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HILBERT SPACES INDUCED BY TOEPLITZ COVARIANCE
KERNELS

MIHAELA T. MATACHE
AND

VALENTIN MATACHE

Abstract. We consider the reproducing kernel Hilbert space Hµ induced by
a kernel which is obtained using the Fourier-Stieltjes transform of a regular,
positive, finite Borel measure µ on a locally compact abelian topological group
Γ. Denote by G the dual of Γ. We determine Hµ as a certain subspace of the
space C0(G) of all continuous function on G vanishing at infinity. Our main
application is calculating the reproducing kernel Hilbert spaces induced by the
Toeplitz covariance kernels of some well-known stochastic processes.

AMS Subj. Class. Primary: 60B15, Secondary: 60G10, 46C15.
Keywords: Covariance Kernel, Fourier Transform, Reproducing Kernel.

1. Introduction

Let K denote a reproducing kernel on a nonempty set X. Such a kernel is called
a Toeplitz kernel if X is an abelian group and there exists a function Φ : X → C
such that

K(x, y) = Φ(x− y), ∀x, y ∈ X.

The covariance kernels associated to wide-sense stationary stochastic processes
(see Definition 2 in Section 3 of this paper) are Toeplitz reproducing kernels. Let
G be a locally compact, abelian, topological group and K a continuous Toeplitz
reproducing kernel on G. A well known theorem of Bochner, [23, 1.4.3], states
that K is necessarily induced by a positive, finite, regular Borel measure µ on Γ,
the dual of G, in the sense that

K(x, y) = µ̂(y − x) ∀x, y ∈ G

where µ̂ is the Fourier-Stieltjes transform of µ. For that reason the reproducing
kernel Hilbert space (RKHS) induced by such a kernel K is denoted by Hµ. The
main result of this paper is Theorem 2 in which we describe Hµ as follows.

If µ̂ ∈ L1
G(dx), then µ is absolutely continuous with respect to the Haar measure

dγ of Γ, there is a continuous function ϕ such that ϕ = dµ/dγ, dγ-a.e., and

f ∈ Hµ if and only if f ∈ C0(G) ∩ L1
G(dx), f̂(γ) = 0 on {γ ∈ Γ : ϕ(γ) = 0} and

∫

{γ∈Γ:ϕ(γ) 6=0}

|f̂(γ)|2
ϕ(γ)

dγ < ∞.
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2 MIHAELA T. MATACHE AND VALENTIN MATACHE

In the text above f̂ denotes the Fourier transform of f and C0(G) is the alge-
bra of all continuous functions vanishing at infinity on G. The space L1

G(dx) is
calculated with respect to the Haar measure dx of G.

Let T be the unit circle in the complex plane and Z the set of all integers. The
representation of Hµ contained by Theorem 2 generalizes similar results which
describe the RKHS induced by a continuous, Toeplitz reproducing kernel in the
particular cases G = T, Γ = Z , [19, page 84], respectively G = Γ = R, [13], [21].

Section 2 of this paper is dedicated to introducing in detail the notions men-
tioned without many details or explanations in this section. We also prove some
preliminary results and technical lemmas necessary to the proof of the main
result. Section 3 contains that result (Theorem 2), its particular form for com-
pact, abelian, topological groups (Theorem 3), and several examples of RKHS
spaces induced by Toeplitz covariance kernels associated to well known stochas-
tic processes, (such as the increment-process associated to a Poisson process, the
Ornstein-Uhlenbeck process, some discrete first order autoregressive processes,
and some moving average processes). Theorems 2 and 3 are used to determine
those spaces.

There are many applications of the theory of RKHS spaces in various fields. To
give an example, T. Kailath, E. Parzen, and some of their co-workers developed
techniques of RKHS spaces to solve detection and estimation problems, [4], [5],
[6], [13], [14], [21]. RKHS techniques play a central role in these papers. They
are used to solve problems of extraction, detection, and prediction of signals in
the presence of noise. The main message in [21] is that it is important to know
if the signal belongs or not to the RKHS induced by the covariance kernel of the
noise. For more on the importance of RKHS theory and its applications in this
area of mathematics we refer to [2], [3], [11], [12], [16], [17], to quote only few of
many eligible references.

2. Preliminary Results

Let X denote a nonempty set. A reproducing kernel on X is any function
K : X ×X → C with the property that

n∑
i,j=1

K(xi, xj)cic̄j ≥ 0 ∀x1, . . . , xn ∈ X, ∀c1, . . . , cn ∈ C.

Each reproducing kernel K on X induces in a unique way a Hilbert spaceHK con-
sisting of complex valued functions on X called the Reproducing Kernel Hilbert
Space (RKHS) induced by K.

For each y ∈ X denote by ky the kernel function associated to y, i.e. the
function

ky(x) = K(x, y), x ∈ X.
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Denote by K the set of all kernel functions, i.e.

K = {ky : y ∈ X}.
HK is the completion of the linear space SpanK spanned by the functions in K
endowed with the inner product < ·, · > determined by the following relation

< ky, kx >= K(x, y) ∀x, y ∈ X.

The reason why HK is called an RKHS with kernel K is the so called reproducing
property

f(x) =< f, kx > ∀x ∈ X, ∀f ∈ HK .

All these facts are well known. We refer the reader to [1] and [8] for the basics
on RKHS.

For each f ∈ HK we denote by ‖f‖ the HK-norm of f , while ‖f‖∞ denotes
the following quantity

‖f‖∞ := sup{f(x) : x ∈ X}.
Clearly ‖f‖∞ ∈ [0,∞], ∀f ∈ HK . The following lemma contains an elementary
remark.

Lemma 1. Under the assumptions above, if K is a norm bounded set then there
is M > 0 such that

(1) ‖f‖∞ ≤ M‖f‖ ∀f ∈ HK .

Therefore a norm-convergent sequence in HK must also be uniformly convergent
on X toward the same limit.

Proof. Since K is norm bounded there is M > 0 such that

‖ky‖ ≤ M ∀y ∈ X.

Therefore for each x ∈ X one can write

|f(x)| = | < f, kx > | ≤ ‖f‖‖kx‖ ≤ M‖f‖.
¤

Let G be an abelian, locally compact, topological group having the dual group
denoted by Γ. It is well known that the reproducing kernels K(x, y) on G of
the form K(x, y) = Φ(x − y) for some Φ : G → C are necessarily induced by a
finite, positive, regular Borel measure µ on Γ in the sense that such a µ with the
following property always exists

(2) Φ(x) =

∫

Γ

(x, γ)dµ(γ) x ∈ G.

In (2) (x, γ) denotes γ(x). We will use this notation all over this paper. Let µ̂
denote the Fourier-Stieltjes transform of µ. Identifying as usual G to the dual
group of Γ, observe that (2) can be rewritten in the following form

(3) Φ(x) = µ̂(−x) x ∈ G.
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In (3) and all over this paper we use additive notation for the group law of G.
Since µ̂ is the Fourier-Stieltjes transform of a complex regular Borel measure on
a locally compact abelian group, Φ must be uniformly continuous and bounded
on G and hence

ky ∈ Ub(G) ∀y ∈ G

where for each y, ky is the kernel-function associated to the reproducing kernel
K(x, y) = Φ(x − y), x, y ∈ G, Φ and µ are related as in (2), and Ub(G) is the
space of all bounded, uniformly continuous, complex functions on G. Recall also
the notation HK = Hµ for the RKHS with the previously described reproducing
kernel. Our first observation on Hµ is the following.

Theorem 1. Under the assumptions above one has that

Hµ ⊆ Ub(G).

Proof. Denote as before by K the set of all kernel-functions of Hµ. Clearly the
linear space spanned by K, SpanK is a dense subset of Hµ. On the other hand,
SpanK ⊆ Ub(G) and K is a norm bounded set since one can write

‖ky‖2 =< ky, ky >= Φ(y − y) = Φ(0) ∀y ∈ G.

By the density of SpanK in Hµ and Lemma 1, we deduce that

Hµ ⊆ Ub(G).

¤

Corollary 1. If G is separable, then Hµ is also separable.

Proof. Let S = {xn : n ∈ I} be a countable dense subset of G. Observe that
if f ∈ Hµ is perpendicular to kxn , ∀n ∈ I, then f(xn) = 0, ∀n ∈ I. Since f
is a continuous function and S a dense subset of G, it follows the f is the null
function. The immediate consequence of this fact is that Span{ky : y ∈ S} is
dense in Hµ. Therefore, since S is countable, if one considers the linear span of
the vectors in {ky : y ∈ S} with coefficients chosen in the set Q[i] of all complex
numbers with rational real and imaginary parts, one obtains a countable, dense
subset of Hµ. ¤

The Haar measures on G and Γ will be denoted by dx and dγ respectively. It
will always be assumed that they are normalized in such a way that the inversion
theorem ([23, 1.5.1]) holds i.e. the following formula holds

(4) f(x) =

∫

Γ

f̂(γ)(x, γ) dγ x ∈ G.

In order that (4) holds f must be an L1
G(dx)-function which belongs to the class

B(G) of all functions on G which are the Fourier-Stieltjes transforms of complex,
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Borel measures on Γ. Assume now that µ is absolutely continuous with respect
to the Haar measure of Γ, ϕ ∈ B(Γ) and

dµ = ϕ(γ) dγ.

Since µ is a finite, positive measure, it follows that the Radon-Nykodim derivative
ϕ is a nonnegative L1

Γ(dγ)-function. The following lemma shows that the kernel-
functions of Hµ are complex conjugates of shifted Fourier transforms of ϕ, more
precisely we can prove the following.

Lemma 2. Let y ∈ G be arbitrary and fixed. The kernel-function ky can be
calculated by the following formula.

(5) ky(x) = ̂(y, γ)ϕ(γ)(x) x ∈ G.

Proof. Indeed, one can write the following.

ky(x) = Φ(x− y) =

∫

Γ

(x− y, γ) dµ(γ) =

∫

Γ

(x− y, γ)ϕ(γ) dγ =

∫

Γ

γ(y − x)ϕ(γ) dγ =

∫

Γ

(−x, γ)(y, γ)ϕ(γ) dγ = ̂(y, γ)ϕ(γ)(x).

¤
Corollary 2. All the kernel-functions of Hµ are L1

G(dx)-functions if and only if
ϕ̂ ∈ L1

G(dx).

Proof. Observe that k0 = ϕ̂, hence k0 ∈ L1
G(dx) if and only if ϕ̂ ∈ L1

G(dx). Given
that ky(x) = Φ(x− y) = k0(x− y) and dx is translation-invariant, it follows that
ky ∈ L1

G(dx), ∀y ∈ G if and only if k0 ∈ L1
G(dx). ¤

Under the assumptions dµ/dγ = ϕ dγ-a.e and ϕ ∈ B(Γ) ∩ L1
Γ(dγ) one has the

following useful formula for the Fourier transform of a kernel-function.

Lemma 3. If ϕ ∈ B(Γ) ∩ L1
Γ(dγ) the Fourier transform k̂y of an arbitrary, fixed

kernel-function ky is given by the following formula.

(6) k̂y(γ) = (y, γ)ϕ(γ) = (−y, γ)ϕ(y) γ ∈ Γ.

Proof. The equality (6) is a direct consequence of Lemma 2 and the inversion
formula (4). Indeed

k̂y(γ) =

∫

G

(−x, γ)ky(x) dx =

∫

G

(x, γ)ky(x) dx =
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∫

G

(x, γ) ̂(y, γ)ϕ(γ) dx = (y, γ)ϕ(γ) = (−y, γ)ϕ(y).

Above we were able to apply formula (4) to the function (y, γ)ϕ(γ) because B(Γ)
is invariant under multiplication by (y, γ), [23, 1.3.3]. ¤

From now on, we will work under the assumptions in Lemma 3, namely assume
that µ is a finite, positive Borel measure on Γ such that dµ << dγ, there is a
finite, positive Borel measure λ on G such that dµ/dγ is equal dγ-a.e to ϕ, the
Fourier-Stieltjes transform of λ i.e. such that

(7) ϕ(γ) =

∫

G

(−x, γ) dλ(x) γ ∈ Γ,

and ϕ ∈ L1
Γ(dγ).

Remark 1. The assumptions above hold if and only if µ̂ ∈ L1
G(dx).

Proof. By [23, 1.7.3], if µ̂ ∈ L1
G(dx), then dµ << dγ, dµ/dγ ∈ L1

Γ(dγ), and dµ/dγ
is equal dγ-a.e. to the Fourier transform of g(x) = µ̂(−x), an L1

G(dx)-function.
The converse implication is a direct consequence of [23, 1.5.1]. ¤

Under these assumptions we introduce a positive, not necessarily finite measure
µ̃ associated to µ as follows.

Definition 1. Let S denote the following open subset of Γ, S := {γ ∈ Γ : ϕ(γ) 6=
0}. Let E denote an arbitrary, fixed, Borel subset of Γ. The measure µ̃ is the
Borel measure on Γ given by the following equality

µ̃(E) :=

∫

S∩E

1

ϕ(γ)
dγ.

From now on we will use the notation S = suppµ̃. The following is the last
technical lemma we need prior to proving the theorem containing the description
of Hµ.

Lemma 4. Let µ, µ̃, λ, and ϕ be as described above. The following inequality
holds.

(8)
λ(G)

ϕ(γ)
≥ 1 ∀γ ∈ suppµ̃.

Let f be any function in B(G)∩L1
G(dx) such that f̂(γ) = 0 dγ-a.e. on Γ\ suppµ̃.

For such f the following equality holds.

(9) f(x) =

∫

Γ

f̂(γ)
¯̂
ky(γ) dµ̃(γ).
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Proof. Relation (8) is an immediate consequence of (7), as for equality (9), observe
that one can write∫

Γ

f̂(γ)
¯̂
kx(γ) dµ̃(γ) =

∫

suppµ̃

f̂(γ)(x, γ)ϕ(γ)
1

ϕ(γ)
dγ =

∫

Γ

f̂(γ)(x, γ) dγ = f(x).

Above we made use of both Lemma 3 and the inversion formula (4). ¤

3. The Main Results

Let C0(G) denote the space of all continuous, complex functions on G which
vanish at infinity. We are ready to characterize the space Hµ now.

Theorem 2. If µ̂ ∈ L1
G(dx) then the space Hµ consists of those functions f ∈

L1
G(dx) ∩ C0(G) which satisfy the following two conditions

(10) f̂(γ) = 0 ∀γ ∈ Γ \ suppµ̃

(11)

∫

Γ

|f̂(γ)|2 dµ̃(γ) < ∞.

Any function f ∈ Hµ has the property ‖f‖2 < ∞ where ‖ · ‖2 is the norm of
L2

G(dx).

Proof. Let H0 denote the space of all functions f ∈ L1
G(dx) ∩ C0(G) satisfying

conditions (10) and (11). First we will show that H0 is complete under the norm
induced by the inner product

< f, g >=

∫

Γ

f̂(γ)¯̂g(γ)dµ̃(γ)

‖f‖2 < ∞, ∀f ∈ H0, and H0 ⊆ B(G). First, observe that SpanK ⊆ H0. This is
a direct consequence of Lemma 3 and the following computation∫

Γ

|k̂y(γ)|2dµ̃(γ) =

∫

suppµ̃

ϕ(γ) dγ = µ(Γ) < ∞.

Denote by ‖ · ‖ the norm of H0. If f ∈ H0 then∫

Γ

|f̂(γ)|dγ < ∞ and

∫

Γ

|f̂(γ)|2dγ < ∞.

Indeed, by Lemma 4

1

ϕ(γ)
≥ 1

λ(G)
∀γ ∈ suppµ̃.

Therefore∫

Γ

|f̂(γ)|2dγ =

∫

suppµ̃

|f̂(γ)|2dγ ≤ λ(G)

∫

suppµ̃

|f̂(γ)|2
ϕ(γ)

dγ = λ(G)‖f‖2 < ∞.
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Also
∫

Γ

|f̂(γ)|dγ =

∫

suppµ̃

|f̂(γ)|dγ ≤
√∫

suppµ̃

|f̂(γ)|2
ϕ(γ)

dγ

√∫

suppµ̃

ϕ(γ)dγ =

= ‖f‖
√

µ(Γ) < ∞.

Observe that we established the inequalities

‖f̂‖1 ≤
√

µ(Γ)‖f‖ ∀f ∈ H0

where ‖ · ‖1 is the norm of L1
Γ(dγ), and

‖f̂‖2 ≤
√

λ(G)‖f‖ ∀f ∈ H0.

We will also denote by ‖·‖1 and ‖·‖2 the norms of L1
G(dx) and L2

G(dx) respectively.
Now assume that (fn)n is a Cauchy sequence in H0 endowed with the norm

‖ · ‖. Then (f̂n)n will be Cauchy in both L1
Γ(dγ) and L2

Γ(dγ). Since both these

spaces are complete, there is a g ∈ L1
Γ(dγ)∩L2

Γ(dγ) such that ‖f̂n− g‖1 → 0 and

‖f̂n − g‖2 → 0. The reason why the limit is the same modulo equality dγ-a.e. is
the fact that convergent sequences in Lp-spaces have subsequences converging a.e.
toward the limit-function, [24, 3.12]. Also, the sequence (f̂n)n is Cauchy in the

norm ‖·‖∞ because ‖f̂n‖∞ ≤ ‖fn‖1, ∀n, [23, 1.2.4]. Denote by h the uniform limit

of (f̂n)n. Clearly h = g dγ-a.e. and h ∈ B(Γ) because, by Bochner’s theorem [23,
1.4.3], B(Γ) is closed with respect to uniform convergence on Γ. So we established

that h ∈ B(Γ) ∩ L1
Γ(dγ) ∩ L2

Γ(dγ), ‖f̂n − h‖1 → 0, ‖f̂n − h‖∞ → 0, and hence
h(γ) = 0 ∀γ ∈ Γ \ suppµ̃ . Let

f(x) :=

∫

Γ

h(γ)(x, γ) dγ.

By the inversion theorem f ∈ L1
G(dx) ∩B(G) and for each x ∈ G one can write

|f(x)− fn(x)| = |
∫

Γ

(h(γ)− f̂n(x))(x, γ) dγ|

≤ ‖h− f̂n‖1 → 0.

Again by the inversion theorem one can see that f̂ = h. Since h ∈ L1
Γ(dγ)∩L2

Γ(dγ)
it follows that ‖f‖2 < ∞, as a consequence of the Plancherel theorem, [23, 1.6.1].

Let us prove now that f is the ‖ · ‖ - limit of (fn)n. For arbitrary fixed ε > 0
consider n0 a positive integer such that

‖fm − fn‖ <
ε

2
∀m,n ≥ n0.

One has that

‖f − fn‖2 =

∫

Γ

lim inf
k→∞

|f̂mk
(γ)− f̂n(γ)|2dµ̃(γ) ≤

≤ lim inf
k→∞

∫

Γ

|f̂mk
(γ)− f̂n(γ)|2dµ̃(γ) ≤

( ε

2

)2

< ε2
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whenever n ≥ n0. Above we used Fatou’s lemmma [24, 1.28] and the existence

of a subsequence (f̂mk
)k of (f̂n)n convergent to h = f̂ dγ-a.e. on Γ. So H0 is a

Hilbert space and since H0 ⊆ L1
G(dx) ∩ B(G) one deduces that the reproducing

property holds on H0, i.e.

< f, kx >= f(x) x ∈ G.

The above equality is a direct consequence of (9). Thus H0 is an RKHS with
kernel

K(x, y) =< ky, kx >=

∫

suppµ̃

(−y, γ)ϕ(γ)(x, γ)ϕ(γ)
1

ϕ(γ)
dγ = µ̂(y − x)

by Lemma 3. Given the uniqueness of the RKHS associated to a given reproducing
kernel it follows that Hµ = H0. ¤

The statement in the Theorem 2 in the particular case G = Γ = R appears
in [13]. Theorem 2 can be formulated in a special way if G is compact. Before
stating it in that context we need to make some simple observations and introduce
more notations. Recall that if G is compact, then Γ is a complete orthonormal
subset of L2

G(dx), [18]. For each f ∈ L1
G(dx) and each γ ∈ Γ we denote by cγ(f)

the Fourier coefficient of f of index γ, i.e.

cγ(f) =

∫

G

f(x)(−x, γ)dx.

Denote by C(G) the algebra of all complex-valued continuous functions on G.
One can give the following characterization to the space Hµ.

Theorem 3. Let G be a compact, abelian topological group. Let Γ denote its dual
group, and let µ be a finite, positive, regular Borel measure on Γ. Then f ∈ Hµ

if and only if f ∈ C(G),

(12) cγ(f) = 0 ∀γ ∈ Γ \ suppµ̃

and

(13)
∑

γ∈suppµ̃

|cγ(f)|2
µ({γ}) < ∞.

Proof. Since dx is a finite measure any function in C(G) is an L1
G(dx)-function. On

the other hand, conditions (12) and (13) are exactly (10) and (11) in our context,
since Γ is a discrete topological group, [23, 1.7.3]. Also, µ̂ is automatically in
L1

G(dx) when G is compact because µ̂ is continuous on G and hence bounded. ¤

Theorem 3, in the particular case G = T and Γ = Z appears in [19, page 84].
In the following we will illustrate the utility of Theorem 2 by calculating the re-
producing kernel space associated to some stochastic processes. Let (Xt)t∈I be a
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stochastic process. The RKHS generated by the covariance kernel of a stochastic
process is often a valuable instrument. We will designate the aforementioned re-
producing kernel Hilbert space as the RKHS associated to the stochastic process.

Definition 2. A process (X(t))t∈S is called wide-sense stationary, if it has con-
stant mean and the autocorrelation function K(s, t) = E[X(s)X(t)], s, t ∈ S,
depends only on the difference t− s.

The index set S is assumed to be the subset of a group. Theorem 2 can be
used to calculate the RKHS associated to wide-sense stationary processes. We
give several examples in the following. Recall that if K is a reproducing kernel
on X, then for each nonempty subset E of X, the restriction of K to E ×E is a
reproducing kernel on E and the RKHS induced by this second kernel is simply
the space of the restrictions to E of all functions in HK . We will use this fact in
some of the examples without mentioning it each time.

Example 1. Let (N(t))t≥0 be a Poisson process, and define its increment process
as follows X(t) := N(t + 1) − N(t), t ≥ 0. Denote by dx the Lebesgue measure
on the real line. The RKHS associated to (X(t))t≥0 is the space of all functions g
which are restrictions to [0,∞) of functions f ∈ C0(R)∩L1

R(dx) with the following
properties

(14) f̂(2kπ) = 0 ∀k ∈ Z, k 6= 0

and

(15)

∫ ∞

−∞

|f̂(x)|2x2

sin2(x/2)
dx < ∞.

Proof. Let G = R and Γ = R, (see [23] for the fact that they are duals of
each other). Let dµ = sin2(x/2)/(

√
2π(x/2)2)dx. Clearly (sin2(x/2)/(x/2)2) ∈

L1
R(dx). Working as usual with the normalized Haar measure dx/

√
2π, one ob-

tains by a straightforward calculation

µ̂(x) =

{
1− |x| if |x| ≤ 1

0 if |x| > 1
.

This is a continuous, compactly supported function and hence belongs to L1
R(dx).

Therefore Theorem 2 can be applied to the kernel K(t, s) = νµ̂(s − t) whose
restriction to [0,∞) is the covariance kernel of the process (X(t))t≥0, [20]. The
positive constant ν is sometimes called the intensity of the Poisson process, [20].
Since the function ϕ in Theorem 2 is in our case ϕ(x) = sin2(x/2)/(

√
2π(x/2)2)

whose set of zeros is {2kπ : k ∈ Z, k 6= 0}, one gets the characterization above.
¤

Our next example is concerned with the following stochastic process.

Definition 3. The stationary Ornstein-Uhlenbeck process is the unique Gaussian
process with mean zero and covariance kernel K(t, s) = (σ2/(2β))e−β|t−s| t, s ∈ R.
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Its associated RKHS is described in the next example.

Example 2. The RKHS associated to the stationary Ornstein-Uhlenbeck process
consists of all functions f ∈ C0(R)∩L1

R(dx) which satisfy the following condition

(16)

∫ ∞

−∞
|f̂(x)|2(β2 + x2) dx < ∞.

Proof. Using again the notations of Theorem 2, consider ϕ(x) = σ2/(
√

2π(β2 +
x2)). It is easy to check that ϕ̂(x) = (σ2/(2β))e−β|x|, [23, 1.5.3]. Clearly ϕ
satisfies the assumptions in Theorem 2 and condition (10) is vacuously satisfied
by all functions f ∈ C0(R) ∩ L1

R(dx) since ϕ has no zeros. ¤

Let us consider some examples of discrete processes now.

Example 3. Let r and σ be real constants, 0 < r < 1, (An)n≥0 a sequence of
zero mean uncorrelated random variables such that

Var(A0) =
σ2

1− r2
and Var(An) = σ2 ∀n > 0.

The first order autoregressive process AR(1) (Xn)n≥0 is defined as follows. X0 =
A0, Xn = rXn−1 + An. The RKHS H associated to this process has the following
description. H consists of all absolutely-summable sequences (wn)n≥0 of complex
numbers which are restrictions to the set N of non-negative integers of sequences
(zn)n∈Z of complex numbers with the following property

∞∑
n=−∞

(
(1 + r2)|zn|2 − r(z̄n+1 + z̄n−1)zn

)
< ∞.

Proof. A straightforward computation leads to the formula

Cov(Xn, Xm) =
σ2

1− r2
r|m−n|.

Let

ϕ(eiθ) :=
σ2

1− r2

∞∑
n=−∞

r|n|einθ.

Let G = Z and Γ = T (see [23] for the fact that they are each other’ s dual). The
Fourier transform of ϕ is the sequence of its Fourier coefficients calculated with
respect to the standard orthonormal basis {einθ : n ∈ Z} of Γ = T. Obviously, if
dµ := ϕ(eiθ) dθ

2π
(where dθ is the arc-length measure on T), one has that

ϕ̂ =

(
r|n|σ2

1− r2

)

n∈Z
.

Therefore ϕ̂(m − n) = Cov(Xn, Xm) ∀m,n ∈ Z and hence Theorem 2 can be
used to calculate the RKHS induced by the covariance kernel of (Xn)n≥0. Indeed,
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since 0 < r < 1, the sequence ϕ̂ is absolutely summable, i.e. µ̂ ∈ L1
G(dx). A

straightforward computation leads to the following simpler representation of ϕ

ϕ(eiθ) =
σ2

|1− reiθ|2 .

Applying Theorem 2 to the groups G = Z, Γ = T and the measure dµ = ϕ(eiθ) dθ
2π

one obtains that Hµ consists of those absolutely summable sequences (zn)n∈Z of
complex numbers with the property that

(17)

∫ π

−π

∣∣∣∣∣
∞∑

n=−∞
zneinθ

∣∣∣∣∣

2

|1− reiθ|2dθ < ∞.

Note that ϕ(eiθ) is never zero, so (17) is the only condition (zn)n∈Z must satisfy
besides being absolutely summable. The absolute summability of (zn)n∈Z and a
straightforward computation lead to the following alternative expression of (17)

∞∑
n=−∞

((1 + r2)|zn|2 − r(z̄n−1 + z̄n+1)zn) < ∞.

¤

Example 4. Let q be a positive integer. Consider a sequence (An)n≥0 of random
variables with the properties E[An] = E[A0], ∀n ≥ 0 and Var(An) = σ2 > 0,
∀n ≥ 0. Let (Xn)n≥q be the following moving average process of order q, MA(q)

Xn =
1

q + 1

q∑

k=0

An−k ∀n ≥ q.

The RKHS H associated to this process has the following description. H consists
of those absolutely summable sequences (wn)n≥q of complex numbers which are
restrictions to the set {n ∈ Z : n ≥ q} of sequences (zn)n∈Z for which the following
conditions hold

(18)
∞∑

n=−∞
zne

2nkπi
q+1 = 0 ∀k ∈ Z, 0 < |k| ≤ q + 1

2

and

(19)

∫ π

−π

∣∣∑∞
n=−∞ zne

inθ
∣∣2 sin2 θ

2

sin2 θ
2

+ sin (q+2)θ
2

sin qθ
2

dθ < ∞.

Proof. The covariance kernel of (Xn)n≥q is described by the following

Cov(Xn, Xm) =

{
σ2

(q+1)2
(q + 1− |m− n|) if |m− n| ≤ q

0 if |m− n| > q
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Consider the function ϕ(eiθ) whose sequence of Fourier coefficients is given by

cn =

{
σ2

(q+1)2
(q + 1− |n|) if |n| ≤ q

0 if |n| > q

Clearly

ϕ(eiθ) =
σ2

(q + 1)2

q∑

k=−q

(q + 1− |k|)eikθ.

Straightforward computations lead to the following simpler representation of ϕ

ϕ(eiθ) =
σ2

(q + 1)2

[
1 +

sin (q+2)θ
2

sin qθ
2

sin2 θ
2

]
.

Applying Theorem 2 to G = Z, Γ = T, dµ = ϕ(eiθ) dθ
2π

one gets that Hµ consists
of those absolutely summable sequences (zn)n∈Z of complex numbers for which
conditions (18) and (19) hold. ¤
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