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Abstract—Prediction markets have been shown to be a useful
tool in forecasting the outcome of future events by aggregating
public opinion about the events’ outcome. Previous research
on prediction markets has mostly analyzed the prediction
markets by building complex analytical models. In this paper,
we posit that simpler yet powerful Boolean rules can be
used to adequately describe the operations of a prediction
market. We have used a multi-agent based prediction market
where Boolean network based rules are used to capture the
evolution of the beliefs of the market’s participants, as well as
to aggregate the prices in the market. We show that despite the
simplification of the traders’ beliefs in the prediction market
into Boolean states, the aggregated market price calculated
using our BN model is strongly correlated with the price
calculated by a commonly used aggregation strategy in existing
prediction markets called the Logarithmic Market Scoring
Rule (LMSR). We also empirically show that our Boolean
network-based prediction market can stabilize market prices
under the presence of untruthful belief revelation by the
traders.

Keywords-Prediction markets, Boolean networks, distributed
information aggregation, complex systems modeling.

I. I NTRODUCTION

A prediction market is a market-based aggregation mecha-
nism that is used to combine the opinions on the outcome of
a future, real-world event from different people and forecast
the event’s possible outcome based on their aggregated
opinion. Recently, [5], [6], [15], [19] have used multi-agent
systems to analyze the operation of prediction markets,
where the behaviors of the market’s human participants are
implemented using software agents. Most of the existing
agent-based models of prediction markets use game theoretic
[4], [6], [7], or decision theoretic [8], [17], [23] techniques
to analyze the interactions and behavior of the agents. In
this paper, we propose a form of a dynamical system, called
a Boolean Network (BN) that uses simple Boolean rules to
model the operation of a prediction market. In a BN, each
node is represented by a binary state while the network
edges represent rules that update the state of the node
that the edges are incident on. Although inherently simple,
BNs can be used to analyze essential aspects of complex
networks such as values of parameters that effect a specific
behavior and the time required to reach that behavior. It also
makes sense to use Boolean networks in the context of a
prediction market because there is a direct correspondence

between Boolean values output by the Boolean network’s
rules and the binary outcomes of events predicted by a
prediction market. The main contributions of our paper are
to develop simple Boolean rules for updating the beliefs
for each of the market’s participants and for aggregating
the participants’ belief information into a single market
price. We show that despite the simplification of the traders’
beliefs in the prediction market into Boolean states, the
aggregated market price calculated using our BN model is
strongly correlated with the price calculated by a commonly
used aggregation strategy in existing prediction markets
called the Logarithmic Market Scoring Rule (LMSR). Our
experimental results show that our BN model also eliminates
the problem of frequently fluctuating prices that are known
to be a drawback of the LMSR. We also use our BN
model to analyze the dynamics of the prediction market with
respect to different market parameters and determine the
conditions under which the market price converges. Finally,
we also model the untruthful belief revelation by the market
participants, a commonly encountered problem in prediction
markets, using the presence of noise in the Boolean rules
of our prediction market and obtain similar results as the
conventional (non-Boolean) prediction markets. And finally,
we show that the market price tends to stabilize better as
the number of trading agents increases.

II. RELATED WORK

Prediction Markets. Prediction markets have been used
in various scenarios such as predicting the outcome of geo-
political events such as U.S. presidential elections, deter-
mining the outcome of sporting events, predicting the box
office performance of Hollywood movies, etc. Companies
such as Google, Microsoft, Yahoo and Best Buy have
used prediction markets internally to collate the private
information from their workers to make predictions about
future product and business trends. The seminal work on
prediction market analysis [8], [23] has shown that the
mean belief values of individual traders about the out-
come of a future event corresponds to the event’s market
price. Since then researchers have studied prediction markets
from different perspectives. Some researchers have studied
traders’ behavior by modeling their interactions within a
game theoretic framework such as a Shapley-Shubik game



[7] or a Bayesian game [6]. Other researchers have focused
on designing rules that a market maker can use to combine
the opinions (beliefs) from different traders such as the
logarithmic market scoring rule (LMSR) [4], [19] and an
information based market maker [5], [9]. In contrast to these
approaches, our paper proposes to use simple Boolean rule
to model the operation of a prediction market.

Boolean Networks.Boolean network models [16] have
been used for modeling networks in which the node activity
can be described by two states,1 and 0. The edges of the
network affect the rules that determine the state transitions
of the nodes. BN modeling allows exploring the dynamics
of relevant nodes and predicting their future states, as well
as exploring the overall dynamics of the network. This is
especially useful for large networks like prediction markets
where analyzing the global behavior of the system and
tracking the individual nodes is computationally intensive.
The BN approach has already been used to model a variety
of real or artificial networks including among others, genetic
regulatory networks [21], strongly disordered systems that
are common in physics [16], biology [1], neural networks
[18], scale-free networks [11], and artificial life [24]. Tothe
best of our knowledge, this is the first time a BN has been
applied to model prediction markets.

III. B OOLEAN NETWORK-BASED PREDICTION MARKET

A. Prediction Market Preliminaries

The major participants in an agent-based prediction mar-
ket are the set oftrading agentsand a central entity called
the market maker agent. The outcome of an event is binary
(will happen/won’t happen) and the trading agents place
monetary bets related to this outcome. A prediction market
consists ofT trading periodsand the trading agents place
a bet at each trading periodt. The bets are in the form
of financial instruments calledsecuritiesrelated to the event
which can be traded (bought/sold/held) in discrete quantities
by the trading agents. The market maker agent aggregates
the prices at which securities of the event are traded by
the trading agents and comes up with an aggregated and
normalizedmarket pricewhich expresses the probability of
the outcome of the event. When the actual decision on the
event is made in the real world - the event happens or does
not - each trading agent gets paid for each security, the
difference between the price at which it bought the security
and $1 if the event happens, or loses the money spent in
buying securities if the event does not happen. Because of
the binary nature of the event outcomes, it makes sense to
use Boolean functions to represent the beliefs of the traders
in prediction markets [3].

B. BN-based Prediction Market
Our BN-based prediction market consists of three major

entities: trading agents, a market maker agent, and infor-
mation sources that are external to the market but provide

Figure 1. The sequence of operations done by the trading agents and the
market maker agent in one trading period in a prediction market.

information to the market’s agents. The basic operations of
our BN-based prediction market are based on the traditional
prediction market’s operations, however the trading agents’
beliefs are updated using a Boolean function and a novel
technique using the Boolean beliefs of the trading agents is
used to calculate the market price. Figure 1 shows the oper-
ation of both the conventional and the BN-based prediction
market proposed in this paper1. In our prediction market
human traders are represented by software trading agents
that buy and sell securities on behalf of the human traders.
To do this, each trading agent maintains a belief about the
outcome of the security corresponding to the event and
updates this belief at certain intervals using the aggregated
market price, past belief values and external information.In
our BN-based prediction market each trading agent uses a
variable called astateto represent this belief. Each state can
take one of two values:1 or ON, meaning that the trading
agent believes that the event will happen, or0 or OFF,
meaning that the trading agent believes the event will not
happen. Following the belief update rule in a conventional
prediction market, trading agents update the value of their
state at each trading periodt based on the current aggregated
market price, their past state, and the information signal
they receive about the event. The state update procedure
is represented as a Boolean function which is described in
the next section. After the trading agents update their state,
they calculate their expected utility using their past state and
the current market price and use this utility to determine
the optimal quantity of each security to buy or sell. The
optimal quantity to buy or sell is given by the quantity that
maximizes the expected utility of the trading agent. The
trading agents send the quantity of securities they want to
buy or sell and their current belief/state to the market maker

1For the simplicity of our discussion and without the loss of generality,
we assume there is one event in our prediction market with twopossible
outcomes - event happens/does not happen.



Operation Conventional PM BN-based PM
Belief
update

1. Trading agents calcu-
late their beliefs as a
weighted average of the
market price, their past be-
lief and the information
signal [23] with all the pa-
rameters∈ [0, 1].

1. Trading agents’ beliefs
are represented through
their Boolean states which
are updated as a threshold
function of the weighted
average of the market
price ∈ [0, 1], their past
Boolean state∈ {0, 1}
and the Bernoulli informa-
tion signal∈ {0, 1}.

2. Trading agents submit
their beliefs as a discrete
value∈ [0, 1].

2. Trading agents send
their belief (i.e. their state)
as a Boolean value∈
{0, 1}.

Aggregation
rule

3. The market maker uses
some rule such as LMSR
to aggregate the beliefs
of the traders and set the
market price [4].

3. The market maker uses
the fraction of traders that
are ON to calculate the
market price.

External
information
service

4. Most prediction mar-
kets use a continuous
probability distribution to
model the external infor-
mation signal.

4. Following [14], we use
a Boolean value for the
signal.

Table I
DIFFERENCES BETWEEN CONVENTIONALLMSR-BASED PREDICTION

MARKET AND OUR BN-BASED PREDICTION MARKET.

agent. The market maker agent updates the market price after
aggregating the beliefs received from the trading agents. The
market maker agent also calculates the cost of each trading
agent’s transaction and sends it back to each trading agent.

In the next section we describe the Boolean function
formulation of the operations by the trading agents and the
market maker agent in a prediction market. A summary com-
parison between the operations of our BN-based prediction
market and a conventional (LMSR-based) prediction market
is given in Table I.

C. Trading Agents’ Boolean Belief Update

LetN be the set of trading agents in the prediction market.
The state of a trading agentn ∈ N is determined by the three
variables defined below:

1) pr(t) - the aggregated market price at trading periodt.
In our BN-based prediction market we call the current
aggregated market price thedensity of oneswhich is
the fraction of trading agents that are in state1 at a
given trading periodt.

2) rn(t) - state of then-th trading agent at trading period
t representing its belief about the outcome of the event.

3) wn = (wn
1 , w

n
2 , w

n
3 ) - a vector of weights representing

the trust that then-th trading agent holds for the ac-
curacy of the posted market price, its own past belief,
and the new information signal it obtains, respectively,
following [10]. These trusts are represented as weights
wn

i ∈ [0, 1], such that
∑3

i=1 w
n
i = 1, for i = 1, 2, 3.

Let Bn(t) be the information signal received by then-th
trading agent at trading periodt. For simplicity and for

the purpose of illustration of this method, we assume that
Bn(t) is the value of a Bernoulli random variable with
probability qn of obtaining a1, that is positive information,
and probability1 − qn of obtaining a0, that is negative
information. The rule that generates the new state of then-
th trading agent can be written as follows and is shown as
a diagram in Figure 2:

rn(t+1) =







1 , if wn
1 · pr(t) + wn

2 · rn(t) + wn
3 ·Bn(t) > z,

∑3
i=1 w

n
i = 1, wn

i ∈ [0, 1], for i = 1, 2, 3;
0 , otherwise.

(1)

pr(t)

rn(t)

Bn(t)

new belief = weighted 
average of pr(t), rn(t) 

and Bn(t) 

rn(t+1) 
   = 0 

rn(t+1) 
   = 1 

new belief <= z

new belief > z

Agent n

Figure 2. The Boolean belief update used by agentn at trading periodt.

Here z ∈ [0, 1] represents a threshold parameter used to
convert the quantitywn

1 · pr(t) + wn
2 · rn(t) + wn

3 · Bn(t)
into a Boolean value. The rule basically says that the trading
agentrn is turned ON at trading periodt+1 if the weighted
sum of the market price, its own past state, and the external
information signal is greater than some threshold valuez

at trading periodt. Thus the trading agent rule is a linear
threshold function. The value ofz indicates the boundary
between what is considered negative or positive overall
impact of the aggregated information on each trading agent’s
belief. For simplicity, we will assume thatz is fixed for all
trading agents. Although in real prediction markets different
agents may have different ways of evaluating information
and reflecting on their past experiences, for simplicity we
assume that the trust weightswn and the Bernoulli dis-
tribution B are the same for all trading agents. Also, in
real prediction markets different trading agents may have
different thresholds or predispositions for believing that an
event will take place; therefore future work will allow for
generalizations with varying thresholds. In Section IV-A we
show how the weights,wn

1 , w
n
2 , w

n
3 , can be learned using a

neural network.

D. Mean-field Analysis for Calculating the Aggregated Mar-
ket Price by Market Maker agents

The fraction of trading agents in state1 at trading period
t give the aggregated belief of trading agents that believe the
event will happen at trading periodt. In our model this value
is represented through the density of ones which is calcu-
lated by the market maker agent. The market maker agent
uses a mean-field approach specific to statistical physics to
generate a recursive mathematical model for the density of
ones. The mean-field approach assumes a sufficiently large
number of nodes so that potential local correlations can be



ignored. This makes the computations more manageable.
Moreover, as we will point out in the numerical simulations,

Let pr(t) be the probability that a (generic) trading agent
is ON at trading periodt, and1− pr(t) the probability that
the trading agent is OFF at trading periodt. We findpr(t+1)
in terms ofpr(t), using a probabilistic approach typical for
derivations of mean-field formulae, based on the law of total
probability and the assumption of independence of inputs of
the rules governing the dynamics of the prediction market.
Since the trust weightswn and Bernoulli distributionBn(t)
is assumed to be the same for all agents, in the derivation
below we will drop the trading agent indexn.

Observe that by the rule of total probability,pr(t+ 1) =
P (r(t + 1) = 1) = P (r(t + 1) = 1|r(t) = 0)(1 − pr(t)) +
P (r(t + 1) = 1|r(t) = 1)pr(t), whereP (A) is used to
denote the probability of an eventA. We note that

P (r(t+ 1) = 1|r(t) = 0) = P (w1pr(t) + w3B > z) = (2)

= P

(

B >
z−w1pr(t)

w3

)

and similarly

P (r(t+ 1) = 1|r(t) = 1) = P (w1pr(t) + w2 +w3B > z) =
(3)

= P

(

B >
z−w1pr(t)−w2

w3

)

.

Putting equations (2) and (3), we get:

pr(t+ 1) = P

(

B >
z − w1pr(t)

w3

)

(1− pr(t))+ (4)

+P

(

B >
z−w1pr(t)−w2

w3

)

pr(t).

To simplify the notation, denoteFB(b) = P (B > b), the
complementary cumulative distribution function associated
to the random variableB. Then the formula forpr(t + 1)
becomes

pr(t+ 1) = FB

(

z − w1pr(t)

w3

)

(1− pr(t))+ (5)

+FB

(

z−w1pr(t)−w2

w3

)

pr(t).

Observe that this formula can be used with both discrete
and continuous distributions for the external information.
However, in the numerical investigations we will focus on
the Bernoulli random variable. For the Bernoulli case, we
can actually compute the values ofFB according to the
relative positions ofz−w1pr(t)−w2

w3

<
z−w1pr(t)

w3

with respect
to the two possible values ofB, namely0 and 1. Recall
that q is the probability thatB is 1. By a straightforward
computation we obtain:

pr(t+1) =















































1, if pr(t) >
z

w1

q(1− pr(t)) + pr(t), if
max{ z−w2

w1
,
z−w3

w1
} < pr(t) ≤

z

w1{

pr(t), if z−w2

w1
< pr(t) ≤

z−w3

w1

q, if z−w3

w1

< pr(t) ≤
z−w2

w1

qpr(t), if z−w2−w3

w1

< pr(t) ≤ min{ z−w2

w1

, z−w3

w1

}

0 , if pr(t) ≤
z−w2−w3

w1
.

(6)
The mathematical model for the density of ones not only

represents the aggregated market price but can also be used
to analyze the dynamics of the prediction market. Observe

that the function (6) represents amap (that is a function
whose domain and codomain are the same) on[0, 1] whose
fixed pointscan be computed. Let us denote it byf(p). A
point p ∈ S is a fixed point of the mapf if f(p) = p. It
is known from chaos theory that the fixed points of a map
drive the dynamics of the map. More precisely, if sayp is
a fixed point off , then if |f ′(p)| < 1, the fixed pointp
attracts all other points close enough top. More precisely,
if x is a point close top, then fn(x) → p as n → ∞,
wherefn(x) is then-th iterate off at the pointx. The set
{x, f(x), f2(x), ..., fn(x), ...} is called the orbit ofx. On
the other hand, if|f ′(p)| > 1, the fixed pointp repels all
the orbits starting at pointsx in a neighborhood ofp.

We find the fixed points for the map given in (6) in our
BN-based prediction market by settingpr(t + 1) = pr(t).
The analysis of the stability of the fixed points of the map
(6) reveals that the fixed points0 and 1 are always stable.
On the other hand, ifw2 < w3 then there is a third stable
point q. The orbits will be attracted to one of these three
fixed points, depending on the parameters. Ifw2 > w3, we
may also end up with the case where all points in[0, 1] are
fixed points, which means that all states are frozen from the
very beginning, so the system is unstable. This can happen
if z−w2

w1

< 0 and z−w3

w1

> 1 which meansw1 + w3 < z <

w2. Higher order iterations of the map (6) do not reveal
more complexity. Thus, in case the external information is
modeled by a Bernoulli random variable, the behavior of
the model is non-complex and can be easily predicted. In
future research we will consider more sophisticated random
processes to account for the external information.

IV. EXPERIMENTAL RESULTS

A. Learning the trust values by trading agents

output layer

hidden layerinput layer

w
1

w*
1

w
2

w
3w*

3

w*
1

w*
2

learned weights

input weights

w*
1

w*
2

w*
2

w*
3

w*
3

pr(t)

rn(t)

Bn(t)

rn(t+1)

Figure 3. One hidden layer neural network used for learn trust weights.

To find the correct combination of weight parameters,
wn

1 , w
n
2 , w

n
3 used by then-th trading agent’s belief update

rule given in Equation 1, we use a neural network repre-
sentation. We construct a neural network with one hidden
layer, where the market price at trading periodt, pr(t), the
state of the trading agent at trading periodt, rn(t), and the
Bernoulli variable representing the information parameter,
Bn(t), are the inputs to the network. The new state of the



trading agent at trading periodt+1, rn(t+1), is the output of
the neural network. The representation of the neural network
used is shown in Figure 3. The initial input weights are set
randomly, while the learned (output) weights are learned for
different values of the parameters in our BN model, namely
z - the threshold parameter, andq - the probability that the
Bernoulli random variable is1. We use the backpropagation
technique to learn the weights in our neural network [22].
The training set used for the neural network was obtained
by simulating the prediction market for over200 different
combinations of values ofz andq parameters in our BN. For
the data generated for the training setpr(t) was calculated
as the fraction of the trading agent nodes that are equal to
1 at time t, rn(t) was set to1 if the belief that maximizes
the expected utility of the trading agent [8] was abovez

and0 otherwise, andBn(t) was set to0 or 1 based on the
value ofq. A set of learned weights was generated for each
combination ofz andq values. The learned values are used
in the numerical investigations given below.

B. Patterns and validation of the mean-field based price
aggregation mechanism

Having too few trading agents may lead to discrepancies
between the mathematical mean-field model and the actual
simulation of prediction market due to the fact that for a
mean-field approximation the prediction market has to be
large enough to ignore local correlations. In our experiments
we found that a prediction market with100 trading agents is
sufficiently large for a good match in the fraction of trading
agents that areON between the mathematical model and the
actual network. Therefore, in all of our experimental results
except those presented in Section IV-E we use100 trading
agents. Similar results were obtained with a larger number
of trading agents. We start our experimental analysis by
presentingpattern formation plotsgenerated with a Boolean
network governed by the rules presented in Section III-C.
More precisely, pattern formation plots are obtained by
arranging the nodes, representing the trading agents, in a
one-dimensional array and numbering them from left to
right. Then we choose an initial state of the prediction
market and iterate it a number of trading periods with
time evolving downwards. We plot a black dot when the
state of the trading agent is1 and a neutral dot when it
is 0. Figure 4 shows the pattern formation plots and the
corresponding aggregated market price using BN at each
trading period of the prediction market’s evolution. This
is done for four distinct parameter combinations. We can
see in Figure 4(a), that for a low value ofq = 0.3 and
a medium value ofz = 0.6 (which means that the most
weight is given to the information value), the aggregated
market price oscillates in a narrow range of values around
0.3. The corresponding pattern formation plot in Figure 4(b)
looks random but with more nodes in state0 (more neutral
dots). Figures 4(c) and (d) show similar result forq = 0.7

and z = 0.7. Here the aggregated market price does not
reach stability, but it oscillates within a narrow range of
values around0.7 and therefore its corresponding pattern
has more nodes in state1 (more black dots). The overall
higher values for the aggregated market price are due to the
fact that the probability of information signal being1 is high
(q = 0.7) and the weight corresponding to the information
signal is also high (w3 = 0.8). In Figures 4(e) and (f) the
parameters areq = 0.2 and z = 0.8. We can see that the
aggregated market price is stable around0.7 and thus the
pattern is stationary with neutral and black vertical stripes
showing that trading agents are either in state0 or in state1
throughout the prediction market’s duration. Finally, forthe
parametersq = 0.2, z = 0.2 in Figure 4(g) and (h) it takes
less than25 trading periods for the aggregated market price
to reach stability. This can be seen more clearly from the
pattern formation plot where the top of the plot shows clear
randomness, while the rest of the plot is black meaning all
of the trading agents are in state1. The aggregated market
price is able to converge here mostly because of the low
value of the threshold parameterz. Thus from these results
we can see that the aggregated market price can be used as a
predictor for future market dynamics. It can also estimate the
trading period needed to reach a certain type of long-term
behavior, e.g. convergence.
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Figure 4. (a),(c),(e),(g): Pattern Formation plots for a prediction market
starting with a random initial condition and the parametersspecified in the
associated right plots. (b),(d),(f),(h): The corresponding aggregated market
price. The parameters are set as specified in the graphs.
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Figure 5. The system (blue dots) versus the mathematical model (red
circles) for the 1st, 5th, and 20th trading periods. Note theapparent match
between them.
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Figure 6. Graphical illustration of the iterations of the aggregated market
price (density of ones map given in Equation6) (blue ‘+’) versus the main
diagonal (red line). The intersection between them yields the fixed points
of the map.

We now check that the mean-field model for the aggre-
gated market price,pr(t), derived in Equation (5) is a good
approximation for the fraction of nodes in state1 obtained
by evolving the actual BN. We do this by graphing on
the same plot bothpr(t) and the actual fraction of trading
agents in state1 for the 1st, 5th, and the20th trading
periods as shown in Figure 5. On thex-axis we plot the
initial conditions for the fraction of trading agents in state 1
({0, 1

N
, 2
N
, ..., ,

(N−1)
N

}), representing how many traders are
initially in state 1, i.e. believe that the event will happen.
We first apply the mathematical model to each of these
initial conditions, iterate them, and plot the results witha red
straight line. We then apply the prediction market evolution
for a network state corresponding to each initial fraction of
the trading agents in state1, evolve the prediction market,
and plot it with a blue ‘+’. For each given initial fraction
of ones we randomly select trading agents that are in state
1. Figure 5 shows the comparison results for two different
combinations of the parametersw, q, andz. We performed
exhaustive simulations for the possible ranges ofq, z, and
their corresponding weights learned via neural network, and
obtained similar results to those in Figure 5. We can see from
Figure 5 that the first iteration matches perfectly. Then, as
the prediction market and the mathematical model evolve
during their transient phase, the match becomes a little
less perfect due to the actual correlations that are building
up in a prediction market. These correlations are ignored
in the mean-field approach. Despite the assumption of no
correlations, in the long run the mathematical model for
pr(t) is a very good approximation of the evolution of the

aggregated market price for the actual network.
We also illustrate the behavior of our mean-field based

model for the aggregated market price using BN by gen-
erating multiple iterations of the mathematical model for
pr(t + 1) (blue line marked with ‘+’) for various values
of q and z in Figure 6. We also plot the line representing
pr(t+ 1) = pr(t) (red straight line). Note that the intersec-
tion of each iteration with the first diagonal generates the
fixed points. As we discussed in Section III-D our system
has fixed points (whenpr(t + 1) = pr(t)) at 0, 1 and q.
We find that our prediction market mainly conforms to one
of four behaviors shown in Figure 6. Figure 6(a) shows the
case when the system converges to1, while Figure 6(b)
illustrates the case when the prediction market converges to
0, and Figure 6(c) shows the existence of the fixed point at
q. Figure 6(d) shows the last case whenpr(t+ 1) = pr(t),
so the two lines overlap, meaning chaos.

C. Comparison to Conventional Prediction Markets

In this section we compare the aggregated market price
obtained using the BN-based prediction market model to
the aggregated market price obtained with a Logarithmic
Market Scoring Rule (LMSR) aggregation mechanism [4]
while using the same underlying parameters. To illustrate

0 50 100
0

0.5

1

q=0.55, z=0.85

0 50 100
0

0.5

1

q=0.85, z=0.5

0 50 100
0

1

2

q=0.55, z=0.5

0 50 100
0

0.5

1

q=0.85, z=0.15

p
(t

)

0 50 100
0

0.5

1

q=0.25, z=0.85
0 50 100

0

0.5

1

q=0.25, z=0.5

0 50 100
0

0.5

1

q=0.85, z=0.85

0 50 100
0

0.5

1

q=0.55, z=0.15

p
(t

)

0 50 100
0

0.5

1

q=0.25, z=0.15

p
(t

)

Figure 7. Comparison of the market prices set by LMSR (markedby ‘x’
- blue) and the aggregated market price using BN (marked by ‘⋄’ - red)
by trading periods. Note the similarities between the two models, as well
as the robustness of the BN model as opposed to the increased variation
of the LMSR model.

the comparison we graph both market prices on the same
plot for different values ofq and z. The x-axis represents
the number of trading periods, while they-axis is the market
price. We can see from Figure 7 that in the long run, both
the LMSR and BN models yield approximately the same
results. It is also revealed that the aggregated market price



does not fluctuate as much as the LMSR price, which is a
known and reported problem of the LMSR pricing [19]. We
also note in Table II that the correlation coefficients between
the data from the LMSR and BN models are fairly close to
1, revealing a strong correlation between them. Thus, the
BN-based model is a realistic model of prediction markets.

q z Correlation
0.25 0.15 0.7925
0.25 0.5 0.7421
0.25 0.85 0.8556
0.55 0.15 0.8827
0.55 0.5 0.7912
0.55 0.85 0.7591
0.85 0.15 0.8404
0.85 0.5 0.8295
0.85 0.85 0.8661

Table II
CORRELATIONS BETWEEN THELMSR MARKET PRICE AND THE

AGGREGATED MARKET PRICE USINGBN FROM FIGURE 7. OBSERVE

THAT THE NUMBERS ARE FAIRLY CLOSE TO1 WHICH INDICATES A

SIGNIFICANT CORRELATION BETWEEN THELMSR AND BN MODELS.

D. Robustness to noise

It is known that real networks (biological/genetic, physi-
cal, neural, chemical, social, financial etc.) are always sub-
ject to disturbances and have the ability to reach functional
diversity and aim to maintain the same state under envi-
ronmental noise. Prediction markets can also be affected by
some disturbances in the form of manipulation by the trading
agents that reveal their beliefs untruthfully. For example,
in the Tradesports 2004 presidential markets there was an
apparent manipulation effort. An anonymous trader sold
many securities corresponding to the event “George W. Bush
will win the 2004 Presidential elections” at a very low value.
This caused the market price to be driven to zero, implying
a zero percent chance of the event happening. However, this
manipulation effort failed, as the market price of the security
related to this event rebounded rapidly to its previous level
[20]. As prediction markets get more attention and become
more widely known among the public, it is likely that some
individuals or groups will be motivated to manipulate them.
Inducing disturbance in the system by changing the value of
certain nodes in the network (according to a deterministic
or stochastic rule) is a good model for an environmental
or intrinsic type of perturbation. A similar procedure has
been used for example by Bilke and Sjunnesson [2] where
one randomly chosen variable is inverted after the system
has reached a limit cycle in the Kauffman model, or by
Goodrich and Matache [12] who show that the introduction
of noise can stabilize a certain type of BN for a wide range
of parameters. We will analyze the response to disturbances
of the prediction market in this paper under a simple noise
process to assess the robustness of the BN-based model to
potential non-truthful trading agents.

We employ the following noise procedure, called the
“flip” rule : at each trading periodt we randomly select
j trading agents and flip their state before applying the
Boolean rule. This procedure has been used in [12]. Since
the number of zeros and ones changes due to the perturba-
tion, the value ofpr(t) is modified prior to the application
of the model (5). Now, ifj nodes are chosen at random,
then j · pr(t) of them are in state1 and j · (1 − pr(t))
are in state0. By the flip rule, the total number of trading
agents in state1 is decreased byj · pr(t) since they are
changed to0. On the other hand, the number is increased
by j · (1 − pr(t)) since the zeros become ones. Thus, the
proportion of trading agents in state1, that ispr(t), becomes
pr(t)

j·pr(t)
N

+ j·(1−pr(t))
N

= pr(t) +
j

N
(1− 2pr(t)). Clearly

this number is in[0, 1]. Then the formula (5) can be written
as follows:

pr(t+ 1) = (7)

FB

(

z − w1(pr(t) +
j

N
(1− 2pr(t)))

w3

)

(1−pr(t)−
j

N
(1−2pr(t)))

+FB

(

z − w1(pr(t) +
j

N
(1− 2pr(t)))−w2

w3

)

(pr(t) +
j

N
(1− 2pr(t))).
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Figure 8. Iterations of the noisy aggregated market price (blue ‘+’) with
j = 10 versus the main diagonal (red line). We used the same parameters
as in Figure 6.

Figure 8 illustrates iteration plots analog to those in
Figure 6 (for the same parameter values), but with induced
perturbations. These results show that the noise generated
by the “flip rule” can stabilize the prediction market as seen
from the Figure 8(d). In that case the prediction market was
chaotic without noise, and now it stabilizes around0.5. This
result supports the result obtained by Hanson [13], where he
showed that the manipulator in the prediction market can aid
its accuracy. For other parameter combinations, noise may
change the value of the fixed points, maintaining stability,as
can be seen in the other plots of Figure 8. The fixed points
changed from1 to 0.9 (Figure 8(a)), and from0.5 to 0.4
(Figure 8(c)). From Table III we can see that the Euclidian
distance between the aggregated market price without noise
from Figure 6 and with noise from Figure 8 is greater for



Parameters Euclidian
distance

w = (0.31, 0.32, 0.37), q = 0.36, z = 0.3, time = t+ 1 2.0661
w = (0.17, 0.27, 0.56), q = 0.7, z = 0.8, time = t+ 1 3.3728
w = (0.1, 0.05, 0.85), q = 0.5, z = 0.8, time = t+ 1 4.2224
w = (0.17, 0.61, 0.22), q = 0.3, z = 0.55, time = t+ 1 4.7510
w = (0.31, 0.32, 0.37), q = 0.36, z = 0.3, time = t+ 2 5.0965
w = (0.17, 0.27, 0.56), q = 0.7, z = 0.8, time = t+ 2 5.3222
w = (0.1, 0.05, 0.85), q = 0.5, z = 0.8, time = t+ 2 5.4979
w = (0.17, 0.61, 0.22), q = 0.3, z = 0.55, time = t+ 2 5.6092
w = (0.31, 0.32, 0.37), q = 0.36, z = 0.3, time = t+ 10 5.7047
w = (0.17, 0.27, 0.56), q = 0.7, z = 0.8, time = t+ 10 5.7094
w = (0.1, 0.05, 0.85), q = 0.5, z = 0.8, time = t+ 10 5.7178
w = (0.17, 0.61, 0.22), q = 0.3, z = 0.55, time = t+ 10 5.7290

Table III
EUCLIDIAN DISTANCE BETWEEN THE AGGREGATED MARKET PRICE

WITHOUT NOISE FROMFIGURE 6 AND THE AGGREGATED MARKET
PRICE WITH NOISE FROMFIGURE 8.

larger time periods. Also, the distance is greater when there
is a fixed point atq (Figure 6 (c)) and whenpr(t+1) = pr(t)
(Figure 6 (d)). In Figure 9 we show similar iteration plots but
for parameter combinations that yield piecewise functions.
We note that there may be multiple fixed points this time.
However, all of them are stable since the derivative at those
points is always less than1. Therefore, the stability of
the prediction market is either preserved or induced by the
introduction of noise.
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Figure 9. Iterations of the noisy aggregated market price (blue ‘+’) with
j = 5 versus the main diagonal (red line). Note that these parameter values
yield piecewise functions with the possibility of multiplefixed points that
are stable.

E. Scalability

In this section we test the scalability of our prediction
market and analyze how the changes in the number of
trading agents affect the dynamics of the prediction market.
Figure 10 shows that our mean-field based model’s accuracy
for pr(t), the aggregated market price, improves as the
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Figure 10. The system (blue dots) versus the mathematical model (red
circles) under “flip” noise procedure for50, 500, 1000, 5000 trading agents
for the 1st, 5th, and 20th trading periods. The parameters are fixed as
follows: w1 = 0.1, w2 = 0.05, w3 = 0.85, z = 0.8, q = 0.5.

number of trading agents increases. This is expected, since
a mean-field formula is valid in the limitN → ∞. Figure
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Figure 11. The aggregated market price by time steps, forN =
50, 100, 500, 1000, 5000, 10000.

11 shows the aggregated market price using a BN for
50, 100, 500, 1000, 5000, and10000 trading agents forq =
0.7, z = 0.7, w1, w2, w3 = 0.1, 0.1, 0.8. This combination of
z and q parameters yields a more dynamic behavior of the
prediction market as seen in Figure 4 (c,d), however here
we can see that as the number of trading agents increase the
aggregated market price becomes less dynamic. However,
there is not much difference in the market price dynamics
whenN = 5000 and whenN = 10000, leading us to believe
that in this case5000 trading agents are enough to lead to
an accurate prediction market.



V. CONCLUSION

In this paper, we have described a Boolean network based
prediction market and used it to calculate the aggregated
market price and analyze the behavior of the trading agent
population in response to various market parameters such
as information flow or past beliefs. We show that the BN
approach gives results similar to the LMSR model with less
fluctuations of the market price. In addition to proposing a
new method to calculate the aggregated market price using
BN and mean-field based mathematical modeling, we also
show how it can be used to analyze and predict the dynamics
of the prediction market.

In the future we plan on acquiring some reliable
real prediction market data and generating a statistical
comparison of the market prices generated by our model
and the real data. It is possible that some assumptions
may need to be adjusted to account for any type of
extra information we may be able to derive from real
data. However, the main purpose of this paper was to
show that a Boolean network approach is reasonable and
provides some advantages despite being a simpler model
than other conventional models. Also, in order to make
the model more realistic we plan to allow for variation
of weight and threshold parameters and also account for
asynchronous information transmission by the trading
agents and the market maker agent. The asynchrony can
be applied in a deterministic or stochastic way, and we
will analyze the importance of the type of asynchrony on
the dynamics of the network. We also plan on making use
of the existing, game theory-based trading strategies and
translating them into a set of Boolean rules that will govern
the dynamics of the network. We may refine the Boolean
approach to more than two possible states. Finally, we are
interested in exploring truthful revelation mechanisms that
can be used to limit untruthful bidding in prediction markets.
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