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ABSTRACT

Unmanned Aircraft Systems (UAS) have become an important re-
source for public service providers and smart cities. The purpose of
this study is to expand this research area by integrating computer
vision and UAS technology to automate public inspection. As an
initial case study for this work, a dataset of common foreign object
debris (FOD) is developed to assess the potential of light-weight
automated detection. This paper presents the rationale and cre-
ation of this dataset. Future iterations of our work will include
further technical details analyzing experimental implementation.
At alocal airport, UAS and portable cameras are used to collect the
data contained in the initial version of this dataset. After collecting
these videos of FOD, they were split into individual frames and
stored as several thousand images. These frames are then annotated
following standard computer vision format and stored in a folder-
structure that reflects our creation method. The dataset annotations
are validated using a custom tool that could be abstracted to fit fu-
ture applications. Initial detection models were successfully created
using the famous You Only Look Once algorithm, which indicates
the practicality of the proposed data. Finally, several potential sce-
narios that could utilize either this dataset or similar methods for
other public service are presented.

CCS CONCEPTS

« Visual inspection; « Vision for robotics; « Avionics;
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1 INTRODUCTION

Integrating state-of-the-art advances in technology has provided
consistent benefit towards major city operations. Artificial intel-
ligence is one of the major incorporating areas for smart city in-
frastructures. Smart city concepts include various systems such as
New York City’s Midtown in Motion, a traffic monitoring system
that has helped to reduce traffic congestion [12]. New York City
has also implemented a water usage monitoring system that has
over 800,000 gauges in which the city’s water consumption data
is measured and aggregated. In the future, currently trivial secu-
rity camera systems may be able to detect crimes like assault and
proceed to track and monitor suspects.

Computer vision, a scientific field studying high-level under-
standing from digital images or videos, is behind many recent
advances in artificial intelligence. Together with machine (deep)
learning [23], object localization (i.e., identifying the locations of
objects in an image) and object detection (i.e., detecting instances
of semantic objects of a certain class in images) has attracted in-
creasing attention and has demonstrated its supreme performance
in many application scenarios [9, 11]. Developing object detection
or localization models is an important first step in many inspection
systems for smart cities [22]. However, building these models often
require massive, annotated data and thus there is a crucial demand
for computer vision databases in this research community, e.g.,
Foreign Object Debris (FOD) datasets [19].

Unmanned aircraft systems (UAS), commonly referred to as
drones, are any aerial vehicles that do not contain an onboard
pilot. Without an onboard pilot, UAS can be significantly smaller
than manned aircraft, fly in more dangerous situations, and carry
a variety of different payloads. UAS technology is an efficient and
novel way to collect massive quantities of image data because of its
capabilities. UAS are usually controlled by a remote pilot manually
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or autonomously using flight control software and Global Position-
ing System (GPS). These techniques usually command the UAS to
fly to a specific GPS coordinate or along a path of coordinates to a
destination. Therefore, most automatic UAS navigation systems are
limited to spaces covered by GPS service. Other navigation methods
can involve preprogrammed movements, following a painted line
based on computer vision, inertial navigation, or other techniques.
With the significant miniaturization of advanced integrated elec-
tronics, rapid development of power storage and materials, and
continuously declining equipment cost, small UAS are becoming
more common and promising in civilian use.

Research in FOD detection or localization using computer vision
methods is becoming common [25-27]. However, there is not a
publicly released dataset that is sufficient for complex research ap-
plications. Researchers have been repeatedly creating private FOD
datasets for individual algorithm exploration. Without a common
dataset, it is challenging to compare and evaluate the performance
of new algorithms. We propose to solve this issue by initializing
a common dataset of FOD. In the literature, although there is one
existing FOD dataset, it mainly concentrates on the specialized
purpose of material recognition [24]. It can be too small (about
3,500 images) to support various object detection tasks in machine
learning. Moreover, existing datasets (e.g., 3 classes in [24]) did
not cover a variety range of categories of FOD. In contrast, the
initial collection of our FOD dataset contains 11 object classes and
is expanding as we continue to incorporate all categories of FOD
defined by the Federal Aviation Administration (FAA) [3].

In the proposed public inspection, one major purpose is to train a
computer vision model that detects objects on a runway or taxiway,
which requires sizable training examples to teach the model target
object patterns. To this end, the dataset needs to be extensible, mean-
ing that adding objects to existing datasets must be significantly
simple. Also, to provide benefit of categorization, the computer will
learn per-object as opposed to learning all objects at once. Typi-
cally, machine learning processes of object detection consists of
inputting a dataset of images with the location of each object given
as coordinates that form a bounding box. Each bounding box must
be manually drawn on every image to create this dataset. After
studying these images, the model can infer the location of bounding
boxes on new images without the input bounding box. If the model
estimates an incorrect bounding box, it will reassess the estimation
it made initially and attempt another approximation after studying
the annotated images further. Over time the model will learn to
understand which output coordinates are correct, which are incor-
rect, and will gradually become increasingly proficient at making
estimations.

Besides the most apparent large data scale obstacle, the format
of the data itself can present problems if left unoptimized. A uni-
versal format would certainly need to be standardized, as it would
drastically reduce overhead caused by converting between formats
and increase the scalability of the data. Presumably, cities would
also need to communicate between each other as well. This would
necessitate reliable networks with the ability to persistently handle
large datasets. The final major setback in implementation of smart
city technology is the cost. The Midtown in Motion project alone
accrued nearly $3 million in fees and will likely cost millions more
[12]. One of the goals of this research is to create an easy-to-follow
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framework which minimizes data usage to reduce requirements
on networks. Utilizing computer vision technology that can be im-
plemented on more economical hardware would also be a major
benefit towards mass adoption.

2 APPLICATIONS IN PUBLIC SERVICES

This section introduces application examples of integrative use of
computer vision and UAS technology focusing on FOD detection
and other potential applications in public services.

2.1 DPotential Applications in Public Service

The presented strategy of UAS based computer vision could be ap-
plied to a variety of critical public services with necessary datasets
for technology preparation. Bridge inspection, as one example, is a
crucial practice to prevent bridge collapse and similar dangerous
events. In current practice, inspection personnel must search for
defects in all sections of the bridge when conducting the inspection.
Examining the underside of a bridge can be unsafe and expensive.
Leveraging the advantages of mobility and versatility of UAS tech-
nology, UAS could be employed to inspect the elusive sections of
bridges to prevent unnecessary risk to personnel [20]. Furthermore,
incorporating computer vision into UAS platform expects to further
enhance the technological capability and efficiency of UAS in bridge
inspection by preventing human errors and overlooking potential
bridge damages. While human examination would still be necessary
at times, regular inspections could be automated using precision
detection and navigation techniques embedded in UAS. Any au-
tomated inspections using these methods could capture complete
video data for review by authorized personnel.

Applying these methods to traffic monitoring could also prove
a beneficial practice. Standalone cameras already exist in many
existing roadways, and computer vision enabled UAS could provide
a mobile inspection service. Computer vision, if applied to these
sensors, could provide detailed information about roadway usage
and peak traffic hours [7]. Utilizing UAS to monitor traffic would
allow more roads to become monitorable, as aerial vehicles would
not be limited to a single location. Traffic intersections could be
monitored for debris to expedite its removal or to alert emergency
personnel of collisions [21]. Video motion analysis could be in-
cluded to estimate the velocity of vehicles, which would provide
a cheaper alternative to manual speed limit monitoring. The data
collected from UAS and stationary cameras would provide detailed
reports and mappings about traffic that could prove crucial in road
development and other urban planning situations.

Cities are becoming overwhelmingly large, which contributes to
the growing complexity of planning urban development. Currently,
personnel are deployed to perform manual evaluation of the city
environments for urban planners, which can become costly and
tedious. A study discusses a particularly interesting machine learn-
ing method that utilizes information such as maintenance issues
(cracks), building materials, and industrial precision and craftsman-
ship to rate the beauty of an urban area [8]. However, the data they
use comes from Baidu Maps (Similar to Google Maps) which may
not get updated frequently [8]. If their models were modified to



Integrative Use of Computer Vision and Unmanned Aircraft Technologies in Public Inspection:

perform real-time analysis from the viewpoint of UAS, these meth-
ods could become a reliable and consistent resource in planning
expanding metropolises.

2.2 Foreign Object Debris

According to the FAA, FOD is defined as, “Any object, live or not,
located in an inappropriate location in the airport environment
that has the capacity to injure airport or air carrier personnel and
damage aircraft” [3]. The FAA’s report discussing FOD detection
equipment lists typical types of FOD including:

e “aircraft and engine fasteners (nuts, bolts, washers, safety
wire, etc.);

e aircraft parts (fuel caps, landing gear fragments, oil sticks,
metal sheets, trapdoors, and tire fragments);

e mechanics’ tools;

e catering supplies;

o flight line items (nails, personnel badges, pens, pencils, lug-
gage tags, soda cans, etc.);

e apron items (paper and plastic debris from catering and
freight pallets, luggage parts, and debris from ramp equip-
ment);

e runway and taxiway materials (concrete and asphalt chunks,
rubber joint materials, and paint chips);

e construction debris (pieces of wood, stones, fasteners, and
miscellaneous metal objects);

e plastic and/or polyethylene materials;

e natural materials (plant fragments and wildlife); and

»

e contaminants from winter conditions (snow, ice).” [2]

This list of examples is not all inclusive, as FOD can be any object
of any material, size, or color [3]. Causes of FOD are varied, but
can be created by weather, personnel, the environment (wildlife,
snow;, ice), any equipment operating on the airfield (aircraft, mainte-
nance equipment, construction equipment, etc.), or existing aircraft
infrastructure (cracked pavement, broken runway lights, etc.) [2].

2.2.1 Risk to Airport Operations. Boeing reported an estimated $4
billion in damages per year, including damage to engines caused by
ingesting debris and/or the cost of removing aircraft from service
for repairs [4]. FOD can also destroy aircraft tires or become lodged
in other locations of the aircraft and potentially prevent proper
function [4]. Aircraft engines are powerful enough to launch small
pieces of FOD. When FOD is launched, it can cause damage to
surrounding buildings and aircraft or injure local personnel [3].
FOD generally causes minor damage to aircraft blades or tires, but
in extreme cases FOD can cause major accidents, usually when
landing or taking off. The FAA mentions an incident where major
loss of life occurred:

“On July 25, 2000, an Air France Flight 4590 departing
Charles de Gaulle International Airport ran over a
piece of titanium debris from a Continental DC-10,
shredding a tire and slamming rubber debris into the
plane’s fuel tank. The subsequent leak and fire caused
the Concorde to crash, killing 100 passengers, nine
crewmembers, and four people on the ground.” [4]

Proper FOD management is essential to preventing injury or
death to personnel and passengers. Preventing FOD from littering
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airfields can reduce cost accrued from damage to aircraft engines
or fuselages. Proper FOD prevention and removal is also required
by law for airports that serve aircraft designed for more than 9
seats [5]. Daily FOD inspection and prompt removal is necessary
for these airports to be awarded required certifications [5].

2.2.2  Potential Computer Vision Applications. Current FOD detec-
tion systems only recognize the existence of debris in targeted areas
without automatically labeling detected objects. Utilizing computer
vision, automated recognition could be expanded to personalized
reports based on the object detected. Once FOD is detected by sta-
tionary cameras or by small UAS with mounted cameras, a report
could be generated with a classification of the object. This could be
expanded to include estimated dimensions of debris, as well as other
calculations and details deemed useful. One such calculation would
be an estimated mass measurement. Applications already exist that
can measure objects using a camera, so volume could be calculated
based on these estimations. Since mass is density times volume, a
density measurement also is necessary. This missing value could
be obtained by linking an average density to each FOD category,
calculated by explicitly weighing objects over time and recursively
updating this average in a database. Of course, this method could
only provide estimations with an allowed margin of error due to
the nature of the calculation.

Another potential application of computer vision for FOD detec-
tion would entail automating the removal of debris. Automating the
detection and removal of FOD would reduce costs induced by air-
craft damage and prevent injury or death to victims of FOD related
accidents. To automate the removal of FOD using UAS or even un-
manned ground vehicles (UGVs), an automated navigation system
would first need to be implemented in the vehicles. Automated nav-
igation is a complex subject with a few interesting technical papers
discussing the technology. Majumdar et al. explore one potential
theory for an automated guidance system, which leverages another
form of machine learning. Majumdar et al. utilizes a similar frame-
work for both the navigation of a UAS, and the task of grasping an
object [10]. One issue with the grasping framework presented in
the paper can be found in the mass measurement used for crucial
grasping calculations [10]. The mass used in their calculations is
a randomly generated number in the range [0.05, 0.15] kg [10],
which could cause inaccurate results in a real setting. This problem
could be solved by using the suggested estimated mass calculation
presented to achieve a more tailored result. A UAS could also use
existing methods for navigation such as following painted lines,
but a more universal approach to guidance would be beneficial for
an inspection system. Once the navigation and grasping system is
developed, FOD could be automatically detected and removed from
airport grounds by utilizing computer vision enabled UAS.

2.2.3  Challenges behind implementation. Before implementing so-
lutions for these issues, some problems could arise from imple-
menting UAS as automated FOD removal and detection units. Once
UAS are patrolling airspace shared with manned aircraft, measures
would need to be taken to prevent these UAS from interfering with
existing traffic, and/or becoming FOD themselves. A long-term
solution would involve developing a robust software application
that either performs actions based on inputted air traffic sched-
ules and/or involves the UAS recognizing the aircraft themselves.
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The UAS could then move out of designated paths, or to specified
storage areas. Utilizing only the air traffic schedules could cause
issues also. If any irregularities in the schedule occur, the UAS could
become FOD without other preventative measures.

UAS would be negatively affected by weather conditions such as
snow, rain, and wind. Snow and rain could conceal FOD, irregulate
existing UAS flight patterns, and cause other unforeseen issues.
Wind could displace light FOD and cause major issues to UAS flight
stability depending on the size and weight of the vehicles.

If automated FOD removal was implemented using these meth-
ods, objects of excessive weight would still have to be removed
manually. Staff on FOD teams would still be necessary for this pur-
pose but could also be assigned other tasks. Objects of excessive
weight may cause issues with this theory, but it seems the majority
of FOD is relatively small in normal circumstances.

A combination of machine learning for navigation and general
FOD recognition tasks could prove quite computationally expensive,
especially if run directly on the UAS local hardware. This could
be solved by determining results on remote machines. However,
this would require a wireless network that covers an airfield, with
enough speed to determine results in real-time.

3 FOREIGN OBJECT DEBRIS DETECTION
CASE STUDY

In these subsections, we review existing FOD literature, such as
existing FOD detection equipment, and examine the results of our
dataset.

3.1 Existing FOD Detection Equipment

Four manufacturers have developed automated FOD detection
equipment [4], including XSight’s FODetect based in Boston, MA;
Trex Enterprises’ FOD Finder based in San Diego, CA; QinetiQ’s
Tarsier Radar based in the United Kingdom; and Stratech’s iFerret
system based in Singapore. These cover the major technology types
tested by the FAA and the University of Illinois Center of Excellence
for Airport Technology (CEAT), namely millimeter wavelength
radar, high-definition video, hybrid video-radar, and mobile FOD
detection technology [13-16]. The FAA defines minimum perfor-
mance requirements for each of these automated FOD detection
technologies in their Advisory Circular (AC) 150/5220-24 [2]. A
requirement specified by the FAA mentions that detection systems
must inspect surfaces between aircraft movements, which is a time
specified by individual airports [2]. A common detection time given
by airports is generally within 4 minutes of the placement of FOD
[2].

FODetect uses combined video and radar technology to detect
FOD [4]. This technology is mounted next to runway lights at the
edges of the runway [4]. When FODetect locates FOD, it sends both
an alarm message and a video image to the operator [4]. During
performance trials, FODetect had an average detection time of 35
seconds [16]. The average difference between the reported location
of FOD and the actual location was 5.02 ft (1.53 m), and the greatest
difference between the reported location and the actual location of
FOD was 25.6 ft during trials (7.80 m) [16]. The required location
accuracy must be within 16 ft (5.0 m) of the actual FOD location [16].
FODetect performed as expected during rainfall and snowfall during
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CEAT and FAA testing after snow was cleared when applicable
[16]. FODetect is about the size of runway lights, which does not
excessively interfere with airport safety zones [16].

FOD Finder uses radar technology to locate FOD. FOD Finder
is a mobile FOD detection system and is usually vehicle mounted.
Once FOD is detected, FOD Finder will send audible and visual
alerts to the operator [13]. The system has an optional vacuum that
can retrieve and catalogue items, or the operator can opt to remove
the item manually [13]. The detection scan is directed at the front
of the vehicle in an 80-degree wide cone shape that is about 650 ft
(200 m) long [13]. FOD Finder performed as expected during and
after rainfall and snowfall events during testing [13]. Since FOD
Finder is vehicle mounted, it is not capable of 24/7 surveillance like
the fixed solutions. The equipment also needs to be operated by a
driver. Because it is vehicle mounted, a single equipped vehicle can
be directed at different locations around the airport.

Tarsier Radar uses millimeter wavelength technology to scan
pavement for FOD [4]. This unit sends an alarm message with the
location of the object after FOD is detected [4]. Tarsier is mounted
on large towers (tower height can vary per airport), which can in-
terfere with airport safety zones if too tall [14]. If the towers are not
placed high enough, coverage could be lost in pavement locations
that are not completely flat [14]. These units have a possible range
of 1.25 miles (2 km) but are rated to 0.6 miles (1 km) for accurate
performance [14]. Tarsier had issues consistently detecting FOD
in heavy rain or when snow and ice accumulated during CEAT &
FAA testing [14]. FOD detection occurred within a scan time of 1
minute and detections were confirmed in less than 4 minutes [14].
Tarsier exceeded FAA requirements of location accuracy within 16
feet (5.0 m), with an average difference between the FOD’s actual
location and the reported location of the FOD being 3 ft (0.91 m)
[14]. The greatest difference between the FOD’s actual location and
the reported location was 7 ft (2.13 m) during testing [14].

IFerret uses video technology alone to detect FOD on surfaces
[4]. TFerret is mounted on towers up to 500 ft (175 m) away from the
target surface, and each sensor is designed to cover approximately
1100 ft (330 m) of the target surface [15]. IFerret can work on
runways, taxiways, aprons, and in ramp areas [15]. During testing,
iFerret performed as expected in all lighting conditions and in snow,
rain, and ice after snow/ice removal when applicable [15]. When
iFerret detects FOD, the operator receives audible and visual alerts,
with a provided location and image [15]. IFerret had an average
location accuracy of approximately 0.82 ft (0.25 m), which exceeded
the FAA requirement of 16 ft (5.0 m) [15]. The greatest difference
between reported location and actual location during testing was
1.56 ft (0.48 m). Average scan time was about 70 seconds, within
the common airport-recommended time of 4 minutes [15].

Each system shares an inability to automatically classify detected
FOD. Also, each device does not provide a completely accurate GPS
location, which is expected to a degree. The only device with a
system put in place that semi-automatically removes FOD is FOD
Finder with its vacuum option. The other devices do not include
a system that automatically removes FOD, which could be greatly
beneficial if developed.

Most airports today have not yet implemented automated FOD
detection due to its high cost. A scalable solution that requires less
installation time and is cheaper than existing methods could be a
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solution to this issue. Compared to existing detection equipment,
UAS-based detection systems could prove cheaper to install and
produce. Manual methods of FOD detection rely on human per-
formance. According to the Galaxy Scientific Corporation (GOC)
and the Office of Aviation Medicine (OAM), the performance of
manual methods can be affected by human mistakes and failures
[6]. This can include introducing FOD during maintenance, com-
mitting unsafe acts that can have consequences such as introducing
FOD to the environment, and failures that can occur due to simply
missing details, which can often be due to exhaustion [6]. Using
only manual methods of FOD detection is risky since personnel
naturally make mistakes.

3.2 Methodology

To create a dataset that can be used to build a low-cost, automated,
and efficient FOD detection system based on computer vision and
machine learning, data of common FOD objects were collected
using both a portable camera and a UAS which shot videos from
multiple angles of the objects. These images were collected in a
video format at Millard Airport (KMLE) in Omaha, Nebraska. Com-
puter Vision Annotation Tool (CVAT) [17] was used to manually
annotate bounding box labels for the locations of objects in the
videos. CVAT also allowed us to export these bounding box anno-
tations into easily usable formats. Data was exported originally in
standard (i.e., Pascal VOC) format. After developing and using a
tool to separate the videos into individual images, we were left with
a dataset of 14,260 object instances, each having an accompanying
frame detailing the annotated labels including the location and
class.

A video has several images contained in each second, commonly
known as frames-per-second (FPS), that combine to produce a mo-
tion display. For example, if we input a 30.6 second video with an
FPS of 30, our tool would output a total of 918 images. This forms
the framework for creating an image dataset using video data. We
resize the images and annotations to 400x400 resolution to facilitate
a unified-size modeling, while the original images are also made
available. Our resizing tool also allows us to re-validate the accu-
racy of modified dataset annotations. The resize tool can optionally
display all the images with their bounding boxes. This simply al-
lows images to be visually inspected as the dataset is resized. The
annotations were then split into separate training and validation
datasets. We split the dataset into 75 percent training and 25 percent
validation. This allowed for a training set of approximately 10,000
images spread across our different classifications of objects. Table 1
shows the total counts of all objects in the FOD dataset.

The images were split at random into the respective training
and validation groups, although they were kept within their class
identifications to ensure the 75/25 split occurred for each object

type.

3.3 Results

To illustrate our dataset’s practicality, we have tested a widely used
object detection algorithm in computer vision and deep learning
(YOLOVS5 [18]) on all created data. The model was created using the
“medium” version of YOLOvV5, or YOLOv5m to obtain accurate re-
sults while outputting a model that could run quickly on affordable
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Table 1: Object Instances in FOD Dataset

Object Count
Bolt 3118
Nut 520
Metal Sheet 394
Adjustable Clamp 544
Washer 1797
Luggage Tag 1616
Plier 2099
Nail 1005
Hose 294
Bolt/Nut Combination 514
Wrench 2359
Total 14260

hardware. We trained this model for 100 epochs, which means the
entire training dataset was iteratively applied 100 times to adjust
the model parameters for a higher accuracy. The validation images
are only used to confirm the model performance and hence they
were not included during the training. This led to results of 95.2%
precision, 99.3% recall, and a mean average precision of 99.1% on
the validation dataset. Precision is measured as the percentage of
correctly predicting an object, with recall being the percentage of
all objects detected. Mean average precision, or mAP, is measured
by computing the mean of the average precision for each object.
This indicates that the final model infrequently had false positives,
but more importantly, it accurately detects most of the objects.

Successful tests of YOLOv5 indicate an important extensibility.
That is, our proposed dataset can be used to study mainstream meth-
ods or even variants/newly proposed methods for FOD detection.
Figure 1 presents sample FOD images and subsequent detection
results. Remarkably, in some cases, the model accurately detects
some objects while it is even hard to see them in human vision.

Balancing the number of instances in each collected object class,
expanding the object categories according to FAA regulation to
reflect the comprehensive nature of FOD, and including FOD image
data in various and/or extreme conditions (such as raining) will be
our next-step work.

While we will continue to expand and improve upon our dataset,
an important result of our process is a publicly documented method
in which video data can be split into images and used to expand a
dataset following our format. Database size is important for accurate
machine learning, and therefore the ability to have an open set of
instructions with which to add more data means that our dataset can
continue to be improved in a simple manner. These instructions can
be found on our dataset’s GitHub page. These instructions can fit
any target application if input data is in the video format. The final
model can be then deployed and used on easily attainable hardware,
leading to a solution that is adaptable, scalable, and implementable.

4 CONCLUSION AND DISCUSSION

Several important public services are still performed manually,
while technology capable of automating and enhancing these func-
tions are nearly in reach. The combination of UAS and computer
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Figure 1: Examples of output bounding boxes from the validation dataset during FOD model experimentation.

vision technology will be an integral resource for future smart cities
and for automating several public services. Many smaller steps will
be required to eventually achieve this sizable goal, such as the cre-
ation of this FOD dataset. During initial modeling procedures, we
found that our dataset performed exceptionally with the YOLOv5
algorithm. This dataset and its resultant models will soon need to
be employed in practical computer vision experiments that utilize
UAS technology as an image capturing device. As a case study,
we began applying computer vision and UAS concepts to FOD. To
summarize, the major contributions of this paper are organized as
follows:

e Introduced a new concept for FOD detection using computer
vision and UAS techniques.

e Proposed a theoretical framework for future automated FOD
management. The extensibility from FOD to other applica-
tions is also discussed.

e Initialized a new dataset of various objects that commonly
become FOD in airports.

A consistent data format would reduce both the computational
and financial cost of machine learning implementation in future
smart cities. This format should be expandable, as data required
by smart cities may change. Our data format has consistency and
expandability in mind, especially for video data. UAS that are de-
signed to inspect transportation services or infrastructure should
collect video data. This video data could be recycled and used to ex-
pand datasets, which means less personnel tasked with manual data
collection. The practicality of data collected during real processes
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could prove naturally effective in updated detection algorithms.
Implementing several datasets following a consistent format allows
developers to utilize the same code and processes for several appli-
cations. Increasing the potential efficiency of developers reduces
overall labor requirements, which is beneficial to implementation
processes.

Datasets available to the public enable researchers to quickly
design algorithmic experiments. Dataset creation can be labor in-
tensive, and using a public dataset allows developers or researchers
to skip unnecessary steps. Also, the results of new algorithms are
easier to compare when using a public dataset. Datasets themselves
can modify performance, so it is difficult to compare results without
using a common dataset as a constant.

Deploying computer vision and UAS as an automated detection
medium for FOD has a variety of potential applications that could
facilitate airport safety and daily operations. As discussed in the
potential applications section, UAS-based inspection could be ab-
stracted to expand inspection/monitoring techniques designed pre-
viously. Furthermore, deepening this research path will open ways
for more general development such as auto-removal of FOD after
inspection. To progress towards these broader goals, existing pro-
cesses and technology currently utilized by airports must be further
analyzed. Continuing this research path could involve expanding
areas such as automated UAS navigation and item retrieval, prac-
tical experiments using computer-vision-enhanced UAS to detect
FOD, and the enhancement of general FOD detection algorithms.
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Our FOD Dataset GitHub page: https://github.com/FOD-UNOmaha/
FOD-data
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