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Local structures surrounding Zr in nanostructurally stabilized cubic
zirconia: Structural origin of phase stability
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Local environment surrounding Zr atoms in the thin films of nanocrystalline zirconia �ZrO2� has
been investigated by using the extended x-ray absorption fine structure �EXAFS� technique. These
films prepared by the ion beam assisted deposition exhibit long-range structural order of cubic phase
and high hardness at room temperature without chemical stabilizers. The local structure around Zr
probed by EXAFS indicates a cubic Zr sublattice with O atoms located on the nearest tetragonal
sites with respect to the Zr central atoms, as well as highly disordered locations. Similar Zr local
structure was also found in a ZrO2 nanocrystal sample prepared by a sol-gel method. Variations in
local structures due to thermal annealing were observed and analyzed. Most importantly, our x-ray
results provide direct experimental evidence for the existence of oxygen vacancies arising from
local disorder and distortion of the oxygen sublattice in nanocrystalline ZrO2. These oxygen
vacancies are regarded as the essential stabilizing factor for the nanostructurally stabilized cubic
zirconia. © 2008 American Institute of Physics. �DOI: 10.1063/1.3041490�

I. INTRODUCTION

The zirconia �ZrO2� system has several structural poly-
morphs such as the cubic, tetragonal, monoclinic, and ortho-
rhombic phases, in which the cubic phase is of most interest
in wear-reduction applications due to its high hardness.1

Without addition of large amount �up to 20%� of trivalent
stabilizer oxides such as yttria or ceria, pure zirconia is not
normally stable in the cubic phase �diamond simulant� at
room temperature.2 Incorporating these stabilizers in the
ZrO2 sample can generate O vacancies around Zr and there-
fore stabilize the cubic structure of bulk zirconia.3 However,
the mechanical properties of zirconia deteriorate with in-
creasing concentrations of trivalent stabilizing oxides above
8%.4 In contrast to bulk ZrO2, formation of cubic phase with-
out chemical stabilizers has been reported in nanocrystalline
zirconia powders with an average grain size of 15 nm.5–7 In
order to prepare adherent hard protective coating for load-
bearing applications, nanostructurally stabilized transparent
pure �without chemical stabilizer� cubic zirconia films have
also been fabricated by using the ion beam assisted deposi-
tion �IBAD� technique.8,9 The IBAD method combines
physical vapor deposition with concurrent ion beam bom-
bardment in an ultrahigh vacuum environment to produce
films with superior properties that are then “stitched” to sub-
strates such as Si, glass, and metallic medical devices. The
measured hardness with nanoindentation10,11 of nanostructur-
ally stabilized ZrO2 was up to 16 GPa �Ref. 8� �depending on

deposition conditions�, which is significantly larger than a
few gigapascals measured for commercially available 21%
yttria-stabilized single crystal of cubic zirconia. Furthermore,
the as-deposited IBAD samples have demonstrated water
contact angles of about 0° –10° as compared to those of
50.5° �2.3° for cubic zirconia stabilized by a chemical
additive.9 In light of these superior properties, the IBAD-
deposited nanocrystalline ZrO2 films are of great potential in
biomedical and other wear-reduction applications and there-
fore deserve detailed studies.

In order to fully understand the mechanism leading to
the stable cubic structure and other physical properties in
these nanostructurally stabilized zirconia in the absence of
chemical stabilizers, the local structural information pertain-
ing to the bond length variation and structural imperfections
is an important prerequisite. To this end, the short-range-
order extended x-ray absorption fine structure �EXAFS�
technique is a uniquely suitable method. In this paper, we
present the EXAFS results on IBAD-fabricated films of
nanocrystal ZrO2, which includes the as-deposited and those
annealed at temperatures of 850 and 1000 °C. A nanocrys-
talline powder sample of ZrO2 prepared by a sol-gel method
without hydrolysis is also measured for comparison. Com-
pared with the standard sol-gel process involving hydrolysis,
condensation, and polymerization usually adopted for pre-
paring nanocrystal powders of ZrO2, a process without hy-
drolysis described in this paper has been found to produce
smaller nanoparticles with sizes closer to those in the IBAD
samples, and therefore was used in this work.a�Electronic mail: soo@phys.nthu.edu.tw.
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II. EXPERIMENT

The transparent nanocrystalline ZrO2 samples reported
here were prepared by IBAD at the Nanotechnology Labo-
ratory of the University of Nebraska Medical Center. The
IBAD system �Mill Lane Engineering, Lowell, MA� is com-
posed of a Veeco 12 cm rf ion gun that supplies ions at
energies up to 1500 eV with a total current density of 500
mA, which provides a broad uniform ion beam of oxygen,
nitrogen, and argon and a programable sweep multipocket
for electron beam evaporation source. Source material was
99.7% pure white color ZrO2 with a monoclinic crystal struc-
ture from Alfa Aesar �Lot No. C01P41� and was deposited
onto silicon, glass, quartz, and metallic substrates. A mixture
of O and Ar or N and Ar ion species of ion energy 500 eV
was used with evaporation rate around 3 Å /s. Rutherford
backscattering spectroscopy �RBS� with 2.275 MeV He++

beam was applied to analyze the chemical composition of
zirconia films. Electron beam evaporation powder zirconia
with concurrent ion beam bombardment and backfill oxygen
at room temperature typically resulted in formation of trans-
parent stoichiometric ZrO2 within accuracy of RBS �4% for
oxygen, Evans Analytical Group Sunnyvale, CA�. The sur-
face morphology and crystal structure of the ZrO2 films were
characterized by atomic force microscopy, interferometry,
x-ray diffractometry �XRD�, and transmission electron mi-
croscopy �TEM�.8,9

The as-grown ZrO2 films deposited on silicon substrates
at room temperature and pieces of same ZO2 samples an-
nealed at 850 and 1000 °C were studied by EXAFS. The
grain size distribution of nanocrystals was estimated using
TEM micrograph to be about 5–8 nm in diameter �Fig. 1�. As
shown in Fig. 2, the x-ray diffraction data exhibit cubic
phase for the as-deposited and 850 °C-annealed samples. It
should be noted that most of the Bragg peaks from the cubic
and the tetragonal phases of nanocrystalline ZrO2 are super-
imposed partly because of the spreading of peaks due to
nanostructures. However, if the tetragonal phase exists in the
sample, the �112� peak of tetragonal ZrO2 at around 43°, as
well as splitting of the �400� line of the fluoritelike ZrO2

structure into �004� and �400� lines with more than one de-
gree of separation, should be observed in the XRD data.12 As
we can see from Fig. 2, none of these important evidences
for tetragonal zirconia were observed in samples studied by
EXAFS here. By contrast, they were present in the control

orthopedics knee sample, which is composed of chemically
stabilized tetragonal ZrO2. The possibility of appreciable per-
centage of tetragonal phase existing in the samples used in
this work is therefore excluded. In addition to the cubic
peaks, the monoclinic peaks also show up in the XRD of the
1000 °C-annealed sample.

A sol-gel method without hydrolysis was used to prepare
a nanocrystal ZrO2 powder sample for EXAFS measure-
ments. In the sol-gel process, zirconium isopropoxide pro-
panol complex �Zr· �OCH�CH3�2�4 · �CH3�2CHOH� was used
to react with zirconium chloride �ZrCl4� in the presence of
trioctylphosphine oxide �TOPO� at an elevated temperature
of 340 °C. Zirconium oxide powders were then extracted by
a series of washing with acetone and water. The particle size
of the sol-gel sample was estimated by XRD data using
Scherrer equation to be around 3.6 nm in diameter.

To probe the local structural variation responsible for the
enhanced stability in the absence of chemical stabilizer in
these nanocrystal samples, the Zr K-edge EXAFS technique
was performed on the as-deposited and annealed IBAD
samples. The x-ray measurements were carried out in con-
ventional fluorescence mode using an energy dispersive
single-element Si�Li� detector at beamline BL01C at Taiwan
Light Source �TLS� of National Synchrotron Radiation Re-
search Center �NSRRC� in Taiwan. For comparison, a nano-
crystal powder sample of cubic ZrO2 prepared by a sol-gel
method without hydrolysis was also measured.

The EXAFS �-functions were extracted from the raw
experimental data using a well-established data reduction
process.13 The � as a function of photoelectron momentum
�k� was truncated and the curve of � in between 3.0 and
11.0 Å−1 was then Fourier transformed to real �R� space for

(a) (b)

FIG. 1. �a� Bright field and �b� dark field TEM micrographs of the as-
deposited IBAD sample. The size range of the crystallites is 5–8 nm.

30 40 50 60 70 80 90

orthopedic sample

1000oC-annealed

850oC-annealed

(004)

(222)
(311)(022)

(002)

X
-r
ay
D
iff
ra
ct
io
n
In
te
ns
ity
(a
rb
.u
ni
t)

2� (degree)

(111)
as-deposited
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knee ZrO2, 1000 °C-annealed IBAD ZrO2, 850 °C-annealed IBAD ZrO2,
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clarity.
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direct comparison.14 To obtain quantitative local structural
information, an improved curve-fitting procedure was em-
ployed to fit Fourier-filtered functions in k-space15,16 with
theoretical backscattering amplitude and phase-shift func-
tions calculated by the well-known FEFF EXAFS simulation
program.17 The local structural parameters determined by
curve fittings are listed in Tables I. The experimental EXAFS
�-functions and Fourier transforms of the as-deposited and
the annealed samples, as well as a nanocrystal powder
sample prepared by sol-gel method, are plotted with their
respective theoretical curve from curve fittings in Figs. 3 and
4, respectively.

III. RESULTS AND DISCUSSION

As shown in Fig. 3, while the �-function of the as-grown
and the 850 °C-annealed IBAD samples are relatively simi-
lar to that of the sol-gel sample, that of the
1000 °C-annealed IBAD sample shows distinctly different
features especially in the region above 6.0 Å−1 indicating
larger local structural variation in this sample. The Fourier
transforms shown in Fig. 4 exhibit two pronounced peaks for
all four ZrO2 samples. The second peak of the
1000 °C-annealed IBAD sample appreciably shifts to the
left in comparison to those of other three samples. The local
structural parameters listed in Table I obtained from curve-
fitting show that the first and the second pronounced peaks
represent the nearest �O� shell and the next nearest �Zr� shell
from the central Zr atom, respectively. The simplicity of lo-
cal structures around Zr indicates that the crystal structures
of the present samples are mostly close to that in the highly
symmetric cubic zirconia structure, which has 8 O nearest
neighboring atoms at a distance of 2.20 Å followed by 12 Zr
next nearest neighboring atoms at 3.59 Å.18 However, ap-
preciable deviation from the bulk cubic zirconia structure is
observed in these nanocrystal samples. First, the nearest O
shell has a much decreased coordination number of around

3.2–5.4 in comparison to 8 in the bulk cubic structure. The
Zr–O bond length of 2.06–2.11 Å in the nanocrystal
samples is also substantially shorter than the bulk value of
2.20 Å. The decreased number of O neighboring atoms sur-
rounding Zr indicates large number of O vacancies in the
nanocrystal ZrO2 samples prepared by either the IBAD or
the sol-gel method without hydrolysis. Combined with the
effect of shortened bondlength, the presence of O vacancies

TABLE I. Parameters of the local structure around Zr atoms obtained from
curve fitting of the Zr K-edge EXAFS. N is the coordination number. R is
the bond length. �2 is the Debye–Waller-type factor that serves as a measure
of local disorder. �E0 is the difference between the zero kinetic energy value
of the sample and that of the theoretical model used in FEFF. Uncertainties
were estimated by the double-minimum residue �2�2� method.

Sample
Neighboring

atom N
R

�Å�
�2

�10−3 Å2�
�E0

�eV�

Sol-gel O 3.3�0.6 2.09�0.01 6�2 −8�5
Zr 12�4 3.62�0.02 10�2 −3�4

IBAD
as-deposited O 4.7�0.7 2.10�0.01 9�2 −8�5

Zr 13�5 3.59�0.02 14�3 −5�4

IBAD 850 °C-
annealed O 3.2�0.8 2.06�0.01 5�2 −12�5

Zr 14�5 3.62�0.02 8�2 −4�4

IBAD 1000 °C-
annealed O 5.4�1.0 2.11�0.01 9�2 −8�5

Zr 14�5 3.43�0.02 12�3 −12�5
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FIG. 3. Weighed Zr K-edge EXAFS �-functions �from top: sol-gel sample,
as-deposited IBAD sample, 850 °C-annealed IBAD sample, and
1000 °C-annealed IBAD sample�. Fine lines: experimental; course lines:
theoretical. Curves have been shifted vertically for the sake of clarity.
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1000 °C-annealed IBAD sample�. Fine lines: experimental; course lines:
theoretical. Curves have been shifted vertically for the sake of clarity.
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has thus stabilized the cubic zirconia structure at room tem-
perature in the nanocrystalline ZrO2 samples.

It is worth noting that the decreased first-shell �O� coor-
dination number does not necessarily invalidate the mea-
sured stoichiometry of nanocrystalline ZrO2. A large percent-
age of O atoms may be relocated at the high energy surface
of the nanograin boundaries or at interstitial sites with large
local structural disorder and thus were not observed by the
short-range-order EXAFS technique. The disorderly relo-
cated O atoms can therefore leave behind vacancies at the
otherwise cubic/tetragonal oxygen sites. Based on our EX-
AFS data, it seems reasonable to speculate the following
structural model �see Fig. 5�: a cubic Zr sublattice with O
atoms sitting on tetragonal-like sites relative to the central Zr
atoms were formed in the sol gel and the as-deposited IBAD
samples. Since the grains are small �3–10 nm� both in the
IBAD and sol-gel samples, substantial volume fraction of
ZrO2 is on the surface or intergranular regions where the
structure could be disordered. Mediated by the random oxy-
gen vacancy distribution, the disorder may propagate pre-
dominantly in the oxygen sublattice and thus diminishes
long-range tetragonal order; the soft mode displacement in
oxygen sublattice is destroyed. As a result, the zirconia ex-
hibit cubic phase structure observed by XRD measurements.
At the same time, oxygen locally occupies tetragonal-like
positions, which can be seen from the average Zr–O interac-
tomic distances.

Moreover, while the next nearest �Zr� shell in three of
the four nanocrystal samples has coordination numbers and
distances similar to those of the bulk cubic zirconia structure,
the Zr–Zr distance in the 1000 °C-annealed IBAD sample
however dramatically decreases. It is worth noting that the

x-ray diffraction has exhibited a mixed cubic and monoclinic
long-range-order structures in the 1000 °C-annealed sample
in comparison to the pure-cubic structures in the as-
deposited and the 850 °C-annealed samples. Our EXAFS
analysis demonstrates substantial change in short-range-
order structure at the same annealing temperature of
1000 °C.

As a side remark, we note that Rush et al.19 also reported
a much reduced coordination number of 4 for the nearest O
shell from the central Zr atom in nanocrystalline zirconia.
However, the Zr–O and Zr–Zr distances of 2.13 and 3.41 Å,
respectively, in their sample is substantially different from
our values of 2.06–2.10 Å and 3.59–3.62 Å for the three
pure-cubic-phase samples, respectively. On the other hand,
the values 2.11 and 3.43 Å for our 1000 °C-annealed
sample, which has a mixed cubic and monoclinic long-range-
order structure, are similar to those in their sample. The
structures and thermal stability are therefore highly depen-
dent on the different sample preparation methods.

In addition to the most obvious structural differences
observed in the 1000 °C-annealed sample, some minor local
structural variations are also present among the other three
nanocrystal samples. Compared with the sol-gel sample, the
as-grown IBAD sample has a larger first-shell coordination
number representing less O vacancies in the sample. How-
ever, the local disorder represented by the Debye–Waller-
type factor ��2� in the as-deposited IBAD sample is rela-
tively larger than that in the sol-gel sample for both the first
�O� and the second �Zr� shells. Annealing at 850 °C effec-
tively decreases the overall local disorder as well as the first-
shell coordination number and substantially shortens the
Zr–O bond length in the IBAD sample. When the annealing
temperature is increased to 1000 °C, a dramatic local struc-
tural variation takes place accompanied by a long-range-
order phase transition for an appreciable portion of the ma-
terials in the IBAD sample.

IV. CONCLUSIONS

Our EXAFS results have determined the presence of a
large amount of O vacancies in cubic ZrO2 nanocrystal
samples prepared by either the IBAD technique or a sol-gel
method without hydrolysis. At room temperature, these O
vacancies stabilize the cubic structure of nanocrystal zirconia
in the absence of chemical stabilizers in the samples. The
cubiclike local structure in the IBAD-grown nanocrystal
sample is thermally stable up to an annealing temperature of
850 °C. However, when the annealing temperature is raised
to 1000 °C, the local environment around Zr undergoes a
dramatic change, while the long-range-order crystal structure
becomes a mixture of cubic and monoclinic phases. More
work has to be performed to obtain a full systematic picture
regarding the correlation between particle size, local struc-
ture, and long-range-order crystal structure in the nanocrystal
ZrO2 systems. However, our present work has provided a
solid experimental evidence for the existence of a large
amount of O vacancies in nanostructurally stabilized cubic
zirconia. Based on the variation in O coordination number
around Zr, our EXAFS results also reveal the dependence of

FIG. 5. �Color online� Arrangement of neighboring atoms surrounding Zr in
�a� cubic and �b� tetragonal zirconia structures.

113535-4 Soo et al. J. Appl. Phys. 104, 113535 �2008�



O vacancies on the sample preparation method and annealing
temperature which is very useful for vacancy control in fab-
ricating the nanostructurally stabilized cubic zirconia. With-
out the need to add chemical stabilizers, the nanocrystal
ZrO2 possesses favorable physical properties compared to
the chemically stabilized bulk cubic zirconia and therefore
has great potential for many technological applications.
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