
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

7-2011

Transition Systems for Model Generators — A Unifying Approach Transition Systems for Model Generators — A Unifying Approach

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Miroslaw Truszczyński
University of Kentucky

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Lierler, Yuliya and Truszczyński, Miroslaw, "Transition Systems for Model Generators — A Unifying
Approach" (2011). Computer Science Faculty Publications. 5.
https://digitalcommons.unomaha.edu/compscifacpub/5

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/5?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Under consideration for publication in Theory and Practice of Logic Programming 1

Transition Systems for Model Generators — A
Unifying Approach

YULIYA LIERLER and MIROSLAW TRUSZCZYNSKI
Department of Computer Science, University of Kentucky, Lexington, KY 40506-0633, USA

(e-mail: yuliya,mirek@cs.uky.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

A fundamental task for propositional logic is to compute models of propositional formulas. Programs
developed for this task are called satisfiability solvers. We show that transition systems introduced
by Nieuwenhuis, Oliveras, and Tinelli to model and analyze satisfiability solvers can be adapted
for solvers developed for two other propositional formalisms: logic programming under the answer-
set semantics, and the logic PC(ID). We show that in each case the task of computing models can
be seen as “satisfiability modulo answer-set programming,” where the goal is to find a model of a
theory that also is an answer set of a certain program. The unifying perspective we develop shows,
in particular, that solvers CLASP and MINISAT(ID) are closely related despite being developed for
different formalisms, one for answer-set programming and the latter for the logic PC(ID).

1 Introduction

A fundamental reasoning task for propositional logic is to compute models of propositional
formulas or determine that no models exist. Programs developed for this task are commonly
called model generators or satisfiability (SAT) solvers. In the paper we show that transition
systems introduced by Nieuwenhuis et al. (2006) to model and analyze SAT solvers can
be adapted for the analysis and comparison of solvers developed for other propositional
formalisms. The two formalisms we focus on are logic programming with the answer-set
semantics and the logic PC(ID).
Davis-Putnam-Logemann-Loveland (DPLL) procedure is a well-known method that ex-

haustively explores interpretations to generate models of a propositional formula. Most
modern SAT solvers are based on variations of the DPLL procedure. Usually these varia-
tions are specified by pseudocode. Nieuwenhuis et al. (2006) proposed an alternative ap-
proach based on the notion of a transition system that describes “states of computation”
and allowed transitions between them. In this way, it defines a directed graph such that ev-
ery execution of the DPLL procedure corresponds to a path in the graph. This abstract way
of presenting DPLL-based algorithms simplifies the analysis of their correctness and facil-
itates studies of their properties — instead of reasoning about pseudocode constructs, we
reason about properties of a graph. For instance, by proving that the graph corresponding to
a DPLL-based algorithm is finite and acyclic we show that the algorithm always terminates.
Answer-set programming (ASP) (Marek and Truszczyński 1999; Niemelä 1999) is a

declarative programming formalism based on the answer-set semantics of logic programs
(Gelfond and Lifschitz 1988). Generating answer sets of propositional programs is the

2 Y. Lierler and M. Truszczynski

key step in computation with ASP. The logic FO(ID), introduced by Denecker (2000) is
another formalism for declarative programming and knowledge representation. As in the
case of ASP, most automated reasoning tasks in the logic FO(ID) reduce to reasoning in
its propositional core, the logic PC(ID) (Mariën et al. 2008), where generating models is
again the key.
In this paper, we show that both computing answer sets of programs and computingmod-

els of PC(ID) theories can be considered as testing satisfiability modulo theories (SMT),
where the objective is to find a model of a set of clauses that is also an answer set of a cer-
tain program. We refer to this computational problem as satisfiability modulo answer-set
programming and denote it by SM(ASP). We identify the propositional formalism cap-
turing SM(ASP) — we use the same term to refer to it — and show that it is a common
generalization of ASP and PC(ID). We define a simple transition system for SM(ASP) and
show that it can be used as an abstract representation of the solver SMODELS1 (Niemelä
and Simons 2000), an alternative to a similar characterization of SMODELS obtained earlier
by Lierler (2011). We then define another more elaborate transition system for SM(ASP)
that captures such features of backtracking search as backjumping and learning. We use
this transition system to obtain abstract characterizations of the algorithms implemented
by the ASP solvers CMODELS2 (Giunchiglia et al. 2004) and CLASP3 (Gebser et al. 2007),
and the PC(ID) solver MINISAT(ID)4 (Mariën et al. 2008). Finally, we briefly mention the
possibility to regard the introduced transition systems as proof systems. In that setting,
transition systems could be used for comparing the solvers they represent in terms of the
complexity of the corresponding proof systems.
Our results provide a uniform correctness proof for a broad class of solvers that can be

modeled by the transition system for SM(ASP), clarify essential computational principles
behind ASP and PC(ID) solvers, and offer insights into how they relate to each other. In
particular, our results yield the first abstract representation of CLASP in terms of transition
systems (up to now CLASP has been typically specified in pseudocode), and show that at
the abstract level, CLASP and MINISAT(ID) are strikingly closely related.
This last point is noteworthy as the two solvers were developed for different proposi-

tional formalisms. MINISAT(ID) was developed specifically for the logic PC(ID), where
there is no concept of an answer set. The semantics is a natural extension of the notion
of a model of a propositional theory to the setting when a theory consists of propositional
clauses and definitions. Definitions are written as logic programs but they are interpreted
by the well-founded semantics and not by the answer-set semantics. There is no indica-
tion in the literature that CLASP or MINISAT(ID) were influenced by each other. The two
solvers were developed independently and for differently motivated formalisms. It is then
of substantial interest that at the level of solving they are closely related.

1 http://www.tcs.hut.fi/Software/smodels/ .
2 http://www.cs.utexas.edu/users/tag/cmodels .
3 http://www.cs.uni-potsdam.de/clasp/ .
4 http://dtai.cs.kuleuven.be/krr/software/minisatid .

Transition Systems for Model Generators — A Unifying Approach 3

2 Preliminaries

We now review the abstract transition system framework proposed for the DPLL procedure
by Nieuwenhuis et al. (2006), and introduce some necessary terminology concerning logic
programs and the logic PC(ID).

Abstract DPLL. Most state-of-the-art SAT solvers are based on variations of the DPLL
procedure (Davis et al. 1962). Nieuwenhuis et al. (2006) described DPLL by means of a
transition system that can be viewed as an abstract representation of the underlying DPLL
computation. In this section we review the abstract DPLL in the form convenient for our
purposes, following the presentation proposed by Lierler (2011).
For a set A of atoms, a record relative to A is an ordered set M of literals over A ,

some possibly annotated by Δ, which marks them as decision literals. A state relative to A

is either a distinguished state FailState or a record relative to A . For instance, the states
relative to a singleton set {a} are

FailState, /0, a, ¬a, aΔ, ¬aΔ, a¬a, aΔ¬a,
a¬aΔ, aΔ¬aΔ, ¬aa, ¬aΔa, ¬aaΔ, ¬aΔaΔ.

Frequently, we consider M as a set of literals, ignoring both the annotations and the order
among its elements. If neither a literal l nor its dual, written l, occurs in M, then l is unas-
signed by M. We say that M is inconsistent if both an atom a and its negation ¬a occur in
it. For instance, states bΔ¬b and ba¬b are inconsistent.
If C is a disjunction (conjunction) of literals then by C we understand the conjunction

(disjunction) of the duals of the literals occurring in C. In some situations, we will identify
disjunctions and conjunctions of literals with the sets of these literals.
In this paper, a clause is a non-empty disjunction of literals and a CNF formula is a

conjunction (alternatively, a set) of clauses. Each CNF formula F determines its DPLL
graph DPF. The set of nodes of DPF consists of the states relative to the set of atoms
occurring in F. The edges of the graph DPF are specified by four transition rules:

Unit Propagate: M =⇒ Ml if C∨ l ∈ F and C ⊆ M
Decide: M =⇒ MlΔ if l is unassigned by M

Fail: M =⇒ FailState if
{

M is inconsistent, and
M contains no decision literals

Backtrack: PlΔQ =⇒ Pl if
{

PlΔQ is inconsistent, and
Q contains no decision literals.

A node (state) in the graph is terminal if no edge originates in it. The following proposition
gathers key properties of the graph DPF .

Proposition 1
For any CNF formula F,

(a) graph DPF is finite and acyclic,
(b) any terminal state of DPF other than FailState is a model of F,
(c) FailState is reachable from /0 in DPF if and only if F is unsatisfiable.

4 Y. Lierler and M. Truszczynski

Thus, to decide the satisfiability of a CNF formula F it is enough to find a path leading
from node /0 to a terminal node M. If M = FailState, F is unsatisfiable. Otherwise, F is
satisfiable and M is a model of F.
For instance, let F = {a∨ b,¬a∨ c}. Below we show a path in DPF with every edge

annotated by the name of the transition rule that gives rise to this edge in the graph:

/0 Decide
=⇒ aΔ Unit Propagate

=⇒ aΔc Decide
=⇒ aΔcbΔ.

The state aΔcbΔ is terminal. Thus, Proposition 1(b) asserts that F is satisfiable and {a,c,b}
is a model of F.
Logic Programs. A (propositional) logic program is a finite set of rules of the form

a0 ← a1, . . . ,al,not al+1, . . . ,not am,not not am+1, . . . ,not not an, (1)

where a0 is an atom or⊥ and each ai, 1≤ i ≤ n, is an atom.5 If a0 is an atom then a rule (1)
is weakly normal. If, in addition, n = m then it is normal. Programs consisting of weakly
normal (normal, respectively) rules only are called weakly normal (normal, respectively).
If Π is a program, by At(Π) we denote the set of atoms that occur in Π.
The expression a0 is the head of the rule. If a0 = ⊥ we say that the head of the rule is

empty and we often omit ⊥ from the notation. In such case we require that n > 0. We call
a rule with the empty head a constraint. We write Head(Π) for the set of nonempty heads
of rules in a program Π.
We call the expression a1, . . . ,al,not al+1, . . . ,not am, not not am+1, . . . ,not not an in a

rule (1) the body of the rule and often view it as the set of all elements that occur in it.
If a is an atom, we set s(a) = s(not not a) = a, and s(not a) = ¬a, and we define s(B) =
{s(l) | l ∈ B}. More directly,

s(B) = {a1, . . . ,al,¬al+1, . . . ,¬am,am+1, . . . ,an}.

We also frequently identify the body B of (1) with the conjunction of elements in s(B):

a1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧am+1∧·· ·∧an.

By Bodies(Π,a)we denote the set of the bodies of all rules of Π with the head a (including
the empty body). If B is the body of (1), we write Bpos for the positive part of the body, that
is, Bpos = {a1, . . .al}.
We often interpret a rule (1) as a propositional clause

a0∨¬a1∨ . . .∨¬al ∨al+1∨ . . .∨am∨¬am+1∨ . . .∨¬an (2)

(in the case when the rule is a constraint, a0 is absent in (2)). Given a program Π, we
write Πcl for the set of clauses (2) corresponding to all rules in Π.
This version of the language of logic programs is a special case of programs with nested

expressions (Lifschitz et al. 1999). It is essential for our approach as it yields an alternative
definition of the logic PC(ID), which facilitates connecting it to ASP. We assume that the
reader is familiar with the definition of an answer set of a logic program and refer to the
paper by Lifschitz et al. (1999) for details.

5 In the paper, we do not use the term literal for expressions a, not a and not not a. We reserve the term literal
exclusively for propositional literals a and ¬a.

Transition Systems for Model Generators — A Unifying Approach 5

Well-Founded Semantics and the Logic PC(ID).LetM be a set of (propositional) literals.
By M we understand the set of the duals of the literals in M. A set U of atoms occurring
in a program Π is unfounded on a consistent set M of literals with respect to Π if for
every a ∈ U and every B ∈ Bodies(Π,a), M∩ s(B) �= /0 or U∩Bpos �= /0. For every program
Π and for every consistent set M of literals, the union of sets that are unfounded on M
with respect to Π is also unfounded on M with respect to Π. Thus, under the assumptions
above, there exists the greatest unfounded set on M with respect to Π. We denote this set
by GUS(M,Π).
For every weakly normal program Π we define an operator WΠ on a set M of literals as

follows

WΠ(M) =

{
M∪{a | a ← B ∈ Π and s(B)⊆ M}∪GUS(M,Π) if M is consistent
At(Π)∪At(Π) otherwise.

By Wfix
Π (M) we denote a fixpoint of the operatorWΠ over a set M of literals. One can show

that it always exists since WΠ is not only monotone but also increasing (for any set M of
literals, M ⊆ WΠ(M)). The least fixpoint of WΠ, Wfix

Π (/0), is consistent and yields the well-
founded model of Π, which in general is three-valued. It is also written as lfp(WΠ). These
definitions and properties were initially introduced for normal programs only (Van Gelder
et al. 1991). They extend to programs in our syntax in a straightforward way, no changes
in statements or arguments are needed (Lee 2005).
Let Π be a program and A a set of atoms. An atom a is open with respect to Π and A

if a ∈ A\Head(Π). We denote the set of atoms that are open with respect to Π and A by
OΠ

A . By ΠA we denote the logic program Π extended with the rules a ← not not a for each
atom a ∈ OΠ

A . For instance, let Π be a program

a ← b, not c
b.

(3)

Then, Π{c} is

c ← not not c
a ← b, not c
b.

We are ready to introduce the logic PC(ID) (Denecker 2000). A PC(ID) theory is a
pair (F,Π), where F is a set of clauses and Π is a weakly normal logic program. For a
PC(ID) theory (F,Π), by Πo we denote ΠAt(F∪Π) and by OΠ we denote OΠ

At(F∪Π) (where
At(F ∪Π) stands for the set of atoms that occur in F and Π). Moreover, for a set M of
literals and a set A of atoms, by MA we denote the set of those literals in M whose atoms
occur in A. A set M of literals is complete over the set At of atoms if every atom in At
occurs (possibly negated) in M and no other atoms occur in M.

Definition 1
Let (F,Π) be a PC(ID) theory. A consistent and complete (over At(F∪Π)) set M of literals
is called a model of (F,Π) if

(i) M is a model of F, and
(ii) M = Wfix

Πo(MOΠ
).

6 Y. Lierler and M. Truszczynski

For instance, let F be a clause b∨¬c and Π be program (3). The PC(ID) theory (F,Π)

has two models {b,¬c,a} and {b,c, ¬a}. We note that although sets {¬b,¬c,a} and
{¬b,¬c,¬a} satisfy the condition (i), that is, are models of F, they do not satisfy the
condition (ii) and therefore are not models of (F,Π).
The introduced definition of a PC(ID) theory differs from the original one (Denecker

2000). Specifically, for us the second component of a PC(ID) theory is a weakly normal
program rather than a set of normal programs (definitions). Still, the two formalisms are
closely related.

Proposition 2
For a PC(ID) theory (F,Π) such that Π is a normal program,M is a model of (F,Π) if and
only if M is a model of (F,{Π}) according to the definition in (Denecker 2000).

As the restriction to a single program in PC(ID) theories is not essential (Mariën et al.
2008), Proposition 2 shows that our definition of the logic PC(ID) can be regarded as a
slight generalization of the original one (more general programs can appear as definitions
in PC(ID) theories).

3 Satisfiability Modulo ASP: a unifying framework for ASP and PC(ID) solvers

For a theory T the satisfiability modulo theory (SMT) problem is: given a formula F,
determine whether F is T-satisfiable, that is, whether there exists a model of F that is also
a model of T. We refer the reader to (Nieuwenhuis et al. 2006) for an introduction to SMT.
Typically, a theory T that defines a specific SMT problem is a first-order formula. The
SMT problem that we consider here is different. The theory T is a logic program under the
(slightly modified) answer-set semantics. We show that the resulting version of the SMT
problem can be regarded as a joint extension of ASP and PC(ID).
We start by describing the modification of the answer-set semantics that we have in

mind.

Definition 2
Given a logic program Π, a set X of atoms is an input answer set of Π if X is an answer set
of Π∪ (X \Head(Π)).

Informally, the atoms of X that cannot possibly be defined by Π as they do not belong to
Head(Π) serve as “input” to Π. A set X is an input answer set of Π if it is an answer set of
the program Π extended with these “input” atoms from X. Input answer sets are related to
stable models of a propositional logic program module (Oikarinen and Janhunen 2006).
For instance, let us consider program (3). Then, sets {b,c}, {a,b} are input answer sets

of the program whereas set {a,b,c} is not.
There are two important cases when input answer sets of a program are closely related

to answer sets of the program.

Proposition 3
For a logic program Π and a set X of atoms:

(a) X ⊆ Head(Π) and X is an input answer set of Π if and only if X is an answer set
of Π.

Transition Systems for Model Generators — A Unifying Approach 7

(b) If (X \Head(Π))∩ At(Π) = /0, then X is an input answer set of Π if and only if
X∩Head(Π) is an answer set of Π.

We now introduce a propositional formalism that we call satisfiability modulo ASP and
denote by SM(ASP). Later in the paper we show that SM(ASP) can be viewed as a common
generalization of both ASP and PC(ID). Theories of SM(ASP) are pairs [F,Π], where F
is a set of clauses and Π is a program. In the definition below and in the remainder of the
paper, for a set M of literals we write M+ to denote the set of atoms (non-negated literals)
in M. For instance, {a,¬b}+ = {a}.

Definition 3
For an SM(ASP) theory [F,Π], a consistent and complete (over At(F∪Π)) set M of literals
is a model of [F,Π] if M is a model of F and M+ is an input answer set of Π.

For instance, let F be a clause b∨¬c and Π be program (3). The SM(ASP) theory [F,Π]

has two models {b,¬c,a} and {b,c,¬a}.
The problem of finding models of pairs [F,Π] can be regarded as an SMT problem in

which, given a formula F and a program Π, the goal is to find a model of F that is (its
representation by the set of its true atoms, to be precise) an input answer set of Π. This
observation motivated our choice of the name for the formalism.
As for PC(ID) theories, also for an SM(ASP) theory [F,Π] we write Πo for the pro-

gram ΠAt(Π∪F). We have the following simple observation.

Proposition 4
A set M of literals is a model of an SM(ASP) theory [F,Π] if and only if M is a model of
an SM(ASP) theory [F,Πo].

It is evident that a set M of literals is a model of F if and only if M is a model of [F, /0].
Thus, SM(ASP) allows us to express the propositional satisfiability problem.We now show
that the SM(ASP) formalism captures ASP. Let Π be a program. We say that a set F of
clauses is Π-safe if

1. F |= ¬a, for every a ∈ OΠ
At(Π), and

2. for every answer set X of Π there is a model M of F such that X = M+∩Head(Π).

Proposition 5
Let Π be a program. For every Π-safe set F of clauses, a set X of atoms is an answer set
of Π if and only if X = M+∩At(Π), for some model M of [F,Π].

This result shows that for an appropriately chosen theory F, answer sets of a program Π
can be derived in a direct way frommodels of an SM(ASP) theory [F,Π]. There are several
possible choices for F that satisfy the requirement of Π-safety. One of them is the Clark’s
completion of Π (Clark 1978). We recall that the completion of a program Π consists of
clauses in Πcl and of the formulas that can be written as

¬a∨
∨

B∈Bodies(Π,a)
B (4)

for every atom a in Π that is not a fact (that is, the set Bodies(Π,a) contains no empty
body). Formulas (4) can be clausified in a straightforward way by applying distributivity.

8 Y. Lierler and M. Truszczynski

The set of all the resulting clauses and of those in Πcl forms the clausified completion of
Π, which we will denote by Comp(Π).
The theory Comp(Π) does not involve any new atoms but it can be exponentially larger

than the completion formula before clausification. We can avoid the exponential blow-
up by introducing new atoms. Namely, for each body B of a rule in Π with |B| > 1, we
introduce a fresh atom fB. If |B|= 1, then we define fB = s(l), where l is the only element
of B. By ED-Comp(Π), we denote the set of the following clauses:

1. all clauses in Πcl

2. all clauses ¬a∨
∨

B∈Bodies(Π,a) fB, for every a ∈ At(Π) such that a is not a fact in Π
and |Bodies(Π,a)|> 1

3. all clauses ¬a∨ s(l), where a ∈ At(Π), Bodies(Π,a) = {B} and l ∈ B,
4. all clauses ¬a, where |Bodies(Π,a)|= 0
5. all clauses obtained by clausifying in the obvious way formulas fB ↔ B, where B ∈

Bodies(Π,a), for some atom a that is not a fact in Π and |Bodies(Π,a)|> 1.

Clearly, the restrictions of models of the theory ED-Comp(Π) to the original set of atoms
are precisely the models of Comp(Π) (and of the completion of Π). However, the size of
ED-Comp(Π) is linear in the size of Π. The theory ED-Comp(Π) has long been used in
answer-set computation. Answer set solvers such as CMODELS (Giunchiglia et al. 2004)
and CLASP (Gebser et al. 2007) start their computation by transforming the given pro-
gram Π into ED-Comp(Π).
For instance, let Π be program (3). The completion of Π is the formula

(a∨¬b∨ c)∧b∧¬c∧ (¬a∨ (b∧¬c)),

its clausified completion Comp(Π) is the formula

(a∨¬b∨ c)∧ (¬a∨b)∧ (¬a∨¬c)∧b∧¬c,

and, finally, ED-Comp(Π) is the formula

(a∨¬b∨ c)∧ (¬a∨ fb∧¬c)∧ (fb∧¬c ∨¬b∨ c)∧
(¬fb∧¬c ∨b)∧ (¬fb∧¬c ∨¬c)∧b∧¬c.

We now have the following corollary from Proposition 5.

Corollary 1
For a logic program Π and a set X of atoms, the following conditions are equivalent:

(a) X is an answer set of Π,
(b) X = M+ for some model M of the SM(ASP) theory [{¬a | a ∈ OΠ

At(Π)},Π],
(c) X = M+ for some model M of the SM(ASP) theory [Comp(Π),Π],
(d) X = M+∩At(Π) for some model M of the SM(ASP) theory [ED-Comp(Π),Π].

It is in this sense that ASP can be regarded as a fragment of SM(ASP). Answer sets of a
program Π can be described in terms of models of SM(ASP) theories. Moreover, answer-
set computation can be reduced in a straightforward way to the task of computing models
of SM(ASP) theories.

Transition Systems for Model Generators — A Unifying Approach 9

Remark 1
Corollary 1 specifies three ways to describe answer sets of a program in terms of models
of SM(ASP) theories. This offers an interesting view into answer-set generation. The CNF
formulas appearing in the SM(ASP) theories in the conditions (b) - (d) make explicit some
of the “propositional satisfiability inferences” that may be used when computing answer
sets. The condition (b) shows that when computing answer sets of a program, atoms not
occurring as heads can be inferred as false. The theory in (c) makes it clear that a much
broader class of inferences can be used, namely those that are based on the clauses of the
completion. The theory in (d) describes still additional inferences, as now, thanks to new
atoms, we can explicitly infer whether bodies of rules must evaluate to true or false. In
each case, some inferences needed for generating answer sets are still not captured by the
respective CNF theory and require a reference to the programΠ. We note that it is possible
to express these “answer-set specific” inferences in terms of clauses corresponding to loop
formulas (Lin and Zhao 2004; Lee 2005). We do not consider this possibility in this paper.

Next, we show that SM(ASP) encompasses the logic PC(ID). The well-foundedmodelM
of a programΠ is total if it assigns all atoms occurring in Π. For a PC(ID) theory (F,Π), a
programΠ is total on a model M of F ifWfix

Πo(MOΠ
) is total. A programΠ is total if Π is to-

tal on every model M of F. The PC(ID) theories (F,Π) where Π is total form an important
class of total PC(ID) theories.
There is a tight relation between models of a total PC(ID) theory (F,Π) and models of

an SM(ASP) theory [F,Π].

Proposition 6
For a total PC(ID) theory (F,Π) and a set M of literals over the set At(F∪Π) of atoms, the
following conditions are equivalent:

(a) M is a model of (F,Π),
(b) M is a model of the SM(ASP) theory [F,Π],
(c) M is a model of the SM(ASP) theory [Comp(ΠAt(Π))∪F,Π],
(d) for some model M′ of the SM(ASP) theory [ED-Comp(ΠAt(Π))∪F,Π], M = M′ ∩

At(F∩Π).

The conditions (b), (c), (d) state that the logic PC(ID) restricted to total theories can
be regarded as a fragment of the SM(ASP) formalism. The comments made in Remark 1
pertain also to generation of models in the logic PC(ID).
We now characterize models of SM(ASP) theories, and computations that lead to them,

in terms of transition systems. Later we discuss implications this characterization has for
ASP and PC(ID) solvers.
We define the transition graph SM(ASP)F,Π for an SM(ASP) theory [F,Π] as follows.

The set of nodes of the graph SM(ASP)F,Π consists of the states relative to At(F ∪ Π).
There are five transition rules that characterize the edges of SM(ASP)F,Π. The transition
rules Unit Propagate, Decide, Fail, Backtrack of the graph DPF∪Πcl , and the transition rule

Unfounded: M =⇒ M¬a if a ∈ U for a set U unfounded on M w.r.t. Πo.

The graph SM(ASP)F,Π can be used for deciding whether an SM(ASP) theory [F,Π] has
a model.

10 Y. Lierler and M. Truszczynski

Proposition 7
For any SM(ASP) theory [F,Π],

(a) graph SM(ASP)F,Π is finite and acyclic,
(b) for any terminal state M of SM(ASP)F,Π other than FailState,M is a model of [F,Π],
(c) FailState is reachable from /0 in SM(ASP)F,Π if and only if [F,Π] has no models.

Proposition 7 shows that algorithms that correctly find a path in the graph SM(ASP)F,Π
from /0 to a terminal node can be regarded as SM(ASP) solvers. It also provides a proof of
correctness for every SM(ASP) solver that can be shown to work in this way.
One of the ways in which SM(ASP) encompasses ASP (specifically, Corollary 1(c)) is

closely related to the way the answer-set solver SMODELS works. We recall that to rep-
resent SMODELS Lierler (2011) proposed a graph SMΠ. We note that the rule Unfounded
above is closely related to the transition rule with the same name used in the definition of
SMΠ (Lierler 2011). In fact, if Π = Πo then these rules are identical.
Lierler (2011) observed that SMODELS as it is implemented never follows certain edges

in the graph SMΠ, and called such edges singular. Lierler (2011) denoted by SM−
Π the

graph obtained by removing from SMΠ all its singular edges and showed that SM−
Π is still

sufficient to serve as an abstract model of a class of ASP solvers including SMODELS. The
concept of a singular edge extends literally to the case of the graph SM(ASP)F,Π. An edge
M =⇒ M′ in the graph SM(ASP)F,Π is singular if:

1. the only transition rule justifying this edge is Unfounded, and
2. some edge M =⇒ M′′ can be justified by a transition rule other than Unfounded or

Decide.

We define SM(ASP)−F,Π as the graph obtained by removing all singular edges from SM(ASP)F,Π.
Proposition 8 below can be seen as an extension of Proposition 4 in (Lierler 2011) to non-
tight programs.

Proposition 8
For every program Π, the graphs SM−

Π and SM(ASP)−Comp(Π),Π are equal.

It follows that the graph SM(ASP)−Comp(Π),Π provides an abstract model of SMODELS.
We recall though that Comp(Π) can be exponentially larger than the completion formula
before clausification. Using ASP specific propagation rules such as Backchain True and
All Rules Cancelled (Lierler 2011) allows SMODELS to avoid explicit representation of the
clausified completion and infer all the necessary transitions directly on the basis of the
program Π.
A similar relationship, in terms of pseudocode representations of SMODELS and DPLL,

is established in (Giunchiglia and Maratea 2005) for tight programs.
The answer-set solvers CMODELS, CLASP and the PC(ID) solver MINISAT(ID) cannot

be described in terms of the graph SM(ASP) nor its subgraphs. These solvers implement
such advanced features of SAT and SMT solvers as learning (forgetting), backjumping and
restarts (Nieuwenhuis et al. (2006) give a good overview of these techniques). In the next
section we extend the graph SM(ASP)F,Π with propagation rules that capture these tech-
niques. In the subsequent section, we discus how this new graphmodels solvers CMODELS,
CLASP, and MINISAT(ID). Then we provide insights into how they are related.

Transition Systems for Model Generators — A Unifying Approach 11

4 Backjumping and Learning for SM(ASP)

Nieuwenhuis et al. (2006, Section 2.4) defined the DPLL System with Learning graph
that can be used to describe most of the modern SAT solvers, which typically implement
such sophisticated techniques as learning and backjumping.We demonstrate how to extend
these findings to capture SM(ASP) framework with learning and backjumping.
Let [F,Π] be an SM(ASP) theory and let G be a formula over At(F ∪Π). We say that

[F,Π] entails G, written F,Π |= G, if for every model M of [F,Π], M |= G.
For an SM(ASP) theory [F,Π], an augmented state relative to F and Π is either a dis-

tinguished state FailState or a pair M||Γ where M is a record relative to the set of atoms
occurring in F and Π, and Γ is a set of clauses over At(F∪Π) such that F,Πo |= Γ.
We now define a graph SML(ASP)F,Π for an SM(ASP) theory [F,Π]. Its nodes are the

augmented states relative to F andΠ. The rulesDecide,Unfounded, and Fail of SM(ASP)F,Π
are extended to SML(ASP)F,Π as follows: M||Γ =⇒ M′||Γ (M||Γ =⇒ FailState, respec-
tively) is an edge in SML(ASP)F,Π justified by Decide or Unfounded (Fail, respectively) if
and only if M =⇒ M′ (M =⇒ FailState) is an edge in SM(ASP)F,Π justified by Decide or
Unfounded (Fail, respectively). The other transition rules of SML(ASP)F,Π follow:

Unit Propagate Learn: M||Γ =⇒ Ml||Γ if
{

C∨ l ∈ F∪Πcl ∪Γ and
C ⊆ M

Backjump: PlΔQ||Γ =⇒ Pl′||Γ if
{

PlΔQ is inconsistent and
F,Πo |= l′ ∨P

Learn: M||Γ =⇒ M||C, Γ if
{

every atom in C occurs in F and
F,Πo |= C.

We refer to the transition rules Unit Propagate Learn, Unfounded, Backjump, Decide, and
Fail of the graph SML(ASP)F,Π as basic. We say that a node in the graph is semi-terminal if
no rule other than Learn is applicable to it. We omit the word “augmented” before “state”
when this is clear from a context.
The graph SML(ASP)F,Π can be used for deciding whether an SM(ASP) theory [F,Π]

has a model.

Proposition 9
For any SM(ASP) theory [F,Π],

(a) every path in SML(ASP)F,Π contains only finitely many edges justified by basic tran-
sition rules,

(b) for any semi-terminal state M||Γ of SML(ASP)F,Π reachable from /0|| /0, M is a model
of [F,Π],

(c) FailState is reachable from /0|| /0 in SML(ASP)F,Π if and only if [F,Π] has no models.

On the one hand, Proposition 9 (a) asserts that if we construct a path from /0|| /0 so that
basic transition rules periodically appear in it then some semi-terminal state is eventually
reached. On the other hand, parts (b) and (c) of Proposition 9 assert that as soon as a semi-
terminal state is reached the problem of deciding whether [F,Π] has a model is solved.
In other words, Proposition 9 shows that the graph SML(ASP)F,Π gives rise to a class of
correct algorithms for computing models of an SM(ASP) theory [F,Π]. It gives a proof

12 Y. Lierler and M. Truszczynski

of correctness to every SM(ASP) solver in this class and a proof of termination under the
assumption that basic transition rules periodically appear in a path constructed from /0|| /0.
Nieuwenhuis et al. (2006) proposed the transition rules to model such techniques as

forgetting and restarts. The graph SML(ASP)F,Π can easily be extended with such rules.

5 Abstract CMODELS, CLASP and MINISAT(ID)

We can view a path in the graph SML(ASP)F,Π as a description of a process of search
for a model of an SM(ASP) theory [F,Π] by applying transition rules. Therefore, we can
characterize the algorithm of a solver that utilizes the transition rules of SML(ASP)F,Π
by describing a strategy for choosing a path in this graph. A strategy can be based, in
particular, on assigning priorities to transition rules of SML(ASP)F,Π, so that a solver never
applies a rule in a state if a rule with higher priority is applicable to the same state.
We use this approach to describe and compare the algorithms implemented in the solvers

CMODELS, CLASP and MINISAT(ID). We stress that we talk here about characterizing and
comparing algorithms and not their specific implementations in the solvers. We refer to
these algorithms as abstract CMODELS, CLASP and MINISAT(ID), respectively. Further-
more, we only discuss the abstract MINISAT(ID) for the case of the total PC(ID) theories
whereas the MINISAT(ID) system implements additional totality check propagation rule to
deal with the non-total theories. Given a programΠ, abstract CMODELS and abstract CLASP
construct first ED-Comp(Π). Afterwards, they search the graph SML(ASP)ED-Comp(Π),Π for
a path to a semi-terminal state. In other words, both algorithms, while in a node of the graph
SML(ASP)ED-Comp(Π),Π, progress by selecting one of the outgoing edges. By Proposition 9
and Corollary 1, each algorithm is indeed a method to compute answer sets of programs.
However, abstract CMODELS selects edges according to the priorities on the transition

rules of the graph that are set as follows:

Backjump,Fail � Unit Propagate� Decide � Unfounded,

while abstract CLASP uses a different prioritization:

Backjump,Fail � Unit Propagate� Unfounded� Decide.

The difference between the algorithms boils down to when the rule Unfounded is used.
We now describe the algorithm behind the PC(ID) solver MINISAT(ID) (Mariën et al.

2008) for total PC(ID) theories — the abstract MINISAT(ID). Speaking precisely, MINI-
SAT(ID) assumes that the programΠ of the input PC(ID) theory (F,Π) is in the definitional
normal form (Mariën 2009). Therefore, in practice MINISAT(ID) is always used with a
simple preprocessor that converts programs into the definitional normal form. We will
assume here that this preprocessor is a part of MINISAT(ID). Under this assumption, given
a PC(ID) theory (F,Π), MINISAT(ID) can be described as constructing the completion
ED-Comp(Πo) (the new atoms are introduced by the preprocessor when it converts Π into
the definitional normal form, the completion part is performed by the MINISAT(ID) proper),
and then uses the transitions of the graph SML(ASP)ED-Comp(Πo)∪F,Πo to search for a path to
a semi-terminal state. In other words, the graph SML(ASP)ED-Comp(Πo)∪F,Πo represents the
abstract MINISAT(ID). The strategy used by the algorithm follows the prioritization:

Backjump,Fail � Unit Propagate� Unfounded� Decide.

Transition Systems for Model Generators — A Unifying Approach 13

By Propositions 4 and 6, the algorithm indeed computes models of total PC(ID) theories.
Systems CMODELS, CLASP, and MINISAT(ID) implement conflict-driven backjumping

and learning. They apply the transition rule Learn only when in a non-semi-terminal state
reached by an application of Backjump. Thus, the rule Learn does not differentiate the
algorithms and so we have not taken it into account when describing these algorithms.

6 PC(ID) Theories as Logic Programs with Constraints

For a clause C = ¬a1∨ . . .∨¬al ∨al+1∨ . . .∨am we write Cr to denote the corresponding
rule constraint

← a1, . . . ,al,not al+1, . . . ,not am.

For a set F of clauses, we define Fr = {Cr | C ∈ F}. Finally, for a PC(ID) theory (F,Π) we
define a logic program π(F,Π) by setting

π(F,Π) = Πo ∪Fr.

The representation of a PC(ID) theory (F,Π) as π(F,Π) is similar to the translation of
FO(ID) theories into logic programs with variables given by Mariën et al. (2004). The
difference is in the way atoms are “opened.” We do it by means of rules of the form
a ← not not a, while Mariën et al. use pairs of rules a ← not a∗ and a∗ ← not a.
There is a close relation between models of a PC(ID) theory (F,Π) and answer sets of a

program π(F,Π).

Proposition 10
For a total PC(ID) theory (F,Π) and a consistent and complete (over At(F∪Π)) set M of
literals, M is a model of (F,Π) if and only if M+ is an answer set of π(F,Π).

A choice rule construct {a} (Niemelä and Simons 2000) of the LPARSE6 and GRINGO7

languages can be seen as an abbreviation for a rule a ← not not a (Ferraris and Lifschitz
2005). Thus, in view of Proposition 10, any answer set solver implementing language of
LPARSE or GRINGO is also a PC(ID) solver (an input total PC(ID) theory (F,Π) needs to
be translated into π(F,Π)).
The reduction implied by Proposition 10 by itself does not show how to relate par-

ticular solvers. However, we recall that abstract MINISAT(ID) is captured by the graph
SML(ASP)ED-Comp(Πo)∪F,Πo . Moreover, we have the following property.

Proposition 11
For a PC(ID) theory (F,Π), we have

SML(ASP)ED-Comp(π(F,Π)),π(F,Π) = SML(ASP)ED-Comp(Πo)∪F,Πo .

The graph SML(ASP)ED-Comp(π(F,Π)),π(F,Π) captures the way CLASP works on the program
π(F,Π). In addition, the MINISAT(ID) and CLASP algorithms use the same prioritization.
Thus, Proposition 11 implies that the abstract CLASP used as a PC(ID) solver coincides
with the abstract MINISAT(ID).

6 http://www.tcs.hut.fi/Software/smodels/ .
7 http://potassco.sourceforge.net/ .

14 Y. Lierler and M. Truszczynski

7 Related Work and Discussion

Lierler (2011) introduced the graphs SML and GTL that extended the graphs SM and GT (Lier-
ler 2011), respectively, with transition rules Backjump and Learn. The graph SML was
used to characterize the computation of such answer set solvers implementing learning as
SMODELScc

8 (Ward and Schlipf 2004) and SUP9 (Lierler 2011) whereas the graph GTL was
used to characterize CMODELS. These graphs are strongly related to our graph SML(ASP)
but they are not appropriate for describing the computation behind answer set solver CLASP
or PC(ID) solver MINISAT(ID). The graph SML reflects only propagation steps based on a
program whereas CLASP and MINISAT(ID) proceed by considering both the program and
a propositional theory. The graph GTL, on the other hand, does not seem to provide a way
to imitate the behavior of the Unfounded rule in the SML(ASP) graph.
Giunchiglia and Maratea (2005) studied the relation between the answer set solver

SMODELS and the DPLL procedure for the case of tight programs by means of pseudocode
analysis. Giunchiglia et al (2008) continued this work by comparing answer set solvers
SMODELS, DLV10 (Eiter et al. 1997), and CMODELS via pseudocode. In this paper we use
a different approach to relate solvers that was proposed by Lierler (2011). That is, we use
graphs to represent the algorithms implemented by solvers, and study the structure of these
graphs to find how the corresponding solvers are related. We use this method to state the
relation between the answer set solvers CMODELS, CLASP, and the PC(ID) solver MINI-
SAT(ID) designed for different knowledge representation formalisms.
Gebser and Schaub (2006) introduced a deductive system for describing inferences in-

volved in computing answer sets by tableaux methods. The abstract framework presented
in this paper can be viewed as a deductive system also, but a very different one. For in-
stance, we describe backtracking and backjumping by inference rule, while the Gebser-
Schaub system does not. Also the Gebser-Schaub system does not take learning into ac-
count. Accordingly, the derivations considered in this paper describe a search process,
while derivations in the Gebser-Schaub system do not. Further, the abstract framework dis-
cussed here does not have any inference rule similar to Cut; this is why its derivations are
paths rather than trees.
Mariën (2009) (Section 5.7) described a MINISAT(ID) transition system to model a

computation behind the PC(ID) solver MINISAT(ID). We recall that we modeled the ab-
stract MINISAT(ID) with the graph SML(ASP). The graphs SML(ASP) and MINISAT(ID)
are defined using different sets of nodes and transition rules. For instance, SML(ASP) al-
lows states containing inconsistent sets of literals whereas the MINISAT(ID) graph consid-
ers consistent states only. Due to this difference the MINISAT(ID) graph requires multiple
versions of “backjump” and “fail” transition rules.
We used transition systems to characterize algorithms for computing answer sets of logic

programs and models of PC(ID) theories. These transition systems are also suitable for
formal comparison of the strength or power of reasoning methods given rules that specify
them. An approach to do so was proposed by Mariën (2009) (Section 5.7), who introduced

8 http://www.nku.edu/∼wardj1/Research/smodels cc.html .
9 http://www.cs.utexas.edu/users/tag/sup .
10 http://www.dbai.tuwien.ac.at/proj/dlv/ .

Transition Systems for Model Generators — A Unifying Approach 15

the concept of decide-efficiency for such analysis.We outline below how standard concepts
of proof complexity (Cook et al. 1979) can be adapted to the setting of transition systems.
Let A be an infinite set of atoms. We define a node over A to be a symbol FailState, or

a finite sequence of literals overA with annotations. For a propositional formalismF over
A , a proof procedure PF consists of graphs GT , where T ranges over all theories in F ,
such that for every theory T (i) GT is composed of nodes overA and (ii) T is unsatisfiable
if and only if there is a path p in GT from the empty (start) node to the FailState node. We
call each such path p a proof. We say that a proof system S is based on a proof procedure
PF if (i) S⊆F ×R, whereR denotes the set of all finite sequences of nodes overA , and
(ii) S(T,p) holds if and only if p is a proof in the graph GT in PF . Predicate S is indeed
a proof system in the sense of Cook (1979) because (i) S is polynomial-time computable,
and (ii) T is unsatisfiable if and only if there exists a proof p such that S(T,p) holds.
In this sense, each of the graphs (transition systems) we introduced in this paper can

be regarded as a proof procedure for SM(ASP) (for those involving the rule Learn, under
additional assumptions to ensure the rule can be efficiently implemented). Thus, transition
systems determine proof systems. Consequently, they can be compared, as well as solvers
that they capture, in terms of the complexity of the corresponding proof systems.

8 Conclusions

In the paper, we proposed a formalism SM(ASP) that can be regarded as a common gener-
alization of (clausal) propositional logic, ASP, and the logic PC(ID). The formalism offers
an elegant satisfiability modulo theories perspective on the latter two. We present sev-
eral characterizations of these formalisms in terms of SM(ASP) theories that differ in the
explicitly identified “satisfiability” component. Next, we proposed transition systems for
SM(ASP) to provide abstract models of SM(ASP) model generators. The transition sys-
tems offer a clear and uniform framework for describing model generation algorithms in
SM(ASP). As SM(ASP) subsumes several propositional formalisms, such a uniform ap-
proach provides a general proof of correctness and termination that applies to a broad class
of model generators designed for these formalisms. It also allows us to describe in precise
mathematical terms relations between algorithms designed for reasoning with different
logics such as propositional logic, logic programming under answer-set semantics and the
logic PC(ID), the latter two studied in detail in the paper. For instance, our results im-
ply that at an abstract level of transition systems, CLASP and MINISAT(ID) are essentially
identical. Finally, we note that this work gives the first description of CLASP in the abstract
framework rather than in pseudocode. Such high level view on state-of-the-art solvers in
different, yet, related propositional formalisms will further their understanding, and help
port advances in solver technology from one area to another.

Acknowledgments

We are grateful to Marc Denecker and Vladimir Lifschitz for useful discussions. We are
equally grateful to the reviewers who helped eliminate minor technical problems and im-
prove the presentation. Yuliya Lierler was supported by a CRA/NSF 2010Computing Inno-
vation Fellowship. Miroslaw Truszczynski was supported by the NSF grant IIS-0913459.

16 Y. Lierler and M. Truszczynski

References

BEAME, P., KAUTZ, H., AND SABHARWAL, A. 2004. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research 22, 319–351.

CLARK, K. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker, Eds.
Plenum Press, New York, 293–322.

COOK, S. A., ROBERT, AND RECKHOW, A. 1979. The relative efficiency of propositional proof
systems. Journal of Symbolic Logic 44, 36–50.

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem proving.
Communications of the ACM 5(7), 394–397.

DENECKER, M. 2000. Extending classical logic with inductive definitions. In Proceedings of the 1st
International Conference on Computational Logic, CL 2000. Lecture Notes in Computer Science,
vol. 1861. Springer, Berlin, 703–717.

EITER, T., LEONE, N., MATEIS, C., PFEIFER, G., AND SCARCELLO, F. 1997. A deductive sys-
tem for non-monotonic reasoning. In Proceedings of the 4th International Conference on Logic
Programming and Nonmonotonic Reasoning, LPNMR 1997. Lecture Notes in Computer Science,
vol. 1265. Springer, Berlin, 363–374.

FERRARIS, P. AND LIFSCHITZ, V. 2005. Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set
solving. In Proceedings of 20th International Joint Conference on Artificial Intelligence, IJCAI
2007. 386–392.

GEBSER, M. AND SCHAUB, T. 2006. Tableau calculi for answer set programming. In Proceedings of
the 22nd International Conference on Logic Programming, ICLP 2006. Lecture Notes in Computer
Science, vol. 4079. Springer, Berlin, 11–25.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In
Proceedings of the 5th International Logic Programming Conference and Symposium, R. Kowal-
ski and K. Bowen, Eds. MIT Press, Cambridge, MA, 1070–1080.

GIUNCHIGLIA, E., LEONE, N., AND MARATEA, M. 2008. On the relation among answer set
solvers. Annals of Mathematics and Artificial Intelligence 53, 1-4, 169–204.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2004. SAT-based answer set programming.
In Proceedings of the 19th National Conference on Artificial Intelligence, AAAI 2004. AAAI
Press, Menlo Park, CA, 61–66.

GIUNCHIGLIA, E. AND MARATEA, M. 2005. On the relation between answer set and SAT proce-
dures (or, between smodels and cmodels). In Proceedings of the 21st International Conference on
Logic Programming, ICLP 2005. Lecture Notes in Computer Science, vol. 3668. Springer, Berlin,
37–51.

LEE, J. 2005. A model-theoretic counterpart of loop formulas. In Proceedings of the 19th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2005. Professional Book Center, 503–508.

LEONE, N., RULLO, P., AND SCARCELLO, F. 1997. Disjunctive stable models: Unfounded sets,
fixpoint semantics, and computation. Information and Computation 135(2), 69–112.

LIERLER, Y. 2010. Sat-based answer set programming. Ph.D. thesis, University of Texas at Austin.
LIERLER, Y. 2011. Abstract answer set solvers with backjumping and learning. Theory and Practice
of Logic Programming 11, 135–169.

LIFSCHITZ, V., TANG, L. R., AND TURNER, H. 1999. Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25, 369–389.

LIN, F. AND ZHAO, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157, 115–137.

MAREK, V. AND TRUSZCZYŃSKI, M. 1999. Stable models and an alternative logic programming

Transition Systems for Model Generators — A Unifying Approach 17

paradigm. In The Logic Programming Paradigm: a 25-Year Perspective. Springer Verlag, Berlin,
375–398.

MARIËN, M. 2009. Model generation for ID-logic. Ph.D. thesis, Katholieke Universiteit Leuven.
MARIËN, M., GILIS, D., AND DENECKER, M. 2004. On the relation between ID-logic and answer
set programming. In Proceedings of the 9th European Conference on Logics in Artificial Intelli-
gence, JELIA 2004. Lecture Notes in Computer Science, vol. 3229. Springer, Berlin, 108–120.

MARIËN, M., WITTOCX, J., DENECKER, M., AND BRUYNOOGHE, M. 2008. SAT(ID): Satis-
fiability of propositional logic extended with inductive definitions. In Proceedings of the 11th
International Conference on Theory and Applications of Satisfiability Testing, SAT 2008. Lecture
Notes in Computer Science, vol. 4996. Springer, Berlin, 211–224.

NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273.

NIEMELÄ, I. AND SIMONS, P. 2000. Extending the Smodels system with cardinality and weight
constraints. In Logic-Based Artificial Intelligence, J. Minker, Ed. Kluwer, Dordrecht, 491–521.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theo-
ries: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the
ACM 53(6), 937–977.

OIKARINEN, E. AND JANHUNEN, T. 2006. Modular equivalence for normal logic programs. In
Proceedings of the 17th European Conference on Artificial Intelligence, ECAI 2006. IOS Press,
Amsterdam, 412–416.

VAN GELDER, A., ROSS, K., AND SCHLIPF, J. 1991. The well-founded semantics for general logic
programs. Journal of ACM 38, 3, 620–650.

WARD, J. AND SCHLIPF, J. 2004. Answer set programming with clause learning. In Proceedings of
the 7th International Conference on Logic Programming and Nonmonotonic Reasoning, LPNMR
2004. Lecture Notes in Computer Science, vol. 2923. Springer, Berlin, 302–313.

18 Y. Lierler and M. Truszczynski

Appendix: Proofs

8.1 Proof of Proposition 2

We start with some additional notation and several lemmas.
Let N be a set of literals. By |N| we denote a set of atoms occurring in N. For in-

stance |{a,¬b, c}| = {a, b, c}. Further, by ch(N) we denote a set of rules of the form
a ← not not a, where a ∈ |N|.
By a program literal we mean expressions a, not a and not not a, where a is an atom.

For a program literal l, we set s(l) = a, if l = a or l = not not a, and s(l) = ¬a, if l = not a.
For a set B of body literals, we define s(B) = {s(l) | l ∈ B}. If Π is a program and N is
a set of lit�rals,by Π(N) we denote the program obtained from Π by removing each rule
whose body contains a program literal l such that s(l) ∈ N, and deleting from the bodies of
all rules in Π every program literal l such that s(l) ∈ N.

Lemma 1
Let Π be a logic program and N a consistent set of literals such that |N| ∩Head(Π) = /0.
For every consistent set M of literals such that |N| ∩ |M|= /0,

{a | a ← B ∈ Π∪ ch(N) and s(B)⊆ M∪N} \N = {a | a ← B ∈ Π(N) and s(B)⊆ N}·

Proof
Let c ∈ {a | a ← B ∈ Π ∪ ch(N) and s(B) ⊆ M ∪N} \N. Let c ∈ |N|. The only rule in
Π∪ch(N)with c as the head is c← not not c. It follows that c∈M∪N. Since |N|∩|M|= /0,
c∈ N, a contradiction. Thus, c /∈ |N| and there is a rule c ← B ∈ Π such that s(B)⊆ M∪N.
Let B′ be what remains when we remove from B all expressions l such that s(l) ∈ N. The
rule c ← B′ ∈ Π(N) and s(B′)⊆ M. It follows that c ∈ {a | a ← B ∈ Π(N) and s(B′)⊆ M}.
Conversely, let c ∈ {a | a ← B ∈ Π(N) and s(B) ⊆ M}. It follows that c /∈ |N| and so,

c /∈ N. Moreover, there is a rule c ← B′ ∈ Π(N) such that s(B′) ⊆ M. By the definition
of Π(N), there is a rule c ← B ∈ Π such that s(B) ⊆ M ∪N. Thus, c ∈ {a | a ← B ∈

Π∪ ch(N) and s(B)⊆ M∪N} \N.

Let N be a set of literals. We define N− = {a | ¬a ∈ N}.

Lemma 2
For a logic program Π, a consistent set N of literals such that |N| ∩Head(Π) = /0, and
a consistent set M of literals such that |M| ∩ |N| = /0, GUS(M ∪ N,Π ∪ ch(N)) \N− =

GUS(M,Π(N)).

Proof
We note that since the sets M and N are consistent and |M| ∩ |N|= /0, M∪N is consistent.
Moreover, we note that to prove the claim it suffices to show that U is an unfounded set on
M∪N w.r.t. Π∪ ch(N) if and only if U \N− is an unfounde�set on M w.r.t. Π(N).
(⇒) Let a ∈ U \N− and let D ∈ Bodies(Π(N),a). It follows that a /∈ |N|. It also follows
that there is a rule a ← B ∈ Π such that for every program literal l ∈ B, s(l) /∈ N, and D is
obtained by removing from B every program literal l such that s(l) ∈ N.
SinceU is an unfounded set on M∪N w.r.t.Π∪ch(N), it follows that s(B)∩(M∪N) �= /0

orU∩B+ �= /0. In the first case, since for every program literal l∈ B, s(l) /∈N, s(B)∩M �= /0

Transition Systems for Model Generators — A Unifying Approach 19

follows. Moreover, D differs from B only in program literals l such that s(l) ∈ N. Since
|M|∩|N|= /0, we have s(D)∩M �= /0. Thus, let us consider the second case. Let a∈U∩B+.
Since a /∈ |N|, a /∈ N−. For the same reason, a /∈ N. Thus, a ∈ U \N− and a ∈ D+. That is,
(U \N−)∩D+ �= /0. This proves that U \N− is an unfounded set on M w.r.t. Π(N).
(⇐) Let U′ be any unfounded set on M w.r.t. Π(N). By the definition of an unfounded set,
U′ contains no atoms from |N| since they do not appear in Π(N). We show that U′ ∪N− is
an u�fo�ndedset on M∪N w.r.t. Π∪ ch(N). Let a be any atom in U′ ∪N−.
Case 1. a ∈ N−. It follows that a occurs in the head of only one rule in Π∪ ch(N) namely,
a ← not not a. Since ¬a ∈ N, s(not not a) ∈ N and, consequently, s(not not a) ∈ M∪N.
Case 2. a ∈ U′. It follows that a �∈ N and so, Bodies(Π∪ ch(N),a) = Bodies(Π,a). To
complete the argument it suffices to show that for every body B ∈ Bodies(Π,a), s(B)∩
(M∪N) �= /0 or (U′ ∪N−)∩B+ �= /0 holds.
Let B be any body in Bodies(Π,a). It follows that Π contains the rule a ← B. If there is

a program literal l in B such that s(l) ∈ N, then the first condition above holds. Thus, let us
assume that for every program literal l∈B, s(l) /∈N. LetD be obtained from B by removing
from it every program literal l such that s(l) ∈ N. It follows that a ← D ∈ Π(N). Since U′

is unfounded on M w.r.t. Π(N), there is l in D such that s(l) ∈ M or U′ ∩D+ �= /0. In the
first case, we have s(B)∩ (M ∪N) �= /0. In the second case, we have (U′ ∪N−)∩B+ �= /0.

By Wi
Π(M) we will denote the i-fold application of the WΠ operator on the set M of

literals. By convention, we assume that W0
Π(M) = M.

Lemma 3
For a normal logic programΠ and a consistent setN of literals such that |N|∩Head(Π)= /0,

Wi
Π∪ch(N)(N) = Wi

Π(N)(/0)∪N·

Proof
We proceed by induction on i. For i = 0, since N is consistent, we have

W0
Π∪ch(N)(N) = N = /0∪N = W0

Π(N)(/0)∪N·

Let us assume that the identity holds for some i ≥ 0. We show that it holds for i+1.
Let M denote Wi

Π(N)(/0). We recall that Wfix
Π(N)(/0) is the well-founded model of the nor-

mal program Π(N). Consequently, the sets Wfix
Π(N)

(/0) and Wj
Π(N)

(/0), j ≥ 0, are consistent

(Van Gelder et al. 1991). In particular, M is consistent. Moreover, since |N|∩ |Wfix
Π(N)

(/0)|=
/0, the sets Wj

Π(N)
(/0)∪N, j ≥ 0, are consistent, too. Thus, we have

Wi+1
Π(N)(/0)∪N = N ∪WΠ(N)(Wi

Π(N)(/0)) = N ∪WΠ(N)(M)

= N ∪M∪{a | a ← B ∈ Π(N) and B ⊆ M}∪GUS
(
M,Π(N)

)
·

Since |N|∩ |Wfix
Π(N)

(/0)|= /0, |M|∩ |N|= /0. We also observed that M is consistent. By Lem-
mas 1 and 2 and the fact that {¬a | a ∈ N−} ⊆ N, we have

Wi+1
Π(N)(/0)∪N = N ∪ (M∪{a | a ← B ∈ Π∪ ch(N) and B ⊆ M∪N} \N)

20 Y. Lierler and M. Truszczynski

∪ GUS
(
M∪N,Π∪ ch(N)

)
\N−

= N ∪ (M∪{a | a ← B ∈ Π∪ ch(N) and B ⊆ M∪N} \N)

∪ (GUS
(
M∪N,Π∪ ch(N)

)
\ {¬a | a ∈ N−})

= N ∪M∪{a | a ← B ∈ Π∪ ch(N) and B ⊆ M∪N}

∪ GUS
(
M∪N,Π∪ ch(N)

)
·

Since this last set is consistent, it is equal to WΠ∪ch(N)(M∪N) = WΠ∪ch(N)(Wi
Π(N)(/0)∪N).

Applying the induction hypothesis, the inductive step follows.

Proposition 2 For a PC(ID) theory (F,Π) such that Π is a normal program, M is a model
of (F,Π) if and only if M is a model of (F,Π) according to the definition in (Denecker
2000).

Proof
Let (F,Π) be a PC(ID) theory. In (Denecker 2000), the authors state that a consistent and
complete (over At(F∪Π)) set M of literals is a model of (F,Π) if

(i) M is a model of F, and
(ii) M = Wfix

Π(MOΠ
)
(/0)∪MOΠ .

To prove the assertion it is sufficient to show that for any model M of F such that |M|=

At(Π∪F), M = Wfix
Πo(MOΠ

) if and only if M = Wfix
Π(MOΠ

)
(/0)∪MOΠ . Let N = MOΠ . The

definitions of OΠ and Πo directly imply that |N|∩Head(Π) = /0 and that Πo = Π∪ch(N).
Thus, the property follows from Lemma 3.

8.2 Proofs of Results from Section 3

Proposition 3 For a logic program Π and a set X of atoms,

(a) X ⊆ Head(Π) and X is an input answer set of Π if and only if X is an answer set of
Π.

(b) if (X \Head(Π))∩ At(Π) = /0, then X is an input answer set of Π if and only if
X∩Head(Π) is an answer set of Π.

Proof
The proof of part (a) is straightforward and follows directly from the definition of an input
answer set. To prove (b), let us assume first that X is an input answer set of Π. By the
definition, X is an answer set of Π∪(X\Head(Π)). Thus, X is the least model of the reduct
[Π∪(X\Head(Π))]X. Clearly, we have [Π∪(X\Head(Π))]X =ΠX∪(X\Head(Π)). Since
(X \ Head(Π))∩ At(Π) = /0, ΠX = ΠX∩Head(Π). It follows that X is the least model of
ΠX∩Head(Π)∪ (X \Head(Π)). Using again the assumption (X \Head(Π))∩At(Π) = /0, one
can show that X ∩Head(Π) is the least model of ΠX∩Head(Π). Thus, X ∩Head(Π) is an
answer set of Π
The proof in the other direction is similar. Let us assume that X ∩Head(Π) is an an-

swer set of Π. It follows that X ∩Head(Π) is the least model of ΠX∩Head(Π). Since (X \

Head(Π))∩At(Π) = /0, X is the least model of ΠX∩Head(Π) ∪ (X \Head(Π)). Moreover,
sinceΠX∩Head(Π) =ΠX , X is the least model ofΠX∪(X\Head(Π))= [Π∪(X\Head(Π))]X.
Thus, X is an input answer set of Π.

Transition Systems for Model Generators — A Unifying Approach 21

Proposition 4 A set of literals M is a model of an SM(ASP) theory [F,Π] if and only if M
is a model of an SM(ASP) theory [F,Πo].

Proof
Pr�ceedingin each direction, we can assume that M is a complete (over At(F ∪Π)) and
consistent set of literals such that |M| = |At(F∪Π)|. It follows that to prove the assertion
it suffices to show that for every such set M, M+ is an input answer set of Π if and only if
M+ is an input answer set of Πo.
We note thatΠo =Π∪{a← not not a | a∈At(F∪Π)\Head(Π)}. Thus,M+ ⊆Head(Π)

and so, by Proposition 3, M+ is an input answer set of Πo if and only if M+ is an answer
set of Πo. It follows that to complete the argument, it suffices to show that under our
assumptions about M, M+ is an answer set of Π∪ (M+ \Head(Π)) if and only if M+

is an answer set of Πo. This statement is evident once we observe that the reducts of
Π∪ (M+ \Head(Π)) and Πo with respect to M+ are equal (they are both equal to ΠM+

∪

(M+ \Head(Π))).

Proposition 5 For any SM(ASP) theory [F,Π] that is Π-safe, a set X of atoms is an answer
set of Π if and only if X = M+∩At(Π), for some model M of [F,Π].

Proof
(⇒) Let X be an answer set of Π. Since [F,Π] is Π-safe, there is a model M of F such that
X = M+ ∩Head(Π). Moreover, again by the Π-safety of [F,Π], {¬a | a ∈ OΠ} ⊆ M. It
follows that X = M+∩At(Π) and (M+ \Head(Π))∩At(Π) = /0. By Proposition 3(b), M+

is an input answer set of Π.

(⇐) Let X = M+ ∩At(Π), where M is a model of [F,Π]. It follows that M is a model of
F. By the Π-safety of [F,Π], we have {¬a | a ∈ OΠ} ⊆ M. As above, it follows that (M+ \

Head(Π))∩At(Π) = /0. Since M+ is an input answer set of Π, Proposition 3(b) implies
that M+∩Head(Π) is an answer set of Π. From the identity (M+ \Head(Π))∩At(Π) = /0,
it follows that M+∩Head(Π) = M+∩At(Π). Thus, X is an answer set of Π.

Corollary 1 follows immediately from Proposition 5. We omit its proof and move on to
Proposition 6. We start by proving two simple auxiliary results.

Lemma 4
For a logic program Π, and a consistent and complete set M of literals over At(Π), if
M = WΠ(M), then M is a model of Π.

Proof
It is sufficient to show that for every rule a ← B ∈ Π if s(B)⊆ M then a ∈ M. This follows
from the definition of the operator WΠ and the fact that M = WΠ(M).

Lemma 5
For a logic program Π and a consistent and complete set M of literals over At(Π), if M =

WΠ(M) then M+ does not have any non-empty subset that is unfounded on M with respect
to Π.

22 Y. Lierler and M. Truszczynski

Proof
Let us assume that U is a non-empty subset of M+ that is unfounded on M with respect to
Π. It follows that U ⊆ M. Since U �= /0, M is inconsistent, a contradiction.

Next, we recall the following generalization of a well-known characterization of answer
sets in terms of unfounded sets due to Leone et al. (1997). The generalization extended the
characterization to the case of programs with double negation.
Theorem on Unfounded Sets(Lee 2005)
For a set M of literals, M+ is an answer set of a program Π if and only if M is a model of
Π and M+ does not have any non-empty subset that is unfounded on M with respect to Π.

Proposition 6 For a total PC(ID) theory (F,Π) and a set M of literals over the set At(F∪

Π) of atoms, the following conditions are equivalent:

(a) M is a model of (F,Π)

(b) M is a model of an SM(ASP) theory [F,Π]

(c) M is a model of an SM(ASP) theory [Comp(ΠAt(Π))∪F,Π]

(d) for some model M′ of an SM(ASP) theory [ED-Comp(ΠAt(Π))∪F,Π], M = M′ ∩

At(F∩Π).

Proof
(a)⇒(b) It is sufficient to show that M+ is an input answer set of Π, that is, an answer set
of Π∪ (M+ \Head(Π)). Since M is a model of the PC(ID) theory (F,Π), M is a complete
and consistent set of literals over At(F ∪Π) and M = Wfix

Πo(MOΠ
). It follows that M =

WΠo(M). Since At(Πo) = At(F ∪Π), by Lemma 4 it follows that M is a model of Πo.
Consequently,M is a model of Π∪ (M+ \Head(Π)). By Theorem on Unfounded Sets, it is
sufficient to show thatM+ does not have any non-empty subset that is unfounded onM with
respect to Π∪ (M+ \Head(Π)). For a contradiction, let us assume that there is a nonempty
set U ⊆ M+ that is unfounded on M with respect to Π∪ (M+ \Head(Π)). Let a ∈ U. It
follows that a ∈ M+. If a /∈ Head(Π), then a is a fact in Π∪ (M+ \Head(Π)). This is a
contradiction with the unfoundedness of U. Thus, a ∈ Head(Π). By the definition of Πo,
Bodies(Πo,a) = Bodies(Π,a). It follows that for every B ∈ Bodies(Πo,a), s(B)∩M �= /0
or U∩B+ �= /0. This shows that U is unfounded on M with respect to Πo. This contradicts
Lemma 5.
(a)⇐(b) Since M is a model of [F,Π], M is a complete and consistent set of literals over
At(F ∪Π). By the assumption, M+ is an answer set of Π′ = Π∪ (M+ \Head(Π)). Since
Π′ and Π have the same reducts with respect to M+, M+ is an answer set of Πo.
Since MOΠ

⊆ M, WΠo(MOΠ
)⊆ Wo

Π(M). Let l ∈ Wo
Π(M). If l = a, where a is an atom in

Πo, then there is a rule a ← B in Πo such that s(B)⊆ M. Since M is a model of Πo (it is so
since M+ is an answer set of Πo), a ∈ M. If l = ¬a, then a ∈ GUS(M,Πo).
Let us assume that a ∈ M+ and let us define U = M+∩GUS(M,Πo). Clearly, U �= /0 and

U ⊆ GUS(M,Πo). Let b ∈ U and let B ∈ Bodies(Πo,b). Let us assume that s(B)M =

/0. By the completeness of M, s(B) ⊆ M. Since b ∈ GUS(M,Πo), there is an element
GUS(M,Πo)∩B+ �= /0. Let us assume that c ∈ GUS(M,Πo)∩B+. It follows that c ∈ M+

and so, c ∈ U. Thus, U is a nonempty set contained in M+ and unfounded on M with re-
spect to Πo. By Theorem on Unfounded Sets, this contradicts the fact that M+ is an answer

Transition Systems for Model Generators — A Unifying Approach 23

set of Πo. it follows that a /∈ M+. By the completeness of M, ¬a ∈ M. Thus, Wo
Π(M) ⊆ M

and, consequently, WΠo(MOΠ
) ⊆ M. By iterating, we obtain that Wfix

Πo(MOΠ
) ⊆ M. Since

(F,Π) is total, Wfix
Πo(MOΠ

) = M. Thus, (a) follows.
(b)⇔(c) It is sufficient to show that M is a model of F if and only if M is a model of
Comp(Πo)∪ F given that M+ is an input answer set of Π or, equivalently, that M+ is
an answer set of Π∪M+ \Head(Π). The “if” part is obvious. For the “only if” part, we
proceed as follows. First, reasoning as above we observe that M+ is an answer set of Πo.
Thus,M is the model of the completionComp(Πo) and so,M is a model of Comp(Πo)∪F,
which we needed to show.
(b)⇔(d) The equivalence follows from the fact that ED-Comp(ΠAt(Π)) is a conservative
extension of Comp(ΠAt(Π)).

We now proceed to the proof of Proposition 7. We first recall a result proved by Lierler
(2011) (using a slightly modified notation)..

Lemma 6 (Lemma 4 (Lierler 2011))
For any unfounded set U on a consistent set M of literals with respect to a program Π, and
any assignment N, if N |= M and N ∩U �= /0, then N+ is not an answer set for Π.

It is well known that for any consistent and complete set M of literals over At(Π) (as-
signment on At(Π)), if M+ is an answer set for a program Π, then M is a model of Πcl.
The property has a counterpart for SM(ASP) theories. The proof is straightforward and we
omit it.

Lemma 7
For every SM(ASP) theory [F,Π], if M is a model of [F,Π], then M is a model of F∪Πcl.

Next, we prove the following auxiliary result.

Lemma 8
For every SM(ASP) theory [F,Π], every state M other than FailState reachable from /0 in
SM(ASP)F,Π, and every model N of [F,Π], if N satisfies all decision literals in M, then N
satisfies M.

Proof
We proceed by induction on n = |M|. The property trivially holds for n = 0. Let us assume
that the property holds for all states with k′ ≤ k elements that are reachable from /0. For the
inductive step, let us consider a state M = l1 . . . lk such that every model N of [F,Π] that
satisfies all decision literals lj with j ≤ j satisfies M. We need to prove that applying any
transition rule of SM(ASP)F,Π in the state l1 . . . lk, leads to a state M′ = l1 . . . lk, lk+1 such
that if N is a model of [F,Π] and N satisfies every decision literal lj with j ≤ k+1, then N
satisfies M′.
Unit Propagate: By the definition of Unit Propagate, there is a clause C∨ l ∈ F∪Πcl such
that C ⊆ M and M′ = Ml. Let N be any model of [F,Π] that satisfies all decision literals
lj ∈ Ml. It follows that N satisfies all decision literals in M. By the induction hypothesis,
N |= M. Since N |= C∨ l and C ⊆ M, Lemma 7 implies that N |= l.
Decide: In this case, M′ = Mld (l is a decision literal). If N is a model of the theory [F,Π]

24 Y. Lierler and M. Truszczynski

and it satisfies all decision literals in M′, then N satisfies l (by the assumption) and N
satisfies every decision literal in M. By the induction hypothesis, the latter implies that
N |= M. Thus, N |= M′.
Fail: If this rule is applicable, M has no decision literals and is inconsistent. If [F,Π] has a
model N, then by the induction hypothesis, N |= M, a contradiction. It follows that [F,Π]

has no models and the assertion is trivially true.
Backtrack: If this rule is applied, it follows that M has the form Pldi Q, whereQ contains no
decision literals, and M′ = Pli. Let N be a model of [F,Π] such that N satisfies all decision
literals in Pli. It follows that N satisfies all decision literals in P and so, by the induction
hypothesis, N |= P. Let us assume that N |=li. Then, N satisfies all decision literals in
M and, consequently, N |= M, a contradiction as M is inconsistent. Thus, N |= li and so,
N |= M′.
Unfounded: If M′ is obtained from M by an application of the Unfounded rule, then M is
consistent and M′ = M¬a, for some a ∈ U, whereU is an unfounded set on M with respect
to Πo. Let N be any model N of [F,Π] such that N satisfies all decision literals in M′. It
follows that N satisfies all decision literals in M and so, by the inductive hypothesis, N |=

M. By the definition of a model of [F,Π], N+ is an input answer set of Π. Consequently,
N+ is an answer set of Π∪ (N+ \Head(Π)). Arguing as as before, we obtain that N+ is an
answer set of Πo. By Lemma 6, a /∈ N+, that is, N |= ¬a.

Proposition 7 For any SM(ASP) theory [F,Π],

(a) graph SM(ASP)F,Π is finite and acyclic,
(b) for any terminal state M of SM(ASP)F,Π other than FailState, M is a model of [F,Π]

(c) FailState is reachable from /0 in SM(ASP)F,Π if and only if [F,Π] has no models.

Proof
Parts (a) and (c) are proved as in the proof of Proposition 1 (Lierler 2011, Proposition 1)
using Lemma 8.
(b) Let M be a terminal state. It follows that none of the rules are applicable. From the fact
that Decide is not applicable, we derive that M assigns all literals. Since neither Backtrack
nor Fail are applicable, M is consistent. Since Unit Propagate is not applicable, it follows
that for every clause C∨ a ∈ F∪Πcl if C ⊆ M then a ∈ M. Consequently, if M |= C then
M |= a. Thus, M is a model of F∪Πcl. Consequently, M is a model of F.
Next, we show that M+ is an input answer set of Π, that is, that M+ is an answer set of

Π∪ (M+ \Head(Π)). To this end, it is sufficient to show that M+ is an answer set of Πo

(we again exploit here the fact that M+ is an answer set of Π∪(M+ \Head(Π)) if and only
if M+ is an answer set of Πo). Since M is a model of F∪Πcl, M is a model of Πo.
Let us assume that M+ is not an answer set of Πo. By Theorem on Unfounded Sets,

it follows that there is a non-empty unfounded set U on M with respect to Πo such that
U ⊆ M+. Then Unfounded can be applied for some a ∈ U. If ¬a /∈ M, M is not terminal, a
contradiction. Thus, ¬a ∈ M. Since M is consistent, a /∈ M+, a contradiction (as U ⊆ M+).
It follows that M+ is an answer set of Πo, as required.

Finally, we sketch a proof for Proposition 8
Proposition 8 For every program Π, the graphs SM−

Π and SM(ASP)−Comp(Π),Π are equal.

Transition Systems for Model Generators — A Unifying Approach 25

Proof
Sketch: First we show that the states of the graphs SM−

Π and SM(ASP)−Comp(Π),Π coincide.
In view of Proposition 3 stated and proved by Lierler (Lierler 2011) it is sufficient to show
that there is a non-singular edge M =⇒ M′ in SMΠ justified by the transition Unfounded
(defined for SM) if and only if there is a non-singular edge M =⇒ M′ in SM(ASP)Comp(Π),Π
justified by Unfounded (defined for SM(ASP)). We conclude by proving the last statement.

8.3 Proof of Proposition 9

We first extend Lemma 8 to the “learning” version of the graph SM(ASP)F,Π.

Lemma 9
For every SM(ASP) theory [F,Π], every state M||Γ reachable from /0|| /0 in SM(ASP)F,Π,
and every model N of [F,Π], if N satisfies all decision literals in M, then N satisfies M.

Proof
The proof is by induction on n = |M| and proceeds similarly as that of Lemma 8. In par-
ticular, the property trivially holds for n = 0. Let us assume that the property holds for
all states M||Γ, where |M| ≤ k, that are reachable from /0|| /0. For the inductive step, let us
consider a state M||Γ, with M = l1 . . . lk, such that every model N of [F,Π] that satisfies all
decision literals lj with j ≤ k satisfies M. We need to prove that applying any transition rule
of SM(ASP)F,Π in the state M||Γ, leads to a state M′||Γ′, where M′ = Mlk+1, such that if N
is a model of [F,Π] and N satisfies every decision literal lj with j ≤ k+1, then N satisfies
M′.
The rules Decide, Fail and Unfounded can be dealt with as before (with only minor

notational adjustments to account for extended states). Thus, we move on to the rules Unit
Propagate Learn, Backjump, and Learn.
Unit Propagate Learn: We recall that Γ is a set of clauses entailed by F and Π. In other
words, any model of [F,Π] is also a model of Γ. We now proceed as in the case of the rule
Unit Propagate in the proof of Proposition 8 with F∪Πcl replaced by F∪Πcl ∪Γ.
Backjump: The argument is similar to that used in the case of the transition rule Backtrack
in the proof of Lemma 8.
Learn: This case is trivially true.

We now recall several concepts we will need in the proofs. Given a set A of atoms, we
define Bodies(Π,A) =

⋃
a∈A Bodies(Π,a). Let Π be a program and Y a set of atoms. We

call the formula∨
a∈Y

a →
∨
{B | B ∈ Bodies(Π,Y) and Bpos∩Y = /0} (5)

the loop formula for Y (Lin and Zhao 2004). We can rewrite the loop formula (5) as the
disjunction

(
∧
a∈Y

¬a)∨
∨
{B | B ∈ Bodies(Π,Y) and Bpos ∩Y = /0}. (6)

26 Y. Lierler and M. Truszczynski

The Main Theorem in (Lee 2005) implies the following property loop formulas. In its
statement we refer to the concept of a program entailing a formula. The notion is defined
as follows. A program Π entails a formula F (over the set of atoms in Π) if for every
interpretation M (over the set of atoms in Π) such that M+ is an answer set of Π, M is a
model of F.

Lemma 10 (Lemma on Loop Formulas)
For every program Π and every set Y of atoms, Y ⊆ At(Π), Π entails the loop formula (6)
for Y.

For an SM(ASP) theory [F,Π] and a list PlQ of literals, we say that a clause C∨ l is a
reason for l to be in PlQ with respect to [F,Π] if

1. P |= ¬C, and
2. F,Πo |= C∨ l.

Lemma 11
Let [F,Π] be an SM(ASP) theory. For every state M||Γ reachable from /0|| /0 in the graph
SML(ASP)F,Π, every literal l in M is either a decision literal or has a reason to be in M with
respect to [F,Π].

Proof
We proceed by induction on the length of a path from /0|| /0 toM||Γ in the graph SML(ASP)F,Π.
Since the property trivially holds in the initial state /0|| /0, we only need to prove that every
transition rule of SML(ASP)F,Π preserves it.
Let us consider an edge M||Γ =⇒ M′||Γ′, where M is a sequence l1 . . . lk such that every

li, 1 ≤ i ≤ k, is either a decision literal or has a reason to be in M with respect to [F,Π].
It is evident that transition rules Backjump, Decide, Learn, and Fail preserve the property
(the last one trivially, as FailState contains no literals).
Unit Propagate Learn: The edge M||Γ =⇒ M′||Γ′ is justified by the rule Unit Propagate
Learn. That is, there is a clause C∨ l ∈ F∪Πcl ∪Γ such that C ⊆ M and M′ = Ml. By the
inductive hypothesis, the property holds for every literal in M. We now show that a clause
C∨ l is a reason for l to be in Ml. By the applicability conditions of Unit Propagate Learn,
C ⊆ M. Consequently, M |= C. It remains to show that F,Πo |= C∨ l.
Case 1. C∨ l ∈ F. Then, clearly, F |= C∨ l and, consequently, F,Πo |= C∨ l.
Case 2. C ∨ l ∈ Πcl. Since Πcl ⊆ (Πo)cl, C ∨ l ∈ (Πo)cl. Let M be a model of [F,Πo].
It follows that M+ is an answer set of Πo. Thus, M |= (Πo)cl and so, M |= C ∨ l. Thus,
F,Πo |= C∨ l.
Case 3. C∨ l ∈ Γ. We recall that F,Πo |= Γ by the definition of an augmented state. Con-
sequently, F,Πo |= C∨ l.
Unfounded: We have that M is consistent, and that there is an unfounded set U on M with
respect to Πo and a ∈ U such that M′ = M¬a. By the inductive hypothesis, the property
holds for every literal in M. We need to show that ¬a has a reason to be in M¬a with
respect to [F,Π].
Let B ∈ Bodies(Πo,U) be such that U ∩Bpos = /0. By the definition of an unfounded

Transition Systems for Model Generators — A Unifying Approach 27

set, it follows that s(B)∩M �= /0. Consequently, s(B) contains a literal from M. We pick an
arbitrary one and call it f (B). The clause

C = ¬a∨
∨
{f (B) | B ∈ Bodies(Πo,U) and Bpos∩U = /0}, (7)

is a reason for ¬a to be in M¬a with respect to [F,Π].
First, by the choice of f (B), for every B ∈ Bodies(Πo,U) and Bpos ∩U = /0, f (B) ∈ M.

Consequently,

M |= ¬
∨

{f (B) | B ∈ Bodies(Πo,U) and Bpos ∩U = /0}· (8)

Second, since f (B) ∈ B, the loop formula

(
∧

u∈U
¬u)∨

∨
{B | B ∈ Bodies(Π,U) and Bpos ∩U = /0} (9)

entails C. By Lemma on Loop Formulas, it follows that Πo entails C. Consequently,
F,Πo |= C.

For a list M of literals, by consistent(M) we denote the longest consistent prefix of M.
For example, consistent(abc¬bd) = abc. A clause C is conflicting on a list M of literals
with respect to an SM(ASP) theory [F,Π] if consistent(M) |= ¬C and F,Πo |= C.

For a state M||Γ reachable from /0|| /0 in SML(ASP)F,Π, by rM we denote a function that
maps every non-decision literal in M to its reason to be in M (with respect to [F,Π]).
By RM we denote the set consisting of the clauses rM(l), for each non-decision literal
l ∈ consistent(M).

A resolution derivation of a clause C from a sequence of clauses C1, . . . ,Cm is a sequence
C1, . . . ,Cm, . . . ,Cn, where C ≡ Cl for some l ≤ n, and each clause Ci in the sequence is
either a clause from C1, . . . ,Cm or is derived by applying the resolution rule to clauses Cj
and Ck, where j,k < i (we call such clauses derived). We say that a clause C is derived
by a resolution derivation from a sequence of clauses C1, . . . ,Cm if there is a resolution
derivation of a clause C from C1, . . . ,Cm.

Lemma 12
Let [F,Π] be an SM(ASP) theory, M||Γ a state in the graph SM(ASP)F,Π such that M is
inconsistent, and C1 a clause in RM . If clause C2 is conflicting on M with respect to [F,Π],
then every clause C derived from C1 and C2 is also a conflicting clause on M with respect
to [F,Π].

Proof
Let us assume that C is derived from C1 and C2 by resolving on some literal l ∈ C1. Then,
C2 is of the form l∨C′

2.
From the fact that C1 ∈ RM, it follows that F,Πo |= C1 and that C1 has the form

c1 ∨C′
1, where consistent(M) |= ¬C′

1. Since C2 is conflicting, consistent(M) |= ¬C2 and
F,Πo |= C2. By the consistency of consistent(M), there is no literal in C′

1 such that its
complement occurs in C2. Therefore l = c1 and, consequently, C = C′

1 ∨C′
2. It follows that

consistent(M) |= ¬C. Moreover, since F,Πo |= C1 and F,Πo |= C2 and C results from C1
and C2 by resolution, F,Πo |= C.

28 Y. Lierler and M. Truszczynski

For an SM(ASP) theory [F,Π] and a node M||Γ in SM(ASP)F,Π, a resolution derivation
C1, . . . ,Cn is trivial on M with respect to [F,Π]11 if

(1) {C1, . . . ,Ci}= RM
(2) Ci+1 is a conflicting clause on M with respect to [F,Π]

(3) Cj, j > i+ 1, is derived from Cj−1 and a clause Ck, where k ≤ i (that is, Ck ∈ RM),
by resolving on some non-decision literal of consistent(M).

For a record M0 l1M1 . . . lk Mk, where li are all the decision literals of the record, we say
that the literals of liMi belong to a decision level i. For a state MlM′ l′M′′, we say that l is
older than l′. We say that a state is a backjump state if it is inconsistent, contains a decision
literal, and is reachable from /0|| /0 in SML(ASP)F,Π.

Lemma 13
For every SM(ASP) theory [F,Π], the transition rule Backjump is applicable in every back-
jump state in SM(ASP)F,Π.

Proof
Let M||Γ be a backjump state in SM(ASP)F,Π. We will show that M has the form PlΔQ and
that there is a literal l′ that has a reason to be in Pl′ with respect to [F,Π].
Since M||Γ is a backjump state, it follows that M has the form consistent(M)lN. It is

clear that l is not a decision literal (otherwise consistent(M)l would be consistent). By
Lemma 11, there is a reason, say R for l to be in M. We denote this reason by R. Since
consistent(M)l is inconsistent, l ∈ consistent(M). This observation and the definition of a
reason imply that consistent(M) |= ¬R. Moreover, since F,Πo |= R (as R is a reason), R is
a conflicting clause.
Let dec be the largest of the decision levels of the complements of the literals in R

(each of them occurs in consistent(M)). Let D be the set of all non-decision literals in
consistent(M). By Ddec we denote a subset of D that contains all the literals that belong to
decision level dec.
It is clear that C1, . . . ,Ci,Ci+1, where {C1, . . .Ci} = RM and Ci+1 = R, is a trivial res-

olution derivation with respect to M and consistent(M) |= ¬Ci+1. Let us consider a trivial
resolution derivation with respect to M of the form C1, . . . ,Ci,Ci+1, . . . ,Cn, where n≥ i+1
and consistent(M) |= ¬Cn. Let us assume that there is a literal l ∈ D such that l in Cn. It
follows that Cn = l∨C′

n, for some clause C′
n.

Since l ∈ D (is a non-decision literal in consistent(M)), the set RM contains the clause
rM(l), which is a reason for l to be in M. The clause rM(l) is of the form l∨ l1 ∨ . . .∨ lm,
where literals l1, . . . , lm are older than l and consistent(M) |= ¬(l1 ∨ . . .∨ lm). Resolving
Cn and rM(l) yields the clause Cn+1 = C′

n ∨ l1 ∨ . . .∨ lm. Clearly, C1, . . . ,Cn+1 is a trivial
resolution derivation with respect to M and conistent(M) |= ¬Cn+1.
If we apply this construction selecting at each step a non-decision literal l ∈ Ddec such

that l ∈ R, then at some point we obtain a clause Cn that contains exactly one literal whose
complement belongs to decision level dec (the reason is that in each step of the construc-
tion, the literal with respect we perform the resolution is replaced by older ones).

11 This definition is related to the definition of a trivial resolution derivation (Beame et al. 2004).

Transition Systems for Model Generators — A Unifying Approach 29

By Lemma 12, the clause C = Cn is conflicting on M with respect to [F,Π], that is,
consistent(M) |= ¬C and F,Πo |= C. By the construction, C = l′ ∨C′, where l′ is the only
literal whose complement belongs to the decision level dec and the complements of all
literals in C′ belong to lower decision levels.

Case 1. dec = 0. Since for every literal l ∈ C′, the decision level of l is strictly lower than
dec, C′ = ⊥. Since M||Γ is a backjump state, M contains a decision literal. Then M can
be written as PlΔQ, where P contains no decision literals (in other words P consists of
all literals in consistent(M) of decision level dec = 0) and l′ ∈ P. Clearly, P |= ¬C′ (as
C′ =⊥). Since F,Πo |= C(= l′ ∨C′), C is a reason for l′ to be in Pl′.

Case 2. dec≥ 1. Let l be the decision literal in M that starts the decision level dec. Then,M
can be written as PlΔQ. By the construction of the clauseC, the complement of every literal
in C′ belongs to a decision level smaller than dec, that is, to P. It follows that P |= ¬C′.
Thus, as before, we conclude that C is a reason for l′ to be in Pl′.

Proposition 9 For any SM(ASP) theory [F,Π],

(a) every path in SML(ASP)F,Π contains only finitely many edges justified by basic tran-
sition rules,

(b) for any semi-terminal state M||Γ of SML(ASP)F,Π reachable from /0|| /0, M is a model
of [F,Π],

(c) FailState is reachable from /0|| /0 in SML(ASP)F,Π if and only if [F,Π] has no models.

Proof
Part (a) is proved as in the proof of Proposition 13↑ (Lierler 2010) (we preserve the notation
used in that work).

(b) Let M||G be a semi-terminal state reachable from /0|| /0 (that is, none of the basic rules
are applicable.) Since Decide is not applicable, M assigns all literals. Next, M is consis-
tent. Indeed, if M were inconsistent then, since Fail is not applicable, M would contain a
decision literal. Consequently,M||Γ would be a backjump state. By Lemma 13, the transi-
tion rule Backjump would be applicable in M||Γ, contradicting our assumption that M||Γ is
semi-terminal. We now proceed as in the proof of Proposition 7 (b) to show M is a model
of F and M+ is an input answer set of Π.

(c) If FailState is reachable from /0|| /0 in SML(ASP)F,Π, then there is a state M||Γ reachable
from /0|| /0 in SML(ASP)F,Π such that there is an edge between M||Γ and FailState. By the
definition of SML(ASP)F,Π, this edge is due to the transition rule Fail. Thus, M is inconsis-
tent and contains no decision literals. By Lemma 9, every model N of [F,Π] satisfies M.
Since M is inconsistent, [F,Π] has no models.
Conversely, if [F,Π] has no models, let us consider a maximal path in SML(ASP)F,Π

starting in /0|| /0 and consisting of basic transition rules. By (a), it follows that such a path
is finite and ends in a semi-terminal state. By (b), this semi-terminal must be FailState,
because [F,Π] has no models.

30 Y. Lierler and M. Truszczynski

8.4 Proofs of Results from Section 6

Proposition 10 For a total PC(ID) theory (F,Π) and a consistent and complete (over
At(F∪Π)) set M of literals, M is a model of (F,Π) if and only if M+ is an answer set of
π(F,Π).

Proof
By Proposition 6, it is enough to prove that M is a model of the SM(ASP) theory [F,Π] if
and only if M+ is an answer set of π(F,Π). By the definition of π(F,Π), M+ is an answer
set of π(F,Π) if and only if M+ is an answer set of Πo and a model of F. Since M+ is a
subset of Head(Πo) (since Head(Πo) = At(F ∪Π)), Proposition 3(a) implies that M+ is
an answer set of Πo if and only if M+ is an input answer set of Πo. It follows that M+ is
an answer set of π(F,Π) if and only if M is a model of the SM(ASP) theory [F,Πo]. The
assertion follows now from Proposition 4.

Proposition 11 For a PC(ID) theory (F,Π), we have

SML(ASP)ED-Comp(Πo)∪F,Πo = SML(ASP)ED-Comp(π(F,Π)),π(F,Π).

Proof
We recall that π(F,Π) = Fr ∪Πo. From the construction of ED-Comp, it is easy to see that

ED-Comp(Πo)∪F = ED-Comp(π(F,Π))·

Furthermore, from the definition of an unfounded set it follows that for any consistent set
M of literals and a set U of atoms, U is unfounded on M with respect to Πo if and only if
U is unfounded on M with respect to π(F,Π).

	Transition Systems for Model Generators — A Unifying Approach
	Recommended Citation

	arXiv:1105.0650v1 [cs.AI] 3 May 2011

