Author ORCID Identifier

Stergiou -

Document Type


Publication Date



Introduction: There is limited knowledge on the use of 3 D-printed transitional prostheses, as they relate to changes in function and strength. Therefore, the purpose of this study was to identify functional and strength changes after usage of 3 D-printed transitional prostheses for multiple weeks for children with upper-limb differences.

Materials and methods: Gross manual dexterity was assessed using the Box and Block Test and wrist strength was measured using a dynamometer. This testing was conducted before and after a period of 24 ± 2.61 weeks of using a 3 D-printed transitional prosthesis. The 11 children (five girls and six boys; 3–15 years of age) who participated in the study, were fitted with a 3 D-printed transitional partial hand (n = 9) or an arm (n = 2) prosthesis.

Results: Separate two-way repeated measures ANOVAs were performed to analyze function and strength data. There was a significant hand by time interaction for function, but not for strength.

Conclusion and relevance to the study of disability and rehabilitation: The increase in manual gross dexterity suggests that the Cyborg Beast 2 3 D-printed prosthesis can be used as a transitional device to improve function in children with traumatic or congenital upper-limb differences.

  • Implications for Rehabilitation
  • Children’s prosthetic needs are complex due to their small size, rapid growth, and psychosocial development.

  • Advancements in computer-aided design and additive manufacturing offer the possibility of designing and printing transitional prostheses at a very low cost, but there is limited knowledge on the function of this type of devices.

  • The use of 3D printed transitional prostheses may improve manual gross dexterity in children after several weeks of using it.


This is an Accepted Manuscript of an article published by Taylor & Francis in [Disability and Rehabilitation: Assistive Technology] on [November 8, 2017], available online:

Journal Title

Disability and Rehabilitation: Assistive Technology





First Page


Last Page


Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Included in

Biomechanics Commons