicholas; and Georgoulis, Anastasios D., “Endurance markers are related with local neuromuscular response for the intact but not for the ACL reconstructed leg during high intensity running” (2011). *Journal Articles*. Paper 98.
http://digitalcommons.unomaha.edu/biomechanicsarticles/98
Authors
Kostas Patras, Giorgos Ziogas, Stavros Ristanis, Elias Tsepis, Vasilis Tsiaras, Nicholas Stergiou, and Anastasios D. Georgoulis

This article is available at DigitalCommons@UNO: http://digitalcommons.unomaha.edu/biomechanicsarticles/98
ENDURANCE MARKERS ARE RELATED WITH LOCAL NEUROMUSCULAR RESPONSE FOR THE INTACT BUT NOT FOR THE ACL RECONSTRUCTED LEG DURING HIGH INTENSITY RUNNING

Short title: Endurance correlates of EMG response in ACLR athletes

Kostas Patras¹, Giorgos Ziogas¹, Stavros Ristanis¹, Elias Tsepis¹,², Vasilis Tsiaras¹, Nicholas Stergiou¹,³, Anastasios D. Georgoulis¹

¹Orthopaedic Sports Medicine Center, Department of Orthopaedic Surgery, University of Ioannina, Greece
²Physical Therapy School, Technological Educational Institution of Patra at Aigion, Greece
³Nebraska Biomechanics Core Facility, College of Education and College of Public Health, University of Nebraska at Omaha, University of Nebraska Medical Center, USA

Address for Correspondence:
Anastasios D. Georgoulis, M.D
Georgiou Papandreou 2
Ioannina 45444, GREECE
Tel/Fax: +302651064980
P.O BOX 1330
Email:georgoulis@osmci.gr
ABSTRACT

AIM: It has been demonstrated that the local neuromuscular response during high intensity exercise has a strong relationship with endurance markers. However, a diminished neuromuscular response has been reported for the operated leg in athletes having undergone anterior cruciate ligament reconstruction (ACLR). The purpose of the present study was to examine the relationships between endurance markers and the EMG response during high intensity running in ACLR athletes. METHODS: Fourteen ACLR soccer players underwent a GXT test to volitional exhaustion and a 10-min bout of high intensity running. During the 10-min bout, EMG data were recorded at the 3rd and 10th minute from the vastus lateralis bilaterally using a telemetric system. The final EMG levels were expressed as a percentage of the initial values. Pearson moment product correlations were used to assess the relationship between the endurance markers of VO2max, velocity at lactate threshold (vLT), velocity at 4mM (V4) and the final EMG levels. RESULTS: Final EMG levels for the intact leg had a very strong relationship with vLT (r=0.77, p=0.001) and a strong relationship with V4 (r=0.68, p=0.008). Final EMG levels for the reconstructed leg had a moderate relationship with vLT (r=0.47, p=0.09) and V4 (r=0.52, p=0.06). CONCLUSION: The neuromuscular response of the intact leg during high intensity running shows strong to very strong relationships with endurance markers. Failure of the ACLR leg to present relationships of similar strength may indicate that chronic perturbations modify the ability of the local muscular environment to tolerate sustained high intensity efforts.

Key words: EMG, lactate threshold, ACLR reconstruction, fatigue, running
INTRODUCTION

The goal of the reconstruction of the anterior cruciate ligament in competitive athletes is to achieve return to pre-injury exercise levels. In this regard, optimal muscle activation is of great importance, especially during sustained athletic efforts. Previous research indicated that muscle activation levels (as assessed by surface EMG) do not differ between the operated and the intact leg during activities of moderate intensity [1, 2, 3]. However, it has recently been demonstrated that during high intensity exercise the operated leg exhibits a diminished EMG response over time as compared to both the intact and a healthy control leg [4, 5]. These studies demonstrated that during a 10-min high intensity running bout, both the intact and the healthy control leg significantly increased EMG activity of the vastus lateralis by an average of ~8% compared to the initial values. However, the operated leg did not increase EMG activity of the vastus lateralis as compared to baseline.

From a physiological perspective, the most commonly used endurance markers that are considered prerequisite for optimal performance during high intensity sustained efforts are the maximal oxygen uptake (VO\textsubscript{2max}), and various aspects of the lactate threshold (LT). Such aspects are mathematically derived thresholds and fixed blood lactate thresholds (e.g the 4mM threshold) [6, 7, 8, 9, 10]. A number of previous studies have confirmed that these endurance markers correlate positively with the local neuromuscular response measured as change in EMG activity [11, 12, 13, 14, 15, 16, 17]. Thus, a higher velocity or power output at lactate threshold is associated with increased EMG activity, indicating that during high intensity exercise the local neuromuscular response is largely determined by physiological factors [18, 19, 20].

However, since our previous research [4, 5] has identified that ACLR athletes display different local neuromuscular responses, it is possible that in such individuals the relationships between endurance markers and the local neuromuscular response are also...
altered. Such potential alterations may have important implications for the rehabilitation as well as the conditioning of ACL reconstructed athletes. Therefore the purpose of the present study was to assess the relationships between selected endurance markers and the relative increase in local EMG activity during high intensity running in ACLR athletes. Specifically we hypothesized that in these athletes higher EMG levels will be related with higher values in endurance markers and that the intact leg will display different relationships than the operated leg.

MATERIALS AND METHODS

Fourteen amateur male soccer players [mean (SD) age, body weight and height, 24.8 (5.3) years, 77.3 (7.5) kg and 177 (5.3) cm] with ACL-reconstructed knees were recruited for the present study. The operated athletes had undergone ACL reconstruction with bone-patella tendon-bone (BPTB) graft, 18.5 (4.3) months before testing. ACL reconstruction was performed sub-acutely within 6 months after the injury from the same surgeon. All operated athletes had a unilateral ACL tear confirmed by MRI and arthroscopy. They all underwent the same rehabilitation protocol, starting from the first post operative day with the use of passive exercises. Return to sports was permitted 6 months after reconstruction according to the following widely accepted criteria [21]: (1) Full range of motion, (2) KT-1000 side-to side difference <3mm, (3) quadriceps strength >85% compared to the contralateral side, (4) hamstrings strength 100% compared to the contralateral side, (5) hamstrings-to-quadriceps strength ratio >70% and (6) functional testing >85% compared to the contralateral side. At the time of data collection, no clinical evidence of knee pain and effusion was found in the ACL reconstructed subjects. All subjects agreed with the testing protocol and signed a consent form according to the Declaration of Helsinki. Ethical approval was granted from the Institutional Review Board policies of our Medical School. Prior to any data collection, a clinical
evaluation was performed in all athletes by the same clinician. During this evaluation, the Tegner and Lysholm scores were obtained, while anterior tibial translation was evaluated using the KT-1000 knee arthrometer (MEDmetric Corp., San Diego, California) [22]. The athletes reported to the laboratory having abstained from caffeine or food consumption for 4 hours and without vigorous training for 24h on two different occasions separated by 48 hours. Experimental testing took place at an ambient temperature of 20 ºC to 22 ºC.

For their first visit to the laboratory, the athletes performed a GXT test to volitional exhaustion to determine VO$_2$max, LT and the 4mM threshold [23]. During warm-up the athletes performed 3 minutes walking at self-selected pace and 5 minutes jogging on a treadmill (Technogym Runrace 1200, Italy) at a speed of 8 km·h$^{-1}$ where heart rate and blood lactate were measured. The incremental test begun at a speed of 10 km·h$^{-1}$ with stage increments of 2 km·h$^{-1}$ every three minutes. During the test, expired gas samples were measured using a breath-by-breath metabolic measurement system (CPX Ultima, Medical Graphics, St Maul, MN, USA). This system uses a zirconium O$_2$ analyzer and an infrared CO$_2$ analyzer. The subjects wore a facemask and inspired-expired gas samples were collected through a pneumotachograph (pre-Vent, Medical Graphics, St Maul, MN, USA) and analyzed for O$_2$ and CO$_2$. At the end of each stage, capillary blood samples were collected and analyzed for lactate (Accutrend, Roche Diagnostics, Germany). Prior to each test, all analyzers were calibrated according to the manufacturer’s instructions. According to the American College of Sports Medicine, criteria for VO$_2$max were (a) plateau in VO$_2$ (an increase <2.1 ml·kg$^{-1}$·min$^{-1}$ despite an increase in running speed, (b) a respiratory exchange ratio (RER) >1.10, (c) , and (d) maximal blood lactate values (LAmax) >8 mmol·l$^{-1}$[23]. In all cases at least 2 out of 3 criteria were met. The velocity associated with LT (vLT) was determined according to the Dmax method proposed by Cheng et al [24]. Velocity at the 4 mM fixed blood lactate threshold (V_L) was determined from the individual velocity-blood
lactate curves using linear interpolation [8, 9, 10]. The velocity that was used for the
subsequent high intensity running was set at 40% of the difference between VO2max and
lactate threshold (vD) and represents the upper limit of high intensity exercise [25]. All three
velocities were also expressed as % of VO2max [7, 8, 9, 25].

In the second visit to the laboratory, athletes were required to perform a 10-minute high
intensity run at the vD velocity. During the 10 minute running bout, EMG data were collected
for 15 seconds at the 3rd and 10th minute. Gas exchange data were recorded simultaneously
breath-by-breath and heart rate was measured throughout the test. Blood lactate was measured
prior to running and immediately after termination of exercise. EMG traces were obtained
from the vastus lateralis muscle bilaterally using bipolar, circular, pre-amplified, pre-gelled
Ag/AgCl electrodes with 10 mm diameter and fixed inter-electrode spacing of 20 mm
(Noraxon Inc, Scottsdale, AZ, USA). It has been demonstrated that vastus lateralis and rectus
temoris show similar high relationships between EMG activity and lactate threshold during
cycling [12, 13, 14]. However, vastus lateralis was selected on the basis that shows higher
levels of activity compared to rectus femoris during the first part of stance phase of running
and acts as a shock absorber, thus protecting the cartilage and the graft from high impact
forces [26]. EMG data were recorded with a wireless 8-channel EMG system (Telemyo
2400T, Noraxon Inc, Scottsdale, AZ, USA) and displayed real-time on a personal computer
using dedicated software (MyoResearchXP, Noraxon Inc, Scottsdale, AZ, USA). The surface
of the skin was prepared by shaving hair, rubbing it with abrasive paper and cleaning it with
alcohol. The electrodes were fixed longitudinally over the muscle belly. Electrodes were
placed at the antero-lateral muscle bulge at 2/3 of the proximo-distal thigh length [27, 28].
The visually largest area of muscle belly was selected using a contraction against manual
resistance. The ground electrode was placed on the lateral femoral condyle of the right leg
Electrodes and cables were secured with surgical tape, in order to avoid any interference with the running pattern of the subjects.

Footswitches (Noraxon Inc, Scottsdale, AZ, USA) placed under the heel and big toes of both legs were used to denote heel-strike and toe-off events. EMG was acquired at a sampling rate of 1500 Hz. The raw EMG was measured in a band of 10 to 500 Hz, was full-wave rectified, was high pass filtered (cut-off frequency at 20 Hz) with an 8th order Butterworth filter to remove movement artifacts and was smoothed with a 100 ms RMS algorithm. Values from 20 strides were averaged to calculate the mean peak amplitude during stance. A preliminary review of the relevant literature revealed that EMG amplitude has been used in many previous studies of similar design [11-13, 16, 17] and is considered to be a reliable parameter to evidence EMG activity. Mean peak amplitude values from the 10th minute were expressed as percentage of the initial values during the 3rd minute and were defined as the final EMG values.

Statistical analysis: Data were expressed as means and standard deviation (mean ± SD). Pearson product moment correlations were used to determine the relationships between final EMG values and the VO\(_2\)max (both as lt·min\(^{-1}\) and ml·min\(^{-1}\)·kg\(^{-1}\)), vLT, vLT expressed as percentage of VO\(_2\)max (vLT %), V\(_4\), V\(_4\) expressed as percentage of VO\(_2\)max (V\(_4\) %), vD and vD expressed as percentage of VO\(_2\)max (vD %). These relationships were identified for both the ACLR and the intact leg.

RESULTS

Negative Lachman and pivot shift tests indicated that the static knee joint stability was regained. The subjects had all returned to their previous level activity engaging running and soccer specific training for 3-5 sessions/week. Lysholm score was 95 (94-96) and Tegner score was 8 (range, 7-9). KT-1000 results revealed that the mean difference between the
anterior tibial translation of the reconstructed and intact sides was 1.6 mm (range, 1 to 2 mm) for the 134-N test and 1.8 mm (range, 1 to 2 mm) for the maximal manual test.

Mean values for the endurance markers are presented in Table 1. The vD high intensity run was performed on average at 87.6% (4.4) of VO2max. Blood lactate values during the vD run rose from an initial baseline value of 2.1 (0.3) mM to 7.6 (1.7) mM. All athletes completed the 10 min vD run without being completely exhausted and indicated that they could continue for “a few more minutes”.

Pearson moment product correlations and coefficients of determination between final EMG activity of the intact (EMG10int) and reconstructed leg (EMG10rec) and each one of the endurance markers are presented in Table 2. EMG10int demonstrated a very strong relationship with vLT (r=0.77, p=0.001) and V4% (r=0.75, p=0.002), a strong relationship with V4 (r=0.68, p=0.008) and vD% (r=0.57, p=0.03) and moderate relationships with vLT% (r=0.46, p=0.09) and vD (r=0.44, p=0.11). Finally, EMG10int displayed only weak relationship with VO2max expressed either as absolute (r=−0.19, p=0.51) or relative values (r=−0.18, p=0.54). EMG10rec demonstrated moderate relationships with vLT (r=0.47, p=0.09), V4 (r=0.52, p=0.06) and V4% (r=0.5, p=0.07), weak relationships with vD (r=0.2, p=0.49) and vD% (r=0.24, p=0.42) and very weak relationships with vLT% (r=0.08, p=0.87) and VO2max expressed as either absolute (r=−0.05, p=0.87) or relative (r=−0.03, p=0.92) values.

The purpose of the present study was to assess the relationships between endurance markers and the relative increase in local EMG activity during high intensity running in ACLR athletes. Specifically we hypothesized that in these athletes higher EMG levels will be
related with higher values in the endurance markers and that the intact leg will display different relationships than the operated leg.

The major finding of the present study was that EMG activity of the intact leg during high intensity running demonstrated very strong relationships with vLT, $V_4\%$ and strong relationships with V_4 and $vD\%$, while EMG activity of the operated leg showed only moderate relationships with vLT, V_4 and $V_4\%$. The strong to very strong relationships ($r=0.57-0.77$) established for the intact leg are in line with previous studies that have suggested a strong physiological link between myoelectric changes at fatigue and the lactate threshold [15, 18, 19, 20].

During sustained fatiguing running performed at the vD velocity which averaged 87.6% (4.4) of VO$_2$max, EMG of the working muscles tends to increase over time as a result of (i) increased firing rate (rate-coding) of the already activated muscle fibers, (ii) recruitment of previously inactive fibers, especially the type II and (iii) both of above mechanisms [18, 29, 30]. On the other hand at these high exercise intensities there is substantial accumulation of metabolic by-products such as lactic acid, H^+, P_i, which may lead to drop out of mechanically failing muscle fibers and decreased EMG activity over time [31]. Thus, final EMG levels during sustained high intensity running depend upon the balance between these two opposing trends. Furthermore, given the fact that lactate threshold represent the balance between accumulation and clearance of metabolic by-products in the exercising muscles [32, 33], it is not surprising that EMG activity of the intact VL showed strong to very strong relationships with the two markers indicative of the lactate threshold, namely vLT and V_4. We hypothesize that the athletes that had higher vLT and V_4 values were able to increase their EMG activity of the intact leg to higher levels probably due to the fact that were better able to sustain the accumulation of metabolic by-products which tends to suppress EMG amplitude.
We were able to demonstrate only a weak relationship between EMG activity of the intact leg and VO$_{2\text{max}}$. This is line with Bassett and Howley [6] who concluded that VO$_{2\text{max}}$ is mainly linked to central adaptations, presumably maximal cardiac output, while lactate threshold incorporates both central and peripheral adaptations [7, 34]. Thus, lactate threshold may more closely reflect the ability of the local muscle environment to tolerate fatiguing exercise without compromising myoelectrical activity.

Our results further indicated that the EMG activity of the reconstructed leg showed only moderate relationships with vLT, V$_4$ and V$_4$ %. Several explanations can be given for the lack of a strong relationship between EMG activity in the reconstructed leg and the endurance markers. Recent studies have presented evidence supporting the notion that selective fiber II atrophy may occur in the involved quadriceps after ACL reconstruction [35, 36, 37]. Furthermore, alterations in activity patterns following surgery and subsequent retraining may alter motor unit activation [38]. In addition, loss of joint afferent information may lead to quadriceps weakness and subsequent selective hypotrophy of type II muscle fibers [39]. Thus, the reconstructed leg may display a decreased potential for progressive recruitment and this would only be apparent when performing at high intensities [30]. This seems plausible since it has been suggested that in the case of large muscles, additional recruitment and not increases of firing rate is the major strategy used to generate the required forces over a wide range of submaximal exercise intensities [40]. The above hypothesis is also supported by the fact that the reconstructed leg does not increase EMG activity over time during sustained high intensity exercise [4, 5]. On the other hand, greater suppression of the EMG signal of the reconstructed leg due to higher accumulation of metabolic by-products as compared to the intact leg, may also explain the lack of relationship between EMG activity and endurance markers and the lack of increase in EMG activity over time [31]. This hypothesis is supported by the fact that long-term muscle detraining in endurance athletes, such as soccer players
undergoing knee surgery, induces a transformation of IIa fibers (fast-oxidative, fatigue resistant) to IIb fibers (fast-glycolytic, fatiguable) [41, 42]. Thus loss of the aerobic metabolic characteristics of IIa fibers of the operated leg may suggest that when performing at high intensities (above the lactate threshold) these fibers are subjected to greater metabolic disturbances compared to the “normal” IIa fibers of the contralateral leg. In any case, the above two hypotheses imply that high intensity exercise is not tolerated in the same manner by the VL of the intact and the reconstructed leg and that fatiguing exercise may provoke greater physiological strain on the VL muscle of the reconstructed leg compared to the VL muscle of the intact leg.

Given the interdependence between neuromuscular and metabolic systems, an important implication of the present study is the potential for improved neuromuscular response of the reconstructed leg following endurance training. Usually, improvement of aerobic fitness of athletes following ACL reconstruction is performed after the athlete is discharged from formal rehabilitation and only in the case of elite athletes during accelerated rehabilitation [43]. It should be anticipated that an aerobic endurance training program aiming at peripheral (muscle) adaptations would improve neuromuscular response by improving lactate tolerance and accumulation of metabolites implicated in the fatigue process during high intensity exercise [7, 8, 29, 34, 44]. To the best of our knowledge this is the first study that investigated directly the relationship between the local neuromuscular response and endurance markers in ACL reconstructed athletes. Previous studies on healthy subjects have assessed extensively the relationship between the local neuromuscular response and endurance markers during high intensity cycling [11, 12, 13, 14, 16, 17]. Our approach enabled us to extend our findings to intense running which represents a highly functional activity for the ACL reconstructed athlete. Furthermore, using preliminary VO2max and
lactate threshold testing we assigned high intensity exercise according to individual fitness levels. Thus, all subjects exercised under identical controlled conditions.

In the present study only ACL reconstructed athletes with bone-patellar tendon-bone autograft were recruited. Thus, it is unknown if a similar response pattern will be observed in athletes with a different graft such as hamstrings. Furthermore it is accepted that proprioceptive deficits occur in most patients after ACL rupture and that persist to some degree after ACL reconstruction [45]. However we believe that this should have a minimal effect in our study because, a) our players were all treated with the same rehabilitative protocol, which emphasized on proprioceptive re-training and b) our study design involved treadmill running which is a cyclic highly repeatable two-dimensional motion. It should also be acknowledged that EMG recordings should be performed with great care and the results should be interpreted with caution when it comes to dynamic muscle contractions and especially whole body exercises such as running. With that in mind, signal capturing, recording and processing were performed according to established guidelines [27, 28]. We selected a fixed epoch for the period of contraction in our study. Thus, we examined electrical activity developed solely during the stance period, thereby reducing to some extent the role of the signal non-stationarities with respect to the other effects being studied [46]. Furthermore, the peak activity of many (successive) steps was averaged providing a reasonable estimation of peak electrical activity during every recording period and minimizing within subject variability. In addition, our study design involved repeated measures, that is, the final value of the EMG activity was normalized to its original value while the electrodes remained attached during the whole task, thereby overcoming the between-subject variability of EMG amplitude [47].
CONCLUSIONS

In conclusion, the neuromuscular response of the intact leg during high intensity exercise shows strong to very strong relationships with endurance markers that are indicative of local muscle adaptations to endurance training. Failure of the ACLR leg to present a similar response may indicate that chronic perturbations may impair the normal physiological response and/or that variables other than endurance markers may also be implicated in the ability of the local muscle environment to tolerate sustained high intensity efforts.

ACKNOWLEDGEMENTS

This research project (PENED03) is co-financed by the E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT (25%).

REFERENCES

30. Jones AM, Pringle JSM, Carter H. Influence of muscle fiber type and motor unit
 recruitment on VO₂ kinetics. In: Jones AM, Poole DC, editors. Oxygen uptake kinetics

31. Pringle JS, Jones AM. Maximal lactate steady state, critical power and EMG during

32. Brooks GA. Anaerobic threshold: review of the concept and directions for future

33. Svedahl K, MacIntosh BR. Anaerobic threshold: the concept and methods of

34. Holloszy, JO, and Coyle, EF. Adaptations of skeletal muscle to endurance exercise

35. Bryant AL, Kelly J, Hohmann E. Neuromuscular adaptations and correlates of knee

36. McHugh MP, Tyler TF, Nicholas SJ, Browne MJ, Gleim G.W. Electromyographic
 analysis of quadriceps fatigue after anterior cruciate ligament reconstruction. J Orthop

37. Snyder-Mackler L, Binder-Macleod SA, Williams PR. Fatigability of human
 quadriceps femoris muscle following anterior cruciate ligament reconstruction. Med

38. Drechsler WI, Cramp MC, Scott OM. Changes in muscle strength and EMG median
 frequency after anterior cruciate ligament reconstruction. Eur J Appl Physiol 2006; 98:
 613–23.

TABLE LEGENDS

TABLE 1. Mean group values for the endurance markers. Values are mean±1 standard deviation.

TABLE 2. Correlation coefficients (r) and coefficients of determination (r²) between EMG activity and endurance markers.