Document Type


Publication Date



Background: Wearing a harness during treadmill walking ensures the subject’s safety and is common practice in biomedical engineering research. However, the extent to which such practice influences gait is unknown. This study investigated harness-related changes in gait patterns, as evaluated from lower extremity kinematics during treadmill walking.

Findings: Healthy subjects (n = 10) walked on a treadmill at their preferred speed for 3 minutes with and without wearing a harness (LiteGait®, Mobility Research, Inc.). In the former condition, no weight support was provided to the subjects. Lower extremity kinematics was assessed in the sagittal plane from the mean (meanRoM), standard deviation (SDRoM) and coefficient of variation (CoVRoM) of the hip, knee, and ankle ranges of motion (RoM), as well as from the sample entropy (SampEn) and the largest Lyapunov exponent (LyE) of the joints’ angles. Wearing the harness increased the meanRoM of the hip, the SDRoM and the CoVRoM of the knee, and the SampEn and the LyE of the ankle. In particular, the harness effect sizes for both the SampEn and the LyE of the ankle were large, likely reflecting a meaningful decline in the neuromuscular stabilizing control of this joint.

Conclusions: Wearing a harness during treadmill walking marginally influences lower extremity kinematics, resulting in more or less subtle changes in certain kinematic variables. However, in cases where differences in gait patterns would be expressed through modifications in these variables, having subjects walk with a harness may mask or reinforce such differences.


© 2012 Decker et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal Title

Journal of NeuroEngineering and Rehabilitation





Included in

Biomechanics Commons