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Abstract Answer Set Solvers with Backjumping
and Learning
(long version)

YULIYA LIERLER

Department of Computer Science

University of Texas at Austin

1 University Station C0500

Taylor Hall 2.124

Austin, USA

E-mail: yuliya@cs.utexas.edu

Abstract

Nieuwenhuis, Oliveras, and Tinelli (2006) showed how to describe enhancements of the
Davis-Putnam-Logemann-Loveland algorithm using transition systems, instead of pseu-
docode. We design a similar framework for several algorithms that generate answer sets
for logic programs: smodels, smodelscc , asp-sat with Learning (cmodels), and a newly
designed and implemented algorithm sup. This approach to describing answer set solvers
makes it easier to prove their correctness, to compare them, and to design new systems.

KEYWORDS: answer set programming, inference, learning

1 Introduction

Answer Set Programming (ASP) is a methodology commonly used for solving com-

binatorial search problems (Lifschitz 2008). In the development of ASP solvers,

computational ideas behind SAT solvers (Gomes et al. 2008) play an important

role. Influence of SAT solvers development on ASP systems is twofold. On the one

hand, such ASP solvers as assat1 and cmodels
2 follow the so called SAT-based

approach where a SAT solver is invoked for search, possibly multiple times. On

the other hand, “native” ASP solvers that implement search procedures specifically

suited for logic programs often adopt computational techniques from SAT solvers.

For instance, dlv3 implements backjumping (Ricca et al. 2006), and smodelscc
4 (Ward and Schlipf 2004)

extends the answer set solver smodels
5 by introducing restarts, conflict-driven

1 http://assat.cs.ust.hk/ .
2 http://www.cs.utexas.edu/users/tag/cmodels .
3 http://www.dbai.tuwien.ac.at/proj/dlv/ .
4 http://www.nku.edu/∼wardj1/Research/smodels cc.html .
5 http://www.tcs.hut.fi/Software/smodels/ .
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backjumping, learning, and forgetting – techniques widely used in SAT solvers.

The ASP solver sup6 (Lierler 2008) implements these features also.

In this paper our main goal is to show how the “abstract” approach to describ-

ing SAT solvers proposed in (Nieuwenhuis et al. 2006) can be extended to ASP

solvers that use these sophisticated features. Usually computation procedures are

described in terms of pseudocode. In (Nieuwenhuis et al. 2006), the authors pro-

posed an alternative approach to describing dpll-like procedures. They introduced

an abstract framework that captures what ”states of computation” are, and what

transitions between states are allowed. In this way, it defines a directed graph such

that every execution of the dpll procedure corresponds to a path in this graph.

Some edges may correspond to unit propagation steps, some to branching, some to

backtracking. This allows the authors to model a dpll-like algorithm by a mathe-

matically simple and elegant object, graph, rather than a collection of pseudocode

statements. In (Lierler 2008), we extended this framework for describing such ASP

algorithms as smodels, asp-sat with Backtracking, and sup without Learning. In

this paper, we expand our previous work on abstract answer set solvers to cover

such features as backjumping and learning (and also forgetting and restart). We

start by introducing an abstract framework that captures a general mechanism of

these sophisticated features in ASP solvers. For instance, this framework provides

the transition underlying the process of learning a clause, but it does not suggest

which clause shall be learned. Similarly, it provides a general description of back-

jumping but it does not supply the means for computing a “backjump clause”

necessary for an answer set solver to perform backjumping. We then enhance this

abstract framework to capture enough information about a state of computation

for deriving a backjump clause.

Usually, dpll-like procedures implement conflict-driven backjumping and learn-

ing where a particular learning schema such as, for instance, Decision or Firs-

tUIP (Mitchell 2005) is applied for computing a special kind of a backjump clause.

There are two common methods for describing a backjump clause construction.

One employs the implication graph (Marques-Silva and Sakallah 1996) and the

other employs resolution (Mitchell 2005). Ward and Schlipf (2004) extended the

notion of an implication graph to the smodels algorithm. They then defined an

algorithm for computing FirstUIP backjump clauses utilized by smodelscc to im-

plement conflict-driven backjumping and learning. In this paper we introduce the

algorithms BackjumpClause and BackjumpClauseFirstUIP based on resolution and

the enhanced abstract framework that compute Decision and FirstUIP7 backjump

clauses respectively.

In (Lierler 2008), we introduced the basic algorithm underlining the system sup

but neglected some of its features: conflict-driven backjumping, learning, forgetting,

and restarts. Here we account for these techniques and use an abstract framework

designed in this paper for describing system sup. We emphasize that the work

on this abstract framework helped us to develop ASP solver sup, to incorporate

6 http://www.cs.utexas.edu/users/tag/sup .
7 The names of the backjump clauses follow (Mitchell 2005).
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learning into its algorithm, and to prove its correctness. We analyzed performance

of sup against such answer set solvers as cmodels, smodels, smodelscc, and

clasp
8. Overall, sup performs well against these rival systems.

We start the paper with Section 2 that reviews the abstract DPLL framework

introduced in (Nieuwenhuis et al. 2006) and some logic programming concepts. In

Section 3, we define a graph representing the application of the algorithm for finding

supporting models of a logic program. This paves the way to defining a graph rep-

resenting the application of the smodels algorithm to a program in Section 4. Sec-

tion 4.2 elaborates on the relationship between previously defined abstract frame-

works. Section 5 extends the abstract DPLL framework by introducing an addi-

tional inference rule so that the generate and test algorithm of the SAT-based ASP

system cmodels may be characterized by this graph. In Section 6, we review the

abstract framework that describes DPLL enhanced by backjumping and learning.

In Section 7, we define a general abstract framework for describing ASP algorithms

that implement such phenomena as backjumping and learning. In Section 7.2 we

describe the algorithms of systems smodelscc and sup by means of this framework.

In Section 8 we extend the abstract generate and test framework to accommodate

backjumping and learning, and in Section 8.2 we use these findings to describe the

cmodels algorithm. Section 9 extends the framework to capture additional infor-

mation about a computation state of a solver, states the correctness results, and

describes how the frameworks are related to each other. Section 10 provides the

proofs for these results. In Section 10.3 and 11 we introduce the algorithms based

on the extended framework for computing a backjump clause that are important in

implementing conflict-driven backjumping and learning. In Section 12 we introduce

the concept of an extended graph for the generate and test abstract framework and

state the correctness results. Section 13 provides the proofs for these results. At last,

in Section 14 we provide the experimental analysis that compares performance of

sup with other answer set solvers.

2 Review: Abstract DPLL and Logic Programs

2.1 Abstract Classical DPLL

For a set σ of atoms, a record M relative to σ is a list of literals over σ where

(i) some literals in M are annotated by Δ that marks them as decision literals,

(ii) M contains no repetitions.

The concatenation of two such lists is denoted by juxtaposition. Frequently, we

consider a record as a set of literals, ignoring both the annotations and the or-

der between its elements. A literal l is unassigned by a record if neither l nor its

complement l belongs to it.

8 http://www.cs.uni-potsdam.de/clasp/ .
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Unit Propagate:

M =⇒ M l if

{
C ∨ l ∈ F and

C ⊆ M

Decide:

M =⇒ M lΔ if

{
M is consistent and

l is unassigned by M

Fail :

M =⇒ FailState if

{
M is inconsistent and

M contains no decision literals

Backtrack :

P lΔQ =⇒ P l if

{
P lΔQ is inconsistent, and

Q contains no decision literals

Fig. 1. The transition rules of the graph dpF .

A state relative to σ is either a distinguished state FailState or a record relative

to σ. For instance, the states relative to a singleton set {a} of atoms are

FailState, ∅, a, ¬a, aΔ, ¬aΔ, a¬a, aΔ¬a,

a¬aΔ, aΔ¬aΔ,¬aa, ¬aΔa, ¬aaΔ, ¬aΔaΔ,

where by ∅ we denote the empty list.

If C is a disjunction (conjunction) of literals then by C we understand the con-

junction (disjunction) of the complements of the literals occurring in C . We will

sometimes identify C with the multi-set of its elements.

For any CNF formula F (a finite set of clauses), we will define its DPLL graph

dpF . The nodes of dpF are the states relative to the set of atoms occurring in F .

We use the terms “state” and “node” interchangeably. Recall that a node is called

terminal in a graph if there is no edge leaving this node in the graph. If a state is

consistent and complete then it represents a truth assignment for F .

The set of edges of dpF is described by a set of “transition rules.” Each transition

rule is an expressionM =⇒ M ′ followed by a condition, whereM andM ′ are nodes

of dpF . Whenever the condition is satisfied, the graph contains an edge from nodeM

to M ′. Generally, an edge in the graph may be justified by several transition rules.

Figure 1 presents four transition rules that characterize the edges of dpF .

This graph can be used for deciding the satisfiability of a formula F simply

by constructing an arbitrary path leading from node ∅ until a terminal node M

is reached. The following proposition shows that this process always terminates,

that F is unsatisfiable if M is FailState, and that M is a model of F otherwise.

Proposition 1
For any CNF formula F ,

(a) graph dpF is finite and acyclic,
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(b) any terminal state of dpF other than FailState is a model of F ,

(c) FailState is reachable from ∅ in dpF if and only if F is unsatisfiable.

For instance, let F be the set consisting of the clauses

a ∨ b

¬a ∨ c.

Here is a path in dpF :

∅ =⇒ (Decide)

aΔ =⇒ (Unit Propagate)

aΔc =⇒ (Decide)

aΔcbΔ

(1)

The name of the transition rule after each =⇒ shows which rule justifies the presence

of this edge in the graph. Since the state aΔcbΔ is terminal, Proposition 1(b)

asserts that {a, c, b} is a model of F . Here is another path in dpF from ∅ to the

same terminal node:

∅ =⇒ (Decide)

aΔ =⇒ (Decide)

aΔ¬cΔ =⇒ (Unit Propagate)

aΔ¬cΔc =⇒ (Backtrack)

aΔc =⇒ (Decide)

aΔcbΔ

(2)

Path (1) corresponds to an execution of dpll in the sense of (Davis et al. 1962);

path (2) does not, because it applies Decide to aΔ even though Unit Propagate

could be applied in this state.

Note that the graph dpF is a modification of the classical DPLL graph defined

in (Nieuwenhuis et al. 2006, Section 2.3). It is different in three ways. First, its

states are pairs M ||F for all CNF formulas F . For the purposes of this section,

it is not necessary to include F . Second, the description of the classical DPLL

graph involves a “PureLiteral” transition rule. We dropped this rule because it

does not correspond to any of the propagation rules used in answer set solvers

whose algorithms we will model in this paper. Third, in the definition of that

graph, each M is required to be consistent. In case of DPLL, due to the simple

structure of a clause, it is possible to characterize the applicability of Backtrack in

a simple manner: when some of the clauses become inconsistent with the current

partial assignment, Backtrack is applicable. In ASP, it is not easy to describe the

applicability of Backtrack if only consistent states are taken into account. We

introduced inconsistent states in the graph dpF to facilitate our work on extending

this graph to model algorithms of answer set solvers.

In the rest of this section we give a proof of Proposition 1.

Lemma 1

For any CNF formula F and any state l1 . . . ln reachable from ∅ in dpF , every

model X of F satisfies li if it satisfies all decision literals l
Δ
j with j ≤ i .
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Proof

By induction on the path from ∅ to l1 . . . ln . The property of X that we need to

prove trivially holds in the initial state ∅, and we will prove that all transition rules

of dpF preserve it.

Take a model X of F , and consider an edge M =⇒ M ′ where M is a list l1 . . . lk
such that X satisfies li if it satisfies all decision literals l

Δ
j with j ≤ i .

It is clear that the rule justifying the transition from M to M ′ is different from

Fail . For each of the other three rules,M ′ is obtained from a prefix ofM by append-

ing a list of literals containing at most one decision literal. Due to the inductive

hypothesis, it is sufficient to show that if X satisfies all decision literals in M ′

then X satisfies all M ′.

Unit Propagate: M ′ is M l . By the inductive hypothesis, for every literal in M

the property in question holds. We need to show that X |= l . From the definition of

Unit Propagate, for some clause C ∨ l ∈ F , C ⊆ M . Consequently, M |= ¬C . From

the inductive hypothesis and the assumption that X satisfies all decision literals

inM ′ and hence inM , it follows that X |= M . Since X is a model of F , we conclude

that X |= l .

Decide: M ′ is M lΔ. Obvious.

Backtrack : M has the form P lΔQ where Q contains no decision literals. M ′

is P l . By the inductive hypothesis, it trivially follows that for every literal in P

the property in question holds. We need to show that X |= l . Assume that X |=l .

Since Q does not contain decision literals, and the assumption that X satisfies all

decision literals in M ′ and hence in P , X satisfies all decision literals in P lΔQ , that

is M . By the inductive hypothesis, it follows that X satisfies M . This is impossible

because M is inconsistent.

ıProof of Proposition 1

(a) The finiteness of dpF is obvious. For any list N of literals by |N | we denote the

length of N . Any state M other than FailState has the form M0 l
Δ
1 M1 . . . l

Δ
p Mp ,

where lΔ1 . . . lΔp are all decision literals of M ; we define α(M ) as the sequence of

nonnegative integers |M0|, |M1|, . . . , |Mp |, and α(FailState) = ∞. By the definition

of the transition rules defining the edges of dpF , if there is an edge from a state M

to M ′ in dpF then α(M ) < α(M ′), where < is understood as the lexicographical

order. It follows that if a state M ′ is reachable from M then α(M ) < α(M ′).

Consequently the graph is acyclic.

(b) Consider any terminal state M other than FailState. From the fact that Decide

is not applicable, we conclude that M has no unassigned literals. Since neither

Backtrack nor Fail is applicable,M is consistent. ConsequentlyM is an assignment.

It follows that for any clause C ∨ l ∈ F if C 	⊆ M then C ∩M 	= ∅. Furthermore,

since Unit Propagate is not applicable, we conclude that if C ⊆ M then l ∈ M .

Consequently, M |= C ∨ l . Hence M is a model of F .

(c) Left-to-right: Since FailState is reachable from ∅, there is an inconsistent stateM

without decision literals that is reachable from ∅. By Lemma 1, any model of F

satisfies M . Since M is inconsistent we conclude that F has no models.
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Right-to-left: From (a) it follows that there is a path from ∅ to some terminal

state. By (b), this state cannot be different from FailState, because F is unsatisfi-

able.

2.2 Logic Programs

We consider programs consisting of finitely many rules of the form

a ← b1, . . . , bl , not bl+1, . . . ,not bm (3)

where a is an atom or symbol ⊥, and each bi (1 ≤ i ≤ m) is an atom. We will

identify the body of (3) with the conjunction

b1 ∧ . . . ∧ bl ∧ ¬bl+1 ∧ . . .¬ ∧ bm (4)

and also with the set of its conjunctive terms. If the head a of a rule (3) is an atom

then we will identify (3) with the clause

a ∨ ¬b1 ∨ . . . ∨ ¬bl ∨ bl+1 ∨ . . . ∨ bm . (5)

If a is ⊥ then we call rule (3) a constraint and identify (3) with the clause

¬b1 ∨ . . . ∨ ¬bl ∨ bl+1 ∨ . . . ∨ bm . (6)

We will often omit the symbol ⊥ when referring to a constraint.

We will use two abbreviated forms for a rule (3): The first is

a ← B

where B stands for b1, . . . , bl , not bl+1, . . . ,not bm . The second abbreviation is

a ← D ,F (7)

where D stands for the positive part of the body b1, . . . , bl , and F stands for the

negative part of the body not bl+1, . . . ,not bm .

The reduct ΠX of a program Π with respect to a set X of atoms is obtained

from Π by

• removing each rule (7) such that F ∩ X 	= ∅, and
• replacing each remaining rule (7) by a ← D .

A set X of atoms is an answer set for a program Π if X is minimal (with respect to

set inclusion) among the sets of atoms that satisfy the reduct ΠX (Gelfond and Lifschitz 1988).

For example, let Π be the program

a ← not b

b ← not a

c ← a

d ← d .

(8)

Consider set {a, c}. Reduct Π{a,c} is

a ←

c ← a

d ← d .

(9)
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Set {a, c} satisfies the reduct and is minimal, hence {a, c} is an answer set of Π.

Consider set {a, c, d}. The reduct Π{a,c,d} is (9). Set {a, c, d} satisfies the reduct

but is not minimal and hence it is not an answer set of Π.

By Bodies(Π, a) we denote the set of the bodies of all rules of Π with head a.

For any set M of literals, by M+ we denote the set of positive literals from M . For

any consistent and complete set M of literals (that is, an assignment), if M+ is an

answer set for a program Π, then M is a model of Π. Moreover, in this case M is

a supported model of Π, in the sense that for every atom a ∈ M , M |= B for some

B ∈ Bodies(Π, a).

A set U of atoms occurring in a programΠ is said to be unfounded (Van Gelder et al. 1991)

on a consistent set M of literals w.r.t. Π if for every a ∈ U and every B ∈

Bodies(Π, a), B ∩ M 	= ∅ or U ∩ B+ 	= ∅. There is a tight relation between un-

founded sets and answer sets: For any model M of a program Π, M+ is an answer

set for Π if and only if M contains no non-empty subsets unfounded on M w.r.t. Π

(Corollary 2 from (Saccá and Zaniolo 1990)9).

For instance, let Π be program (8) and let M be a consistent set {a,¬b, c, d} of

literals. We already demonstrated that M+ = {a, c, d} is not an answer set of Π.

Accordingly, its subset {d} is unfounded on {a,¬b, c, d} w.r.t. Π, because the only

rule in Π with d in the head

d ← d

is such that U ∩ B+ = {d} ∩ {d} 	= ∅.

We say that a program Π entails a formula F when for any consistent and com-

plete set M of literals, if M+ is an answer set for Π, then M |= F . For instance,

any program Π entails each rule occurring in Π.

3 Generating Supported Models

In Section 4 we will define, for an arbitrary program Π, a graph smΠ representing

the application of the smodels algorithm to Π; the terminal nodes of smΠ are

answer sets of Π. As a step in this direction, we describe here a simpler graph

atleastΠ.

3.1 Graph atleastΠ

The terminal nodes of atleastΠ are supported models of Π. The transition rules

defining atleastΠ are closely related to procedure Atleast (Simons 2000, Sec-

tions 4.1), which is one of the core procedures of the smodels algorithm.

The nodes of atleastΠ are the states relative to the set of atoms occurring in Π.

The edges of the graph atleastΠ are described by the transition rules Decide, Fail ,

Backtrack introduced in Section 2.1 and the additional transition rules10 presented

9 The Corollary 2 from (Saccá and Zaniolo 1990) refers to ”assumption sets” rather than un-
founded sets. But as the authors noted, in the context of this corollary the two concepts are
equivalent.

10 The names of some of these rules follow (Ward 2004).
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Unit Propagate LP :

M =⇒ M a if

{
a ← B ∈ Π and

B ⊆ M

All Rules Cancelled :

M =⇒ M ¬a if B ∩M 	= ∅ for all B ∈ Bodies(Π, a)

Backchain True:

M =⇒ M l if

⎧⎪⎪⎨
⎪⎪⎩

a ← B ∈ Π,

a ∈ M ,

B ′ ∩M 	= ∅ for all B ′ ∈ Bodies(Π, a) \ {B} ,

l ∈ B

Backchain False:

M =⇒ M l if

⎧⎨
⎩

a ← l ,B ∈ Π,

¬a ∈ M or a = ⊥,

B ⊆ M

Fig. 2. The additional transition rules of the graph atleastΠ.

in Figure 2. Note that each of the rules Unit Propagate LP and Backchain False

is similar to Unit Propagate: the former corresponds to Unit Propagate on C ∨ l

where l is the head of the rule, and the latter corresponds to Unit Propagate on

C ∨ l where l is an element of the body of the rule.

This graph can be used for deciding whether program Π has a supported model

by constructing a path from ∅ to a terminal node:

Proposition 2
For any program Π,

(a) graph atleastΠ is finite and acyclic,
(b) any terminal state of atleastΠ other than FailState is a supported model

of Π,
(c) FailState is reachable from ∅ in atleastΠ if and only if Π has no supported

models.

For instance, let Π be program (8). Here is a path in atleastΠ:

∅ =⇒ (Decide)

aΔ =⇒ (Unit Propagate LP)

aΔc =⇒ (All Rules Cancelled)

aΔc¬b =⇒ (Decide)

aΔc¬bdΔ

(10)

Since the state aΔc¬bdΔ is terminal, Proposition 2(b) asserts that {a, c,¬b, d} is

a supported model of Π.

The assertion of Proposition 2 will remain true if we drop the transition rules

Backchain True and Backchain False from the definition of atleastΠ.

In the rest of this section we give a proof of Proposition 2.
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Lemma 2

For any program Π and any state l1 . . . ln reachable from ∅ in atleastΠ, every

supported model X for Π satisfies li if it satisfies all decision literals l
Δ
j with j ≤ i .

Proof

By induction on the path from ∅ to l1 . . . ln . Similar to the proof of Lemma 1. We

will show that the property in question is preserved when the transition from M

to M ′ is justified by any of the four new rules.

Take a supported model X for Π, and consider an edge M =⇒ M ′ where M is a

list l1 . . . lk such that X satisfies li if it satisfies all decision literals l
Δ
j with j ≤ i .

Assume that X satisfies all decision literals in M ′.

Unit Propagate LP :M ′ isM a. By the inductive hypothesis, for every literal inM

the property in question holds. We need to show that X |= a. By the definition of

Unit Propagate LP , B ⊆ M for some rule a ← B . Consequently, M |= B . From the

inductive hypothesis and the assumption that X satisfies all decision literals in M ′

and hence in M , it follows that X |= M . Since X is a model of Π we conclude

that X |= a.

All Rules Cancelled : M ′ is M ¬a and B ∩ M 	= ∅ for every B ∈ Bodies(Π, a).

Consequently, M |= ¬B for every B ∈ Bodies(Π, a). By the inductive hypothesis,

for every literal inM the property in question holds. We need to show that X |= ¬a.

By contradiction. Assume that X |= a. From the inductive hypothesis and the

assumption that X satisfies all decision literals in M ′ and hence in M , it follows

that X |= M . Since M |= ¬B for every B ∈ Bodies(Π, a), it follows that X |= ¬B .

We conclude that X is not a supported model of Π.

Backchain True: M ′ is M l . By the inductive hypothesis, for every literal in M

the property in question holds. We need to show that X |= l . By contradiction.

Assume X |= l . Consider the rule a ← B corresponding to this application of

Backchain True. Since l ∈ B , X |= ¬B . By the definition of Backchain True,

B ′ ∩M 	= ∅ for every B ′ in Bodies(Π, a) \B . Consequently, M |= ¬B ′ for every B ′

in Bodies(Π, a) \ B . From the inductive hypothesis and the assumption that X

satisfies all decision literals in M ′ and hence in M , it follows that X |= M . We

conclude that X |= ¬B ′ for every B ′ in Bodies(Π, a)\B . Hence X is not supported

by Π.

Backchain False:M ′ isM l . By the inductive hypothesis, for every literal inM the

property in question holds. We need to show that X |= l . By contradiction. Assume

that X |= l . By the definition of Backchain False there exists a rule a ← l ,B in Π

such that ¬a ∈ M and B ⊆ M . Consequently, M |= ¬a and M |= B . From the

inductive hypothesis and the assumption that X satisfies all decision literals in M ′

and hence in M , it follows that X |= M . We conclude that X |= ¬a and X |= B .

From the fact that X |= l , it follows that X does not satisfy the rule a ← l ,B , so

that it is not a model of Π.

ıProof of Proposition 2

Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 2.

(b) Let M be a terminal state so that none of the rules are applicable. From the
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fact that Decide is not applicable, we conclude that M assigns all literals. Since

neither Backtrack nor Fail is applicable, M is consistent. Consequently, M is an

assignment. Since Unit Propagate LP is not applicable, it follows that for every

rule a ← B ∈ Π, if B ⊆ M then a ∈ M . Consequently, if M |= B then M |= a.

We conclude that M is a model of Π. We will now show that M is a supported

model of Π. By contradiction. Suppose that M is not a supported model. Then,

there is an atom a ∈ M such that M 	|= B for every B ∈ Bodies(Π, a). Since M

is consistent, B ∩ M 	= ∅ for every B ∈ Bodies(Π, a). Consequently, All Rules

Cancelled is applicable. This contradicts the assumption that M is terminal.

The fact that the assertion of Proposition 2 remains true if we drop the transition

rules Backchain True and Backchain False from the definition of atleastΠ follows

from the proof of Proposition 2 (b) that does not refer to those rules.

3.2 Relation between dpF and atleastΠ

It is well known that the supported models of a program can be characterized as

models of program’s completion in the sense of (Clark 1978). It turns out that the

graph atleastΠ is identical to the graph dpF , where F is the (clausified) comple-

tion of Π. To make this claim precise, we first review the notion of completion.

For any program Π, its completion consists of Π and the formulas that can be

written as

¬a ∨
∨

B∈Bodies(Π,a)

B (11)

for every atom a in Π. ıCNF − Comp(Π) is the completion converted to CNF us-

ing straightforward equivalent transformations. In other words, ıCNF − Comp(Π)

consists of clauses of two kinds:

1. the rules a ← B of the program written as clauses

a ∨ B , (12)

2. formulas (11) converted to CNF using the distributivity of disjunction over

conjunction11.

Proposition 3

For any program Π, the graphs atleastΠ and dpCNF-Comp(Π) are equal.

For instance, let Π be the program

a ← b, not c

b.
(13)

Its completion is

(a ↔ b ∧ ¬c) ∧ b ∧ ¬c, (14)

11 It is essential that repetitions are not removed in the process of clausification. For instance,
ıCNF − Comp(a ← not a) is the formula (a ∨ a) ∧ (¬a ∨ ¬a).
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and ıCNF − Comp(Π) is

(a ∨ ¬b ∨ c) ∧ (¬a ∨ b) ∧ (¬a ∨ ¬c) ∧ b ∧ ¬c. (15)

Proposition 3 asserts that atleastΠ coincides with dpCNF-Comp(Π).

From Proposition 3, it follows that applying the Atleast algorithm to a program

essentially amounts to applying dpll to its completion.

In the rest of this section we give a proof of Proposition 3.

It is easy to see that the states of the graphs atleastΠ and dpCNF-Comp(Π)

coincide. We will now show that the edges of atleastΠ and dpCNF-Comp(Π) coincide

also.

It is clear that there is an edge M =⇒ M ′ in atleastΠ justified by the rule

Decide if and only if there is an edge M =⇒ M ′ in dpCNF-Comp(Π) justified by

Decide. The same holds for the transition rules Fail and Backtrack .

We will now show that if there is an edge from a state M to a state M ′ in the

graph dpCNF-Comp(Π) justified by the transition rule Unit Propagate then there is

an edge from M to M ′ in atleastΠ. Consider a clause C ∨ l ∈ ıCNF − Comp(Π)

such that C ⊆ M . We will consider two cases, depending on whether C ∨ l comes

from (12) or from the CNF of (11).

Case 1. C ∨ l is a ∨ B corresponding to a rule a ← B .

Case 1.1. l is a. Then there is an edge from M to M ′ in atleastΠ justified by

the transition rule Unit Propagate LP .

Case 1.2. l is an element of B . Then B has the form l ,D and C is a ∨D . From

C ⊆ M we conclude that D ⊆ M and ¬a ∈ M . There is an edge from M to M ′ in

the graph atleastΠ justified by the following instance of Backchain False:

M =⇒ M l if

⎧⎨
⎩

a ← l ,D ∈ Π,

¬a ∈ M ,

D ⊆ M .

Case 2. C ∨ l has the form ¬a ∨D , where D is one of the clauses of the CNF of∨
B∈Bodies(Π,a)

B .

Then D has the form ∨
B∈Bodies(Π,a)

f (B)

where f is a function that maps every B ∈ Bodies(Π, a) to an element of B .

Case 2.1. l is ¬a. Then C is D , so that D ⊆ M . Consequently f (B) ∈ B ∩ D ⊆

B ∩M , so that B ∩M 	= ∅ for every B ∈ Bodies(Π, a). There is an edge from M

to M ′ in atleastΠ justified by All Rules Cancelled .

Case 2.2. l is an element of D . From the construction of D , it follows that l =

f (B) ∈ B for some rule a ← B . Then C is

¬a ∨
∨

B ′∈Bodies(Π,a)\B

f (B ′).

From C ⊆ M we conclude that a ∈ M and that f (B ′) ∈ M for every B ′ ∈
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Bodies(Π, a)\B . Since f (B ′) is a conjunctive term of B ′, it follows that B ′∩M 	= ∅.

Then there is an edge from M to M ′ in atleastΠ justified by Backchain True.

We will now show that if there is an edge from a state M to a state M ′ in

the graph atleastΠ justified by one of the transition rules Unit Propagate LP ,

All Rules Cancelled , Backchain True, and Backchain False then there is an edge

from M to M ′ in dpCNF-Comp(Π).

Case 1. The edge is justified byUnit Propagate LP . Then there is a rule a ← B ∈ Π

where B ⊆ M , and M ′ is M a. By the construction of ıCNF − Comp(Π), a ∨ B ∈

ıCNF − Comp(Π). There is an edge from M to M ′ in dpCNF-Comp(Π) justified by

the following instance of Unit Propagate:

M =⇒ M a if

{
B ∨ a ∈ ıCNF − Comp(Π) and

B ⊆ M .

Case 2. The edge is justified by All Rules Cancelled . By the definition of All

Rules Cancelled , there is an atom a such that for all B ∈ Bodies(Π, a), B ∩M 	= ∅;

and M ′ is M ¬a. Consequently, M contains the complement of some literal in B .

Denote one of such literals by f (B), so that f (B) ∈ M . From the construction of

ıCNF − Comp(Π),

¬a ∨
∨

B∈Bodies(Π,a)

f (B)

belongs to ıCNF − Comp(Π). By the choice of f ,∨
B∈Bodies(Π,a)

f (B) ⊆ M .

There is an edge fromM toM ′ in dpCNF-Comp(Π) justified by the following instance

of Unit Propagate:

M =⇒ M ¬a if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∨
B∈Bodies(Π,a)

f (B) ∨ ¬a ∈ ıCNF − Comp(Π),

∨
B∈Bodies(Π,a)

f (B) ⊆ M .

Case 3. The edge is justified by Backchain True. By the definition of Backchain

True, there is a rule a ← B ∈ Π and a literal l ∈ B such that a ∈ M ; for all

B ′ ∈ Bodies(Π, a) \ B , B ′ ∩M 	= ∅; and M ′ is M l . Let f (B ′) be an element of B ′

such that f (B ′) ∈ M . From the construction of ıCNF − Comp(Π),

¬a ∨ l ∨
∨

B ′∈Bodies(Π,a)\B

f (B ′)

belongs to ıCNF − Comp(Π). By the choice of f ,∨
B ′∈Bodies(Π,a)\B

f (B ′) ⊆ M .

There is an edge fromM toM ′ in dpCNF-Comp(Π) justified by the following instance
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of Unit Propagate:

M =⇒ M l if

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

¬a ∨ l ∨
∨

B ′∈Bodies(Π,a)\B

f (B ′) ∈ ıCNF − Comp(Π),

(¬a ∨
∨

B ′∈Bodies(Π,a)\B

f (B ′)) ⊆ M .

Case 4. The edge is justified by Backchain False. By the definition of Backchain

False, there is a rule a ← l ,B ∈ Π such that ¬a ∈ M , B ⊆ M , and M ′ is M l .

By the construction of ıCNF − Comp(Π), a ∨ B ∨ l ∈ ıCNF − Comp(Π). There

is an edge from M to M ′ in dpCNF-Comp(Π) justified by the following instance of

Unit Propagate:

M =⇒ M l if

{
a ∨ B ∨ l ∈ ıCNF − Comp(Π) and

a ∨ B ⊆ M .

4 Answer Set Solver Smodels

4.1 Abstract Smodels

We now describe the graph smΠ that represents the application of the smodels

algorithm to program Π. smΠ is a graph whose nodes are the same as the nodes

of the graph atleastΠ. The edges of smΠ are described by the transition rules of

atleastΠ and the additional transition rule:

Unfounded :

M =⇒ M ¬a if

{
M is consistent, and

a ∈ U for a set U unfounded on M w.r.t. Π.

This transition rule of smΠ is closely related to procedure Atmost (Simons 2000,

Sections 4.2), which together with the procedure Atleast forms the core of the

smodels algorithm.

The graph smΠ can be used for deciding whether program Π has an answer set

by constructing a path from ∅ to a terminal node:

Proposition 4

For any program Π,

(a) graph smΠ is finite and acyclic,

(b) for any terminal state M of smΠ other than FailState, M+ is an answer set

of Π,

(c) FailState is reachable from ∅ in smΠ if and only if Π has no answer sets.

To illustrate the difference between smΠ and atleastΠ, assume again that Π is

program (8). Path (10) in the graph atleastΠ is also a path in smΠ. But state

aΔc¬bdΔ, which is terminal in atleastΠ, is not terminal in smΠ. This is not
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surprising, since {a, c,¬b, d}+ = {a, c, d} is not an answer set of Π. To get to a

state that is terminal in smΠ, we need two more steps:

...

aΔc¬bdΔ =⇒ (Unfounded, U = {d})

aΔc¬bdΔ¬d =⇒ (Backtrack)

aΔc¬b¬d

(16)

Proposition 4(b) asserts that {a, c} is an answer set of Π.

The assertion of Proposition 4 will remain true if we drop the transition rules All

Rules Cancelled , Backchain True, and Backchain False from the definition of smΠ.

In the rest of this section we give a proof of Proposition 4.

We say that a model M of a program Π is unfounded-free if no non-empty subset

of M is an unfounded set on M w.r.t. Π.

Lemma 3 (Corollary 2 from (Saccá and Zaniolo 1990))

For any model M of a program Π, M+ is an answer set for Π if and only if M is

unfounded-free.

Lemma 4

For any unfounded set U on a consistent set M of literals w.r.t. a program Π, and

any assignment X , if X |= M and X ∩U 	= ∅, then X+ is not an answer set for Π.

Proof

Assume that X+ is an answer set for Π. Then X is a model of Π. By Lemma 3,

it follows that X is unfounded-free. Hence any non-empty subset of X including

X ∩ U is not unfounded on X . This means that for some rule a ← B in Π such

that a ∈ X ∩ U , B ∩ X = ∅ and X ∩ U ∩ B+ = ∅. From X |= M (M ⊆ X ) and

B ∩X = ∅ we conclude that B ∩M = ∅. Since B ∩X = ∅ and X is an assignment,

B ⊆ X . It follows that B+ ⊆ X . Consequently U ∩ B+ = X ∩ U ∩ B+ = ∅. This

contradicts the assumption that U is an unfounded set on M .

Lemma 5

For any program Π, any state l1 . . . ln reachable from ∅ in smΠ, and any assign-

ment X , if X+ is an answer set for Π then X satisfies li if it satisfies all decision

literals lΔj with j ≤ i .

Proof

By induction on the path from ∅ to l1 . . . ln . Recall that for any assignment X , if X+

is an answer set for Π, then X is a supported model of Π, and that the transition

system smΠ extends atleastΠ only by the transition rule Unfounded . Given our

proof of Lemma 2, we only need to demonstrate that application of Unfounded

preserves the property.

Consider a transition M =⇒ M ′ justified by Unfounded , where M is a sequence

l1 . . . lk . M
′ is M ¬a, such that a ∈ U , where U is an unfounded set on M w.r.t Π.

Take any assignment X such that X+ is an answer set for Π and X satisfies all
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decision literals lΔj with j ≤ k . By the inductive hypothesis, X |= M . Then X |= ¬a.

Indeed, otherwise a would be a common element of X and U , and X ∩ U would

be non-empty, which contradicts Lemma 4.

ıProof of Proposition 4

Parts (a) and (c) are proved as in the proof of Proposition 1, using Lemma 5.

(b) As in the proof of Proposition 2(b) we conclude thatM is a model of Π. Assume

that M+ is not an answer set. Then, by Lemma 3, there is a non-empty unfounded

set U on M w.r.t. Π such that U ⊆ M . It follows that Unfounded is applicable

(with an arbitrary a ∈ U ). This contradicts the assumption that M is terminal.

The fact that the assertion of Proposition 4 remains true if we drop the transition

rules All Rules Cancelled , Backchain True, and Backchain False from the definition

of smΠ follows from the proof of Proposition 4 (b) that does not refer to those rules.

4.2 Smodels Algorithm

We can view a path in the graph smΠ as a description of a process of search

for an answer set for a program Π by applying inference rules. Therefore, we can

characterize the algorithm of an answer set solver that utilizes the inference rules of

smΠ by describing a strategy for choosing a path in smΠ. A strategy can be based,

in particular, on assigning priorities to some or all inference rules of smΠ, so that

a solver will never apply a transition rule in a state if a rule with higher priority is

applicable to the same state.

We use this method to describe the smodels algorithm. System smodels assigns

priorities to the inference rules of smΠ as follows:

Backtrack,Fail�

Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False�

Unfounded�

Decide.

For example, let Π be program (8). The smodels algorithm may follow a path

∅ =⇒ (Decide)

aΔ =⇒ (Unit Propagate LP)

aΔc =⇒ (All Rules Cancelled)

aΔc¬b =⇒ (Unfounded)

aΔc¬b¬d

in the graph smΠ, whereas it may never follow path (10), because Unfounded has

a higher priority than Decide.

4.3 Tight Programs

We will now review the definitions of a positive dependency graph and a tight

program. The positive dependency graph of a program Π is the directed graph G

such that
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• the nodes of G are the atoms occurring in Π, and

• G contains the edges from a to bi (1 ≤ i ≤ l) for each rule

a ← b1, . . . , bl , not bl+1, . . . ,not bm

in Π where a is an atom.

A program is tight if its positive dependency graph is acyclic. For instance, pro-

gram (8) is not tight since its positive dependency graph has a cycle due to the rule

d ← d . On the other hand, the program constructed from (8) by removing this rule

is tight.

Recall that for any program Π and any assignmentM , ifM+ is an answer set of Π

then M is a supported model of Π. For the case of tight programs, the converse

holds also: M+ is an answer set for Π if and only if M is a supported model

of Π (Fages 1994) or, in other words, is a model of the completion of Π.

It turns out that for tight programs the graph smΠ is “almost identical” to the

graph dpF , where F is the clausified completion of Π. To make this claim precise,

we need the following terminology.

We say that an edge M =⇒ M ′ in the graph smΠ is singular if

• the only transition rule justifying this edge is Unfounded , and
• some edge M =⇒ M ′′ can be justified by a transition rule other than Un-

founded or Decide.

For instance, let Π be the program

a ← b

b ← c.

The edge

aΔbΔ¬cΔ =⇒ (Unfounded, U = {a, b})

aΔbΔ¬cΔ¬a

in the graph smΠ is singular, because the edge

aΔbΔ¬cΔ =⇒ (All Rules Cancelled)

aΔbΔ¬cΔ¬b

belongs to smΠ also.

With respect to the actual smodels algorithm (Simons 2000), singular edges of

the graph smΠ are inessential: in view of priorities for choosing a path in smΠ de-

scribed in Section 4.2 smodels never follows a singular edge. Indeed, the transition

rule Unfounded has the lower priority than any other transition rule but Decide.

By sm
−
Π we denote the graph obtained from smΠ by removing all singular edges.

Proposition 5

For any tight program Π, the graph sm
−
Π is equal to each of the graphs atleastΠ

and dpCNF-Comp(Π).

For instance, let Π be the program (13). This program is tight, its completion is (14),

and ıCNF − Comp(Π) is formula (15). Proposition 5 asserts that, sm−
Π coincides

with dpCNF-Comp(Π) and with atleastΠ.
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From Proposition 5, it follows that applying the smodels algorithm to a tight

program essentially amounts to applying dpll to its completion. A similar relation-

ship, in terms of pseudocode representations of smodels and dpll, is established

in (Giunchiglia and Maratea 2005).

In the rest of this section we give a proof of Proposition 5.

Lemma 6

For any tight program Π and any non-empty unfounded set U on a consistent set

M of literals w.r.t. Π there is an atom a ∈ U such that for every B ∈ Bodies(Π, a),

B ∩M 	= ∅.

Proof

By contradiction. Assume that, for every a ∈ U there exists B ∈ Bodies(Π, a) such

that B ∩M = ∅. By the definition of an unfounded set it follows that for every atom

a ∈ U there is B ∈ Bodies(Π, a) such that U ∩B+ 	= ∅. Consequently the subgraph

of the positive dependency graph of Π induced by U has no terminal nodes. Then,

the program Π is not tight.

ıProof of Proposition 5

In view of Proposition 3, it is sufficient to prove that sm
−
Π equals atleastΠ; or,

in other words, that every edge of smΠ justified by the rule Unfounded only is

singular. Consider such an edge M =⇒ M ′. We need to show that some transi-

tion rule other than Unfounded or Decide is applicable to M . By the definition of

Unfounded , M is consistent and there exists a non-empty set U unfounded on M

w.r.t. Π. By Lemma 6, it follows that there is an atom a ∈ U such that for every

B ∈ Bodies(Π, a), B ∩M 	= ∅. Therefore, the transition rule All Rules Cancelled is

applicable to M .

5 Generate and Test

In this section, we present a modification of the graph dpF (Section 2.1) that

includes testing “partial” assignments of F found by dpll.

Let F be a CNF formula, and let G be a formula formed from atoms occur-

ring in F . The terminal nodes of the graph gtF ,G defined below are models of

formula F ∧G.

This modification of the graph dpF is of interest, for example, in connection

with the fact that answer sets of a program Π can be characterized as models of

its completion extended by so called loop formulas of Π (Lin and Zhao 2002). If

ıCNF − Comp(Π), as above, is the completion converted to CNF, and LF (Π) is

the conjunction of all loop formulas of Π, then for any assignment M , M+ is an

answer set of Π iff M is a model of ıCNF − Comp(Π)∧LF (Π). Hence, the terminal

nodes of the graph gtCNF-Comp(Π),LF(Π) will correspond to answer sets of Π.

The nodes of the graph gtF ,G are the same as the nodes of the graph dpF . The

edges of gtF ,G are described by the transition rules of dpF and the additional
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transition rule:

Test :

M =⇒ M l if

⎧⎨
⎩

M is consistent,

G |= M ,

l ∈ M

It is easy to see that the graph dpF is a subgraph of gtF ,G . The latter graph

can be used for deciding whether a formula F ∧ G has a model by constructing a

path from ∅ to a terminal node:

Proposition 6
For any CNF formula F and a formula G formed from atoms occurring in F ,

(a) graph gtF ,G is finite and acyclic,
(b) any terminal state of gtF ,G other than FailState is a model of F ∧G,
(c) FailState is reachable from ∅ in gtF ,G if and only if F ∧G is unsatisfiable.

Note that to verify the applicability of the new transition rule Test we need a pro-

cedure for testing whether G entails a clause, but there is no need to explicitly write

out G. This is important because LF (Π) can be very long (Lin and Zhao 2002).

For instance, let Π be the nontight program

d ← d .

Its completion is

d ↔ d ,

and ıCNF − Comp(Π) is

(d ∨ ¬d).

This program has one loop formula

d → ⊥.

Proposition 6 asserts that a terminal state ¬d of gtCNF-Comp(Π),d→⊥ is a model of

ıCNF − Comp(Π)∧LF (Π). It follows that {¬d}+ = ∅ is an answer set of Π. To com-

pare with the graph dpCNF-Comp(Π): state d is a terminal state in dpCNF-Comp(Π)

whereas d is not a terminal state in gtCNF-Comp(Π),d→⊥ because the transition rule

Test is applicable to this state.

asp-sat with Backtracking (Giunchiglia et al. 2006) is a procedure that com-

putes models of the completion of the given program using dpll, and tests them

until an answer set is found. The application of this procedure to a program Π

can be viewed as constructing a path from ∅ to a terminal node in the graph

gtCNF-Comp(Π),LF(Π) by adopting a strategy that Test is applied to a state M only

when M is an assignment.

In the rest of this section we give a proof of Proposition 6.

Lemma 7
For any CNF formula F , a formula G formed from atoms occurring in F , and a

path from ∅ to a state l1 . . . ln in gtF ,G , any model X of F ∧ G satisfies li if it

satisfies all decision literals lΔj with j ≤ i .
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Proof

By induction on the path from ∅ to l1 . . . ln . Similar to the proof of Lemma 1. We

will show that the property in question is preserved by the transition rule Test .

Take a model X of F ∧ G and consider an edge M =⇒ M ′ where M is a list

l1 . . . lk such that X satisfies li if it satisfies all decision literals l
Δ
j with j ≤ i .

Assume that X satisfies all decision literals fromM . By the inductive hypothesis,

X |= M . We will show that the rule justifying the transition from M to M ′ is

different from Test . By contradiction.M ′ is M l . By the definition of Test , G |= M .

Since X is a model of F ∧G it follows that X |= M . This contradicts the fact that

X |= M .

ıProof of Proposition 6

Part (a) and part (c) Right-to-left are proved as in the proof of Proposition 1.

(b) Let M be any terminal state other than FailState. As in the proof of Proposi-

tion 1(b) it follows thatM is a model of F . The transition rule Test is not applicable.

Hence G 	|= M . In other words M is a model of G. We conclude that M is a model

of F ∧G

(c) Left-to-right: Since FailState is reachable from ∅, there is a state M without

decision literals such that M is reachable from ∅ and the transition rule Fail is

applicable in M . Then, M is inconsistent. By Lemma 7, any model of F ∧ G

satisfies M . Since M is inconsistent we conclude F ∧G is unsatisfiable.

6 Review: Abstract DPLL with Learning

Most modern SAT solvers implement such sophisticated techniques as backjumping

and learning:

Backjumping: Chronological Backtracking (used in classical dpll) can be

seen as a prototype of Backjumping. Unlike Backtracking that undoes only the

previously made decision, Backjumping is generally able to backtrack further

in the search tree by undoing several decisions at once.

Learning: Most modern SAT solvers implement so called conflict-driven

backjumping and learning: whenever backjumping is performed they add

(learn) a “backjump clause” to the clause database of a solver. Learning back-

jump clauses prevents a solver from reaching “similar“ inconsistent states.

In this section we will extend the graph dpF to capture the ideas behind back-

jumping and learning. The new graph will be closely related to the DPLL System

with Learning graph introduced in (Nieuwenhuis et al. 2006, Section 2.4).

We first note that the graph dpF is not adequate to capture such technique as

learning since it is incapable to reflect a change in a state of computation related

to newly learned clauses. We start by redefining a state so that it incorporates

information about changes performed on a clause database.

For a CNF formula F , an augmented state relative to F is either a distinguished

state FailState or a pair M ||Γ where M is a record relative to the set of atoms

occurring in F , and Γ is a (multi-)set of clauses over atoms of F that are entailed

by F .
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Unit Propagate λ:

M ||Γ =⇒ M l ||Γ if

{
C ∨ l ∈ F ∪ Γ and

C ⊆ M

Backjump:

P lΔQ ||Γ =⇒ P l ′||Γ if

{
P lΔQ is inconsistent and

F |= l ′ ∨ P

Learn:

M ||Γ =⇒ M ||C , Γ if

{
every atom in C occurs in F and

F |= C

Fig. 3. The additional transition rules of the graph dplF .

We now define a graph dplF for any CNF formula F . Its nodes are the augmented

states relative to F . The transition rules Decide and Fail of dpF are extended to

dplF as follows: M ||Γ =⇒ M ′||Γ (M ||Γ =⇒ FailState) is an edge in dplF justified

by Decide (Fail) if and only if M =⇒ M ′ (M =⇒ FailState) is an edge in dpF

justified by Decide (Fail). Figure 3 presents the other transition rules of dplF . We

refer to the transition rules Unit Propagate λ, Backjump, Decide, and Fail of the

graph dplF as Basic. We say that a node in the graph is semi-terminal if no rule

other than Learn is applicable to it.

We will omit the word “augmented” before “state” when this is clear from a

context.

The graph dplF can be used for deciding the satisfiability of a formula F simply

by constructing an arbitrary path from node ∅||∅ to a semi-terminal node:

Proposition 7

For any CNF formula F ,

(a) every path in dplF contains only finitely many edges justified by Basic tran-

sition rules,

(b) for any semi-terminal state M ||Γ of dplF reachable from ∅||∅, M is a model

of F ,

(c) FailState is reachable from ∅||∅ in dplF if and only if F is unsatisfiable.

On the one hand, Proposition 7 (a) asserts that if we construct a path from ∅||∅ so

that Basic transition rules periodically appear in it then some semi-terminal state

will be eventually reached. On the other hand, Proposition 7 (b) and (c) assert

that as soon as a semi-terminal state is reached the problem of deciding whether

formula F is satisfiable is solved. The proof of this proposition is similar to the

proof of Theorem 2.12 from (Nieuwenhuis et al. 2006).

For instance, let F be the formula

a ∨ b

¬a ∨ c.
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Here is a path in dplF :

∅||∅ =⇒ (Learn)

∅||b ∨ c =⇒ (Decide)

¬bΔ||b ∨ c =⇒ (Unit Propagate λ)

¬bΔc||b ∨ c =⇒ (Unit Propagate λ)

¬bΔca||b ∨ c

(17)

Since the state ¬bΔca is semi-terminal, Proposition 7 (b) asserts that {¬b, c, a} is

a model of F .

Recall that the transition rule Backtrack of the graph dpF – a prototype of Back-

jump – is applicable in any inconsistent state with a decision literal in dpF . The

transition rule Backjump, on the other hand, is applicable in any inconsistent state

with a decision literal that is reachable from ∅||∅ (the proof of this statement is

similar to the proof of Lemma 2.8 from (Nieuwenhuis et al. 2006)). The application

of Backjump where lΔ is the last decision literal and l ′ is l can be seen as an appli-

cation of Backtrack . This fact shows that Backjump is essentially a generalization of

Backtrack . The subgraph of dpF induced by the nodes reachable from ∅ is basically

a subgraph of dplF .

7 Answer Set Solver with Learning

In this section we will extend the graph smΠ to capture backjumping and learning.

As a result we will be able to model the algorithms of systems smodelscc and sup.

7.1 Graph smlΠ

An (augmented) state relative to a program Π is either a distinguished state Fail-

State or a pair of the form M ||Γ where M is a record relative to the set of atoms

occurring in Π, and Γ is a (multi-)set of constraints formed from atoms occurring

in Π that are entailed by Π.

For any program Π, we will define a graph smlΠ. Its nodes are the augmented

states relative to Π. The transition rules Unit Propagate LP, All Rules Cancelled,

Backchain True, Unfounded, Decide and Fail of smΠ are extended to smlΠ as

follows: M ||Γ =⇒ M ′||Γ (M ||Γ =⇒ FailState) is an edge in smlΠ justified by a

transition rule T if and only if M =⇒ M ′ (M =⇒ FailState) is an edge in smΠ

justified by T . Figure 4 presents the other transition rules of smlΠ.

We refer to the transition rules Unit Propagate LP, All Rules Cancelled, Backchain

True, Backchain False λ, Unfounded, Backjump LP, Decide, and Fail of the graph

smlΠ as Basic. We say that a node in the graph is semi-terminal if no rule other

than Learn LP is applicable to it.

The graph smlΠ can be used for deciding whether a program Π has an answer

set by constructing a path from ∅||∅ to a semi-terminal node:

Proposition 8

For any program Π,
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Backchain False λ:

M ||Γ =⇒ M l ||Γ if

⎧⎨
⎩

a ← l ,B ∈ Π ∪ Γ,

¬a ∈ M or a = ⊥,

B ⊆ M

Backjump LP :

P lΔQ ||Γ =⇒ P l ′||Γ if

{
P lΔQ is inconsistent and

Π entails l ′ ∨ P

Learn LP :

M ||Γ =⇒ M || ← B , Γ if Π entails B

Fig. 4. The additional transition rules of the graph smlΠ.

(a) every path in smlΠ contains only finitely many edges labeled by Basic tran-

sition rules,

(b) for any semi-terminal state M ||Γ of smlΠ reachable from ∅||∅, M+ is an

answer set of Π,

(c) FailState is reachable from ∅||∅ in smlΠ if and only if Π has no answer sets.

Thus if we construct a path from ∅||∅ so that Basic transition rules periodically

appear in it then some semi-terminal state will be eventually reached; as soon as a

semi-terminal state is reached the problem of finding an answer set is solved.

For instance, let Π be program (8). Here is a path in smlΠ with every edge

annotated by the name of a transition rule that justifies the presence of this edge

in the graph :

∅||∅ =⇒ (Decide)

aΔ||∅ =⇒ (Unit Propagate LP)

aΔc||∅ =⇒ (All Rules Cancelled)

aΔc¬b||∅ =⇒ (Decide)

aΔc¬bdΔ||∅ =⇒ (Unfounded)

aΔc¬bdΔ¬d ||∅ =⇒ (Backjump LP)

aΔc¬b¬d ||∅ =⇒ (Learn LP)

aΔc¬b¬d ||¬a ∨ ¬c ∨ b ∨ ¬d

(18)

Since the state aΔc¬b¬d is semi-terminal, Proposition 8 (b) asserts that

{a, c,¬b,¬d}+ = {a, c}

is an answer set for Π.

Proof of Proposition 8 is in Section 10.

As in case of the graphs dpF and dplF , Backjump LP is applicable in any

inconsistent state with a decision literal that is reachable from ∅||∅ (Proposition 11

from Section 9), and is essentially a generalization of the transition rule Backtrack

of the graph smΠ.

Modern SAT solvers often implement such sophisticated techniques as restart

and forgetting in addition to backjumping and learning:
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Restart: A solver restarts the dpll procedure whenever the search is not

making “enough” progress. The idea is that upon a restart a solver will explore

a new part of the search space using the clauses that have been learned.
Forgetting: This technique is usually implemented in relation with conflict-

driven backjumping and learning. When a solver “notes” that earlier learned

clauses are not helpful anymore it removes (forgets) them from the clause

database. Forgetting allows a solver to avoid a possible exponential space

blow-up introduced by learning.

We may extend the graph smlΠ with the following transition rules that capture

the ideas behind these technique:

Restart :

M ||Γ =⇒ ∅||Γ

Forget LP :

M || ← B , Γ =⇒ M ||Γ.

The transition rules Restart and Forget LP are similar to the analogous rules

in (Nieuwenhuis et al. 2006) for extending dpll procedure with restart and for-

getting techniques. It is easy to prove a result similar to Proposition 8 for the

graph smlΠ with Restart and Forget LP (for such graph a state is semi-terminal if

no rule other than Learn LP , Restart , Forget LP is applicable to it.)

7.2 Smodelscc and Sup Algorithms

In Section 4.2 we demonstrated a method for specifying the algorithm of an answer

set solver by means of the graph smΠ. In particular, we described the smodels al-

gorithm by assigning priorities to transition rules of smΠ. In this section we use this

method to describe the smodelscc (Ward and Schlipf 2004) and sup (Lierler 2008)

algorithms by means of smlΠ.

System smodelscc enhances the smodels algorithm with conflict-driven back-

jumping and learning. Its strategy for choosing a path in the graph smlΠ is similar

to that of smodels. System smodelscc assigns priorities to inference rules of smlΠ
as follows:

Backjump LP,Fail�

Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False λ�

Unfounded�

Decide.

Also, smodelscc always applies the transition rule Learn LP in a non-semi-

terminal state reached by an application of Backjump LP , because it implements

conflict-driven backjumping and learning.12 In Section 11 we discuss details on

which clause is being learned during the application of Learn LP .

12 System smodelscc (sup) also implements restarts and forgetting that may be modeled by the
transition rules Restart and Forget LP . An application of these transition rules in smlΠ relies
on particular heuristics implemented by the solver.
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In (Lierler 2008), we introduced the simplified sup algorithm that relies on back-

tracking rather than conflict-driven backjumping and learning that are actually

implemented in the system. We now present the sup algorithm that takes these

sophisticated techniques into account.

System sup assigns priorities to inference rules of smlΠ as follows:

Backjump LP,Fail�

Unit Propagate LP,All Rules Cancelled,Backchain True,Backchain False λ�

Decide�

Unfounded.

Similarly to smodelscc, sup always applies the transition rule Learn LP in a

non-semi-terminal state reached by an application of Backjump LP .

For example, let Π be program (8). Path (18) corresponds to an execution of

system sup, but does not correspond to any execution of smodelscc because for

the latter Unfounded is a rule of higher priority than Decide. Here is another path

in smlΠ from ∅||∅ to the same semi-terminal node:

∅||∅ =⇒ (Decide)

aΔ||∅ =⇒ (Unit Propagate LP)

aΔc||∅ =⇒ (All Rules Cancelled)

aΔc¬b||∅ =⇒ (Unfounded)

aΔc¬b¬d ||∅

(19)

Path (19) corresponds to an execution of system smodelscc, but does not corre-

spond to any execution of system sup because for the latter Decide is a rule of

higher priority than Unfounded .

The strategy of sup of assigning the transition rule Unfounded the lowest priority

may be reasonable for many problems. For instance, it is easy to see that transi-

tion rule Unfounded is redundant for tight programs. The sup algorithm is similar

to SAT-based answer set solvers such as assat (Lin and Zhao 2004) and cmod-

els (Giunchiglia et al. 2006) (see Section 8.2) in the fact that it will first compute

a supported model of a program and only then will test whether this model is

indeed an answer set, i.e., whether Unfounded is applicable in this state.

8 Generate and Test with Learning

In this section we model backjumping and learning for the generate and test pro-

cedure by defining a graph gtlF ,G that extends gtF ,G (Section 5) in a similar

manner as dplF (Section 6) extends dpF .

8.1 Graph gtlF ,G

An (augmented) state relative to a CNF formula F and a formula G formed from

atoms occurring in F is either a distinguished state FailState or a pair of the

form M ||Γ, where M is a record (Section 2.1) relative to the set of atoms occurring

in F , and Γ is a (multi-)set of clauses formed from atoms occurring in F that are

entailed by F ∧G.
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The nodes of the graph gtlF ,G are the augmented states relative to a CNF

formula F and a formula G formed from atoms occurring in F . The edges of gtlF ,G

are described by the transition rules Unit Propagate λ, Decide, Fail of dplF , the

transition rules

Backjump GT :

P lΔQ ||Γ =⇒ P l ′||Γ if

{
P lΔQ is inconsistent and

F ∧G |= l ′ ∨ P

Learn GT :

M ||Γ =⇒ M ||C , Γ if

{
every atom in C occurs in F and

F ∧G |= C

and the transition rule Test of gtF ,G that is extended to gtlF ,G as follows:

M ||Γ =⇒ M ′||Γ is an edge in gtlF ,G justified by Test if and only if M =⇒ M ′ is

an edge in gtF ,G justified by Test .

We refer to the transition rules Unit Propagate λ, Test, Decide, Fail , Back-

jump GT of the graph gtlF ,G as Basic. We say that a node in the graph is

semi-terminal if no rule other than Learn GT is applicable to it.

The graph gtlF ,G can be used for deciding whether a formula F ∧G has a model

by constructing a path from ∅||∅ to a terminal node:

Proposition 9

For any CNF formula F and a formula G formed from atoms occurring in F ,

(a) every path in gtlF ,G contains only finitely many edges labeled by Basic

transition rules,

(b) for any semi-terminal state M ||Γ of gtlF ,G reachable from ∅||∅,M is a model

of F ∧G,

(c) FailState is reachable from ∅||∅ in gtlF ,G if and only if F ∧G is unsatisfiable.

As in case of the graph dplF , the transition rule Backjump GT is applicable in

any inconsistent state with a decision literal that is reachable from ∅||∅. We call

such states backjump states.

Proposition 10

For any CNF formula F and a formula G formed from atoms occurring in F , the

transition rule Backjump GT is applicable in any backjump state in gtlF ,G .

Proofs of Propositions 9 and 10 are given in Section 13.

8.2 Cmodels Algorithm

System cmodels implements an algorithm called asp-sat with Learning (Giunchiglia et al. 2006)

that extends asp-sat with Backtracking by backjumping and learning.

The application of cmodels to a program Π can be viewed as constructing a

path from ∅||∅ to a terminal node in the graph gtlF ,G , where

• F is the completion of Π converted to conjunctive normal form, and

• G is LF (Π).
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In Sections 4.2 we demonstrated a method for specifying the algorithm of an

answer set solver by means of the graph smΠ. We use this method to describe the

cmodels algorithm using the graph gtlF ,G . System cmodels assigns priorities

to the inference rules of gtlF ,G as follows:

Backjump GT,Fail�

Unit Propagate λ�

Decide�

Test.

Also, cmodels always applies the transition rule Learn GT in a non-semi-

terminal state reached by an application of Backjump GT .

The priorities imposed on the rules by cmodels guarantee that the transition

rule Test is applied to a model of F∪Γ (clausified completion F extended by learned

clauses Γ). This allows cmodels to proceed with its search in case if a found model

is not an answer set. Furthermore, the cmodels strategy guarantees that in a state

reached by an application of Test , first Backjump GT will be applied and then in the

resulting state Learn GT will be applied. The clause learned due to this application

of Learn GT is derived by means of loop formulas (see (Giunchiglia et al. 2006)).

In this sense cmodels uses loop formulas to guide its search.

Systems sag (Lin et al. 2006) and clasp (Gebser et al. 2007) are answer set

solvers that are enhancements of cmodels. First, they compute and clausify pro-

gram’s completion and then use unit propagate on resulting propositional formula

as an inference mechanism. Second, they guide their search by means of loop for-

mulas. Third, they implement conflict-driven backjumping and learning. Also, sag

uses SAT solvers for search. The systems differ from cmodels in the following:

• they maintain the data structure representing an input logic program through

out the whole computation,

• in addition to implementing inference rules of the graph gtlF ,G they also

implement the inference rule Unfounded of smΠ. A hybrid graph combining

the inference rule Unfounded of smΠ and the inference rules of gtlF ,G may

be used to describe the sag and clasp algorithms.

System sag assigns the same priorities to the inference rules of the hybrid graph

as cmodels. Also, sag at random decides whether to apply the inference rule

Unfounded in a state.

On the other hand, system clasp assigns priorities to the inference rules of the

hybrid graph as follows:

Backjump GT,Fail�

Unit Propagate λ,Unfounded�

Decide.

Like cmodels, both sag and clasp always apply the transition rule Learn GT

in a non-semi-terminal state reached by an application of Backjump GT .
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9 Backjumping and Extended Graph

Recall the transition rule Backjump LP of smlΠ

Backjump LP :

P lΔQ ||Γ =⇒ P l ′||Γ if

{
P lΔQ is inconsistent and

Π entails l ′ ∨ P .

A state in the graph smlΠ is a backjump state if it is inconsistent, contains a

decision literal, and is reachable from ∅||∅. Note that it may be not clear a priori

whether Backjump LP is applicable to a backjump state and if so to which state the

edge due to the application of Backjump LP leads. These questions are important

if we want to base an algorithm on this framework. It turns out that Backjump LP

is always applicable to a backjump state:

Proposition 11

For a program Π, the transition rule Backjump LP is applicable to any backjump

state in smlΠ.

Proposition 11 guarantees that a backjump state in smlΠ is never semi-terminal. In

the end of this section we show how Proposition 11 can be derived from the results

proved later in this paper. Next question to answer is how to continue choosing

a path in the graph after reaching a backjump state. To answer this question we

introduce the notions of reason and extended graph.

For a program Π, we say that a clause l ∨ C is a reason for l to be in a list of

literals P lQ w.r.t Π if Π entails l ∨ C and C ⊆ P . We can equivalently restate

the second condition of Backjump LP “Π entails l ′ ∨ P” as “there exists a reason

for l ′ to be in P l ′ w.r.t. Π” (note that l ′ ∨ P is a reason for l ′ to be in P l ′). We

call a reason for l ′ to be in P l ′ a backjump clause. Note that Proposition 11 asserts

that a backjump clause always exists for a backjump state. It is clear that we may

continue choosing a path in the graph after reaching a backjump state if we know

how to compute a backjump clause for this state. We now define a graph sml
↑
Π

that shares many properties of smlΠ but allows us to give a simpler procedure for

computing a backjump clause.

An extended record M relative to a program Π is a list of literals over the set of

atoms occurring in Π where

(i) each literal l in M is annotated either by Δ or by a reason for l to be in M

w.r.t. Π,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M its last literal is annotated by a reason.

For instance, let Π be the program

a ← not b

c.

The list of literals

bΔaΔ¬b¬b∨¬a
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is an extended record relative to Π. On the other hand, the lists of literals

aΔ¬aΔ aΔ¬b¬b∨¬a bΔ bΔaΔ¬b¬b∨¬a cΔ

are not extended records.

An extended state relative to a program Π is either a distinguished state FailState

or a pair of the form M ||Γ where M is an extended record relative to Π, and Γ

is the same as in the definition of an augmented state (i.e., Γ is a (multi-)set of

constraints formed from atoms occurring in Π that are entailed by Π.) It is easy to

see that for any extended state S relative to a program Π, the result of removing

annotations from all nondecision literals of S is a state of smlΠ: we will denote this

state by S ↓.

For instance, consider program a ← not b. All pairs

FailState ∅||∅ aΔ¬b¬b∨¬a ||∅ ¬aΔbb∨a ||∅

are among valid extended states relative to this program. The corresponding states S ↓

are

FailState ∅||∅ aΔ¬b||∅ ¬aΔb||∅.

We now define a graph sml
↑
Π for any program Π. Its nodes are the extended

states relative to Π. The transition rules of smlΠ are extended to sml
↑
Π as follows:

S1 =⇒ S2 is an edge in sml
↑
Π justified by a transition rule T if and only if S ↓

1 =⇒ S ↓
2

is an edge in smlΠ justified by T .

We will omit the word “extended” before “record” and “state” when this is clear

from a context.

The following lemma formally states the relationship between nodes of the graphs

smlΠ and sml
↑
Π:

Lemma 8

For any program Π, if S ′ is a state reachable from ∅||∅ in the graph smlΠ then

there is a state S in the graph sml
↑
Π such that S ↓ = S ′.

The definitions of Basic transition rules and semi-terminal states in sml
↑
Π are

similar to their definitions for smlΠ.

Proposition 8↑

For any program Π,

(a) every path in sml
↑
Π contains only finitely many edges labeled by Basic tran-

sition rules,

(b) for any semi-terminal state M ||Γ of sml↑Π, M
+ is an answer set of Π,

(c) sml
↑
Π contains an edge leading to FailState if and only if Π has no answer

sets.

Note that Proposition 8↑ (b), unlike Proposition 8 (b), is not limited to semi-

terminal states that are reachable from ∅||∅. As in the case of the graph smlΠ,

sml
↑
Π can be used for deciding whether a program Π has an answer set. Further-

more, the new graph provides the means for computing a backjump clause that

permits practical application of the transition rule Backjump LP : Sections 10.3



30 Y. Lierler

and 11 describe the BackjumpClause (Algorithm 1) and BackjumpClauseFirstUIP

(Algorithm 2) procedures that compute Decision and FirstUIP backjump clauses

respectively.

We say that a state in the graph sml
↑
Π is a backjump state if its record is incon-

sistent and contains a decision literal. Unlike the definition of a backjump state in

smlΠ, this definition does not require a backjump state to be reachable from ∅||∅

in sml
↑
Π. As in case of the graph smlΠ, any backjump state in sml

↑
Π is not semi-

terminal:

Proposition 11↑

For a program Π, the transition rule Backjump LP is applicable to any backjump

state in sml
↑
Π.

Proposition 8 (b), (c) and Proposition 11 easily follow from Lemma 8 and Propo-

sition 8↑ (b), (c) and Proposition 11↑ respectively. Proof of Proposition 8 (a) is

similar to the proof of Proposition 8↑ (a).

Next section will present the proofs for Proposition 8↑, Lemma 8, and Proposi-

tion 11↑. It is interesting to note that the proofs of Lemma 8 and Proposition 11↑

implicitly provide the means for choosing a path in the graph sml
↑
Π:

• given a state M ||Γ and a transition rule Unit Propagate LP, All Rules Can-

celled, Backchain True, Backchain False λ, or Unfounded applicable to M ||Γ,

the proof of Lemma 8 describes a clause that may be used to construct a

record M ′ so that there is an edge M ||Γ =⇒ M ′||Γ due to this transition

rule,

• given a backjump state M ||Γ, the proof of Proposition 11↑ describes a back-

jump clause that can be used to construct a record M ′ so that there is an

edge M ||Γ =⇒ M ′||Γ due to Backjump LP .

Furthermore, the construction of the proof of Proposition 11↑ paves the way for

procedure BackjumpClause presented in Algorithm 1.

10 Proofs of Proposition 8↑, Lemma 8, Proposition 11↑

10.1 Proof of Proposition 8↑

Lemma 9

For any program Π, an extended record M relative to Π, and every assignment X

such that X+ is an answer set for Π, if X satisfies all decision literals in M then

X |= M .

Proof

By induction on the length ofM . The property trivially holds for ∅. We assume that

the property holds for any state with n elements. Consider any state M with n +1

elements. Let X be an assignment such that X+ is an answer set for Π and X

satisfies all decision literals in M . We will now show that X |= M .

Case 1. M has the form P lΔ. By the inductive hypothesis, X |= P . Since X

satisfies all decision literals in M , X |= l .
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Case 2. M has the form P l l∨C . By the inductive hypothesis, X |= P . By the

definition of a reason, (i) Π entails l ∨ C and (ii) C ⊆ P . From (ii) it follows that

P |= ¬C . Consequently, X |= ¬C . From (i) it follows that for any assignment X

such that X+ is an answer set, X |= l ∨ C . Consequently, X |= l .

The proof of Proposition 8↑ assumes the correctness of Proposition 11↑ that we

demonstrate in Section 10.3.

Proposition 8↑

For any program Π,

(a) every path in sml
↑
Π contains only finitely many edges labeled by Basic tran-

sition rules,

(b) for any semi-terminal state M ||Γ of sml↑Π, M
+ is an answer set of Π,

(c) sml
↑
Π contains an edge leading to FailState if and only if Π has no answer

sets.

Proof

(a) For any list N of literals by |N | we denote the length of N . Any state M ||Γ

has the form M0 l
Δ
1 M1 . . . l

Δ
p Mp ||Γ, where lΔ1 . . . lΔp are all decision literals of M ;

we define α(M ||Γ) as the sequence of nonnegative integers |M0|, |M1|, . . . , |Mp |, and

α(FailState) = ∞. For any states S and S ′ of sml↑Π, we understand α(S ) < α(S ′)

as the lexicographical order. We first note that for any state M ||Γ, value of α is

based only on the first component M of the state. Second, there is a finite number

of distinct values of α due to the fact that there is a finite number of distinct M s

over Π. We conclude that there is a finite number of distinct values of α for the

states of sml↑Π, even though the number of distinct states in sml
↑
Π is infinite.

By the definition of the transition rules of sml↑Π, if there is an edge from M ||Γ

to M ′||Γ′ in sml
↑
Π formed by any Basic transition rule then α(M ||Γ) < α(M ′||Γ′).

Then, due to the fact that there is a finite number of distinct values of α, it follows

that there is only a finite number of edges due to the application of Basic rules

possible in any path.

(b) Let M ||Γ be a semi-terminal state so that none of the Basic rules are applicable.

From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore,M is consistent. Indeed, assume thatM is inconsistent. Then, since

Fail is not applicable, M contains a decision literal. Consequently, M ||Γ is a back-

jump state. By Proposition 11↑, the transition rule Backjump LP is applicable

in M ||Γ. This contradicts our assumption that M ||Γ is semi-terminal.

Also, M is a model of Π: since Unit Propagate LP is not applicable in M ||Γ, it

follows that for every rule a ← B ∈ Π, if B ⊆ M then a ∈ M .

Assume that M+ is not an answer set. Then, by Lemma 3, there is a non-empty

unfounded set U on M w.r.t. Π such that U ⊆ M . It follows that Unfounded is

applicable (with an arbitrary a ∈ U ) in M ||Γ. This contradicts the assumption

that M ||Γ is semi-terminal.

(c) Left-to-right: There is a state M ||Γ in sml
↑
Π such that there is an edge be-

tween M ||Γ and FailState. By the definition of sml↑Π, this edge is due to the transi-

tion rule Fail . Consequently, state M ||Γ is such that M is inconsistent and contains
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no decision literals. By Lemma 9, for every assignment X such that X+ is an an-

swer set for Π, X satisfies M . Since M is inconsistent we conclude that Π has no

answer sets.

Right-to-left: Consider the process of constructing a path consisting only of edges

due to Basic transition rules. By (a), it follows that this path will eventually reach

a semi-terminal state. By (b), this semi-terminal state cannot be different from

FailState, because Π has no answer sets. We conclude that there is an edge leading

to FailState.

10.2 Proof of Lemma 8

The proof uses the notion of loop formula (Lin and Zhao 2004).

Given a set A of atoms by Bodies(Π,A) we denote the set that consists of the

elements of Bodies(Π, a) for all a in A. Let Π be a program. For any set Y of atoms,

the external support formula (Lee 2005) for Y is∨
B∈Bodies(Π,Y ),B+∩Y=∅

B . (20)

We will denote the external support formula by ESΠ,Y . For any set Y of atoms,

the loop formula for Y is the implication∨
a∈Y

a → ESΠ,Y .

We can rewrite this formula as the disjunction∧
a∈Y

¬a ∨ ESΠ,Y . (21)

From the Main Theorem in (Lee 2005) we conclude:

Lemma on Loop Formulas

For any program Π, Π entails loop formulas (21) for all sets Y of atoms that occur

in Π.

For a state S in the graph sml
↑
Π, we say that S

↓ in smlΠ is the image of S .

Lemma 8

For any program Π, if S ′ is a state reachable from ∅||∅ in the graph smlΠ then

there is a state S in the graph sml
↑
Π such that S ↓ = S ′.

Proof

Since the property trivially holds for the initial state ∅||∅, we only need to prove

that all transition rules of smlΠ preserve it.

Consider an edge M ||Γ =⇒ M ′||Γ′ in the graph smlΠ such that there is a state

M1||Γ in the graph sml
↑
Π satisfying the condition (M1||Γ)↓ = M ||Γ. We need to

show that there is a state in the graph sml
↑
Π such that M ′||Γ′ is its image in smlΠ.

Consider several cases that correspond to a transition rule leading from M ||Γ to

M ′||Γ′:



Abstract Answer Set Solvers with Backjumping and Learning (long version) 33

Unit Propagate LP :

M ||Γ =⇒ M a||Γ if

{
a ← B ∈ Π and

B ⊆ M .

M ′||Γ′ is M a||Γ. It is sufficient to prove that M1a
a∨B ||Γ is a state of sml↑Π. It is

enough to show that a clause a ∨B is a reason for a to be in M a. By applicability

conditions of Unit Propagate LP , B ⊆ M . Since Π entails its rule a ← B , Π entails

a ∨ B .

All Rules Cancelled :

M ||Γ =⇒ M ¬a||Γ if B ∩M 	= ∅ for all B ∈ Bodies(Π, a).

M ′||Γ′ is M ¬a||Γ. Consider any B ∈ Bodies(Π, a). Since B ∩M 	= ∅, B contains a

literal from M : call it f (B). It is sufficient to show that

¬a ∨
∨

B∈Bodies(Π,a)

f (B) (22)

is a reason for ¬a to be in M ¬a.

First, by the choice of f (B), f (B) ∈ M ; consequently,∨
B∈Bodies(Π,a)

f (B) ⊆ M .

Second, since f (B) ∈ B , the loop formula ¬a ∨ ESΠ,{a} entails (22). By Lemma

on Loop Formulas, it follows that Π entails (22).

Backchain True:

M ||Γ =⇒ M l ||Γ if

⎧⎪⎪⎨
⎪⎪⎩

a ← B ∈ Π,

a ∈ M ,

B ′ ∩M 	= ∅ for all B ′ ∈ Bodies(Π, a) \ {B},

l ∈ B .

M ′||Γ′ is M l ||Γ. Consider any B ′ ∈ Bodies(Π, a)\B . Since B
′
∩M 	= ∅, B ′ contains

a literal from M : call it f (B ′). A clause

l ∨ ¬a ∨
∨

B ′∈Bodies(Π,a)\B

f (B ′) · (23)

is a reason for l to be in M l . The proof of this statement is similar to the case of

All Rules Cancelled .

Backchain False λ:

M ||Γ =⇒ M l ||Γ if

⎧⎨
⎩

a ← l ,B ∈ Π ∪ Γ,

¬a ∈ M or a = ⊥,

B ⊆ M .

M ′||Γ′ is M l ||Γ. A clause l ∨B ∨ a is a reason for l to be in M l . The proof of this

statement is similar to the case of Unit Propagate LP .

Unfounded :

M ||Γ =⇒ M ¬a||Γ if

{
M is consistent and

a ∈ U for a set U unfounded on M w.r.t. Π.
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M ′||Γ′ is M ¬a||Γ. Consider any B ∈ Bodies(Π,U ) such that U ∩B+ = ∅. By the

definition of an unfounded set, it follows that B ∩M 	= ∅. Consequently, B contains

a literal from M : call it f (B). The clause

¬a ∨
∨

Bodies(Π,U ),B+∩U=∅

f (B) (24)

is a reason for ¬a to be in M ¬a. The proof of this statement is similar to the case

of All Rules Cancelled .

Backjump LP , Decide, Fail , and Learn LP : obvious.

The process of turning a state of smlΠ reachable from ∅||∅ into a corresponding

state of sml↑Π can be illustrated by the following example: Consider a program Π

a ← not b

b ← not a, not c

c ← not f

← k , d

k ← l , not b

← m, not l , not b

m ← not k , not l

(25)

and a path in smlΠ

∅||∅ =⇒ (Decide)

aΔ||∅ =⇒ (All Rules Cancelled)

aΔ¬b||∅ =⇒ (Decide)

aΔ¬bcΔ||∅ =⇒ (Backchain True)

aΔ¬bcΔ¬f ||∅ =⇒ (Decide)

aΔ¬bcΔ¬f dΔ||∅ =⇒ (Backchain False λ)

aΔ¬bcΔ¬f dΔ¬k ||∅ =⇒ (Backchain False λ)

aΔ¬bcΔ¬f dΔ¬k¬l ||∅ =⇒ (Backchain False λ)

aΔ¬bcΔ¬f dΔ¬k¬l¬m||∅ =⇒ (Unit Propagate LP)

aΔ¬bcΔ¬f dΔ¬k¬l¬mm||∅

(26)

The construction in the proof of Lemma 8 applied to the nodes in this path gives

following states of sml↑Π:

∅||∅

aΔ||∅

aΔ¬b¬b∨¬a ||∅

aΔ¬b¬b∨¬a cΔ||∅

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬c||∅

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ||∅

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d ||∅

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k ||∅

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b ||∅

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨bmm∨k∨l ||∅

(27)

It is clear that these nodes form a path in sml
↑
Π with every edge justified by the

same transition rule as the corresponding edge in path (26) in smlΠ.



Abstract Answer Set Solvers with Backjumping and Learning (long version) 35

10.3 Proof of Proposition 11↑

In this section Π is an arbitrary and fixed logic program.

For a record M , by lcp(M ) we denote its largest consistent prefix. We say that a

clause C is conflicting on a list M of literals if Π entails C , and C ⊆ lcp(M ). For

example, let M be the first component of the last state in (27):

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨bmm∨k∨l . (28)

Then, lcp(M ) is obtained by dropping the last element mm∨k∨l of M . It is clear

that the reason m ∨ k ∨ l for m to be in M is a conflicting clause on M .

Lemma 10

The literal that immediately follows lcp(M ) in an inconsistent record M , has the

form lC where C is a conflicting clause on M .

Proof

By the requirement (iii) of the definition of an extended record, the literal that

immediately follows lcp(M ) may not be annotated by Δ. Consequently, the literal

has the form lC . We now show that C is a conflicting clause on M . Since C is a

reason for l to be in lcp(M )lC , it immediately follows that Π entails C , C can be

written as l∨C ′, and C ′ ⊆ lcp(M ). Since l immediately follows the largest consistent

prefix of M , l ∈ lcp(M ). Consequently, C ⊆ lcp(M ). We conclude that C is indeed

a conflicting clause on M .

For any inconsistent record l1 · · · ln and any conflicting clause C on this record,

by βl1···ln (C ) we denote the set of numbers i such that li ∈ C . (It is clear that

every element from C equals to one of the literals in l1 · · · ln .) The relation I < J

between subsets I , J of {1 · · ·n} is understood here as the lexicographical order

between I and J sorted in descending order. For instance, {2 6 7} < {6 7 8}

because {7 6 2} < {8 7 6} in lexicographical order.

Recall that the resolution rule can be applied to clauses C ∨ l and C ′ ∨ ¬l and

produces the clause C ∨ C ′, called the resolvent of C ∨ l and C ′ ∨ ¬l on l .

Lemma 11

Let M be a record and let lB be a nondecision literal from lcp(M ). If clause D is

the resolvent of B and a clause C conflicting on M then

(i) D is a clause conflicting on M ,

(ii) βM (D) < βM (C ).

For instance, let M be (28), let reason ¬m ∨ l ∨ b for ¬m in lcp(M ) be B , and let

conflicting clause m ∨ k ∨ l on M be C . Then D , the result of resolving B together

with C , is clause k ∨ l ∨ b. Lemma 11 asserts that k ∨ l ∨ b is a conflicting clause

on M and that βM (D) < βM (C ). Indeed, βM (D) = {2 6 7} and βM (C ) = {6 7 8}.
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Proof

(i) Clause D is a resolvent of B and C on some literal l ′. Then, for some literal

l ′ ∈ B , l ′ ∈ C . The clause C can be written as l ′ ∨ C ′.

In order to demonstrate that D is a conflicting clause we need to show that

D ⊆ lcp(M ) and Π entails D .

Since B is a reason for l to be in lcp(M ), Π entails B and B has the form l ∨B ′

where B ′ ⊆ lcp(M ). Since C is a conflicting clause on M , C ⊆ lcp(M ) and Π

entails C . From the fact that lcp(M ) is consistent, it follows that there is no literal

in B ′ such that its complement occurs in C . Consequently, l ′ 	∈ B ′ so that l ′ is l

and D is B ′∨C ′. We conclude that D ⊆ lcp(M ). From the fact that Π entails B , Π

entails C , and the construction of D , it follows that Π entails D .

(ii) From the proof of (i) it follows that D is a resolvent of B and C on l

where B has the form l ∨ B ′. Since B is a reason for l to be in lcp(M ), every

literal in B ′ precedes l in lcp(M ). Since D is derived by replacing l in C with B ′,

βM (D) < βM (B).

Let record M be l1 · · · li · · · ln , the decision level of a literal li is the number of

decision literals in l1 · · · li : we denote it by decM (li). We will also use this notation

to denote the decision level of a set of literals: For a set P ⊆ M of literals, decM (P)

is the decision level of the literal in P that occurs latest in M . For record M and a

decision level j by M j we denote the prefix of M that consists of the literals in M

that belong to decision level less than j and by M j ] we denote the prefix of M that

consists of the literals in M that belong to decision level less than or equal to j .

For instance, let M be record (28) then decM (¬k) = 3, decM (¬b c ¬k) = 3, M 3 is

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬c, and M 3] is M itself.

Lemma 12

For an inconsistent record M and a conflicting clause l ∨ C on M , if decM (l) >

decM (c) for all c ∈ C then lcp(M )decM (C )] l l∨C is a record.

Proof

We need to show that (i) l 	∈ lcp(M )dec(C )] and (ii) l ∨ C is a reason for l to be

in lcp(M )dec(C )] l , i.e, Π entails l ∨C and C ⊆ lcp(M )dec(C )].

Since l ∨ C is conflicting on M , l ∨ C ⊆ lcp(M ). From the consistency of

lcp(M ) and the fact that l ∈ lcp(M ), it follows that l 	∈ lcp(M ). Consequently,

l 	∈ lcp(M )dec(C )].

Since l∨C is conflicting onM , Π entails l∨C and l ∨ C ⊆ lcp(M ). Consequently,

C ⊆ lcp(M ). From the definition of decM (C ), it follows that decM (C ) is the decision

level of the literal in C that occurs latest in lcp(M ). By the definition of a decision

level, C ⊆ lcp(M )decM (C )].

Proposition 11↑

For a program Π, the transition rule Backjump LP is applicable to any backjump

state in sml
↑
Π.
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Proof

LetM ||Γ be a backjump state in sml
↑
Π. Let R be the list of reasons that are assigned

to the nondecision literals in lcp(M ).

Consider the process of building a sequence C1,C2, . . . of clauses so that

• C1 is the reason of the member of M that immediately follows lcp(M ), and

• Cj (j > 1) is a resolvent of Cj−1 and some clause in R

while derivation of new clauses is possible. From Lemma 11 (i) and the choice of C1

and R, it follows that any clause in C1,C2 . . . is conflicting. By Lemma 11 (ii)

we conclude that βM (Cj ) < βM (Cj−1) (j > 1). It is clear that this process will

terminate after deriving some clause Cm , since the number of conflicting clauses

onM is finite. It is clear that clause Cm cannot be resolved against any clause in R.

Case 1. Cm is the empty clause. Since M ||Γ is a backjump state, M contains a

decision literal lΔ. By part (iii) of the definition of a record, l belongs to lcp(M ).

Consequently, M can be represented in the form lcp(M )decM (l) lΔQ .

By the choice of C1, C1 is a reason and must consist of at least one literal.

Consequently, m > 1. Clause Cm is derived from clauses Cm−1 and some clause

in R. Since Cm is empty, Cm−1 is a unit clause l
′. We will show that

lcp(M )decM (l) lΔQ ||Γ =⇒ lcp(M )decM (l) l ′l
′

||Γ

is an application of Backjump LP . It is sufficient to demonstrate that lcp(M )decM (l) l ′l
′

is a record. Since lcp(M )decM (l) lΔQ is a record, we only need to show that l ′ 	∈

lcp(M )decM (l) and clause l ′ is a reason for l ′ to be in lcp(M )decM (l) l ′. Recall that

Cm−1, i.e., l
′, is a conflicting clause. Consequently, Π entails l ′ and l ′ ∈ lcp(M ).

Since lcp(M ) is consistent, l ′ 	∈ lcp(M ) so that l ′ 	∈ lcp(M )decM (l). On the other

hand, from the fact that Π entails l ′ it immediately follows that clause l ′ is a reason

for l ′ to be in lcp(M )decM (l) l ′.

Case 2. Cm is not empty. Since Cm is a conflicting clause on M , the complement

of any literal in Cm belongs to lcp(M ). Furthermore, every such complement is a

decision literal in lcp(M ). Indeed, if this complement is l
l∨B
∈ lcp(M ) then l ∨ B

is one of the clauses Bi , and it can be resolved against Cm .

By the definition of a decision level, there is at most one decision literal that

belongs to any decision level. It follows that Cm can be written as l ∨ C ′
m so

that decM (l) > decM (c) for any c ∈ C ′
m . Consequently, M can be written as

lcp(M )decM (l) l
Δ
Q . Note that

lcp(M )decM (l) l
Δ
Q ||Γ =⇒ lcp(M )decM (C ′

m)] lCm ||Γ

is an application of Backjump LP . Indeed, by Lemma 12 lcp(M )decM (C
′

m)] lCm is a

record.

Algorithm 1 presents procedure BackjumpClause that computes a backjump

clause for any backjump state in the graph sml
↑
Π. The algorithm follows from the

construction of the proof of Proposition 11↑. It is based on the iterative application

of the resolution rule on reasons of the smallest inconsistent prefix of a state. The
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BackjumpClause (M ||Γ);

Arguments : M ||Γ is a backjump state in sml
↑

Π

Return Value : C is a backjump clause
begin

C ← the reason of the member of M that immediately follows lcp(M );
N ← the list of the nondecision literals in lcp(M );
R ← the list of the reasons that are assigned to the literals in N ;

while C ∩ N �= ∅ do

l ← a literal in C ∩N ;
B ← the clause in R that contains l ;
C ′ ← the resolvent of C and B on l ;
if C ′ = ∅ then

return C

C ← C ′

return C ;

Algorithm 1: A procedure for generating a backjump clause.

proof of Proposition 11↑ allows to conclude the termination of BackjumpClause and

asserts that a clause returned by the procedure is a backjump clause on a backjump

state.

For instance, let Π be (25). Consider an execution of BackjumpClause on Π and

backjump state (28). The table below gives the values of lcp(M ), C , N , and R

during the execution of the BackjumpClause algorithm. By Ci we denote a value

of C before the i-th iteration of the while loop.

lcp(M ) aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b

C1 m ∨ k ∨ l

N ¬b¬b∨¬a ¬f ¬f∨¬c¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

R ¬b ∨ ¬a, ¬f ∨ ¬c, ¬k ∨ ¬d , ¬l ∨ b ∨ k , ¬m ∨ l ∨ b

C2 k ∨ l ∨ b is the resolvent of C1 and ¬m ∨ l ∨ b

C3 k ∨ b is the resolvent of C2 and ¬l ∨ b ∨ k

C4 ¬d ∨ b is the resolvent of C3 and ¬k ∨ ¬d

C5 ¬d ∨ ¬a is the resolvent of C4 and ¬b ∨ ¬a

(29)

The algorithm will terminate with the clause ¬d ∨ ¬a. Proof of Proposition 11↑

asserts that (i) this clause is a backjump clause such that d and a are decision

literals in M and (ii) the transition

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨bmm∨k∨l ||∅ =⇒

aΔ¬b¬b∨¬a¬d¬d∨¬a ||∅
(30)

in sml↑Π is an application of Backjump LP . Indeed, by Lemma 12 lcp(M )decM (¬a)]¬d¬d∨¬a ,

in other words aΔ¬b¬b∨¬a¬d¬d∨¬a , is a record.

Note that a backjump clause may be derived in other ways than captured by

BackjumpClause algorithm: the transition rule Backjump LP is applicable with

an arbitrary backjump clause. Usually, dpll-like procedures implement conflict-

driven backjumping and learning where a particular learning schema such as, for
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instance, Decision or FirstUIP (Mitchell 2005) is applied for computing a special

kind of a backjump clause. It turns out that the BackjumpClause algorithm captures

the Decision learning schema for ASP. Typically, SAT solvers impose an order for

resolving the literals during the process of Decision backjump clause derivation. We

can impose similar order by replacing the line

l ← a literal in C ∩ N

in the algorithm BackjumpClause with

l ← a literal in C ∩ N that occurs latest in lcp(M ).

In fact, the sample application of BackjumpClause algorithm described in (29)

follows this ordering.

This section introduced BackjumpClause algorithm that derives a Decision back-

jump clause for an arbitrary backjump state. In the next section we will introduce

an algorithm that will compute an ASP counterpart of FirstUIP backjump clause.

11 FirstUIP Conflict-Driven Backjumping and Learning

Conflict-driven backjumping and learning proved to be a highly successful tech-

nique in modern SAT solving. Furthermore, in (Zhang et al. 2001) the authors

investigated the performance of various learning schemes and established exper-

imentally that FirstUIP clause is the most useful single clause to learn. Success of

conflict-driven learning led to the implementation of its ASP counterpart in systems

smodelscc, clasp, and sup. There are two common methods for describing a back-

jump clause construction in the SAT literature. The first one employes the implica-

tion graph (Marques-Silva and Sakallah 1996) and the second one employes resolu-

tion (Mitchell 2005). Ward and Schlipf (Ward and Schlipf 2004) extended the defi-

nition of an implication graph to the smodels algorithm and implemented FirstUIP

learning schema in answer set solver smodelscc. In the previous section we used

sml
↑
Π formalism and resolution to describe the BackjumpClause algorithm for com-

puting an ASP counterpart of a Decision backjump clause. In (Gebser et al. 2007)

the authors used the concepts from constraint processing to implement FirstUIP

learning schema in answer set solver clasp.

This section presents the BackjumpClauseFirstUIP algorithm for computing an

ASP counterpart of a FirstUIP backjump clause by means of sml↑Π formalism and

resolution. The BackjumpClauseFirstUIP algorithm is employed by the system sup

in its implementation of conflict-driven backjumping and learning.

The Algorithm 2 presents procedure BackjumpClauseFirstUIP that computes a

FirstUIP backjump clause for any backjump state in the graph sml
↑
Π.

We now state the correctness of the algorithm BackjumpClauseFirstUIP . We

start by showing its termination. By C1 we will denote the initial value assigned to

clause C . From Lemma 11 (i) and the choice of C1 we conclude that at any point of

computation clause C is conflicting on M . By Lemma 11 (ii), the value of βM (C )

decreases with each new assignment of clause C in the while loop. It follows that

the while loop will terminate since the number of conflicting clauses C on M such
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BackjumpClauseFirstUIP (M ||Γ);

Arguments : M ||Γ is a backjump state in sml
↑

Π

Return Value : C is a backjump clause
begin

C ← the reason of the member of M that immediately follows lcp(M );

l ← the literal in C that occurs latest in lcp(M );
P ← the sublist of lcp(M ) that consists of the literals that belong to the decision
level dec(l);
R ← the list of the reasons that are assigned to the literals in P ;

while |C ∩ P | > 1 do

l ← the literal in C that occurs latest in P ;
B ← the clause in R that contains l ;
C ← the resolvent of C and B on l ;

return C ;

Algorithm 2: A procedure for generating a FirstUIP backjump clause.

that |C ∩ P | > 1 is finite. By Cm we will denote the clause C with which the

while loop terminates. In other words BackjumpClauseFirstUIP returns Cm . We

now show that Cm is indeed a backjump clause. We already concluded that Cm

is a conflicting clause on M . Furthermore, from the termination condition of the

while loop |Cm ∩P | ≤ 1. From the choice of C1 and P it follows that |Cm ∩P | = 1.

Consequently, Cm can be written as l ∨ C ′
m where l is in singleton Cm ∩ P . By

Lemma 11 (ii), β(Cm ) ≤ β(C1). From the definition of β and the choice of P it

follows that decM (l) > decM (c) for all c ∈ C ′
m . By Lemma 12, lcp(M )decM (C ′

m)] lCm

is a record. In other words, transition

M ||Γ =⇒ lcp(M )decM (C ′

m)] lCm ||Γ

is an application of Backjump LP . Consequently, Cm is a backjump clause.

For instance, let Π be (25). Consider an execution of BackjumpClauseFirstUIP

on Π and a backjump state (28). The table below gives the values of lcp(M ), C , P ,

and R during the execution of BackjumpClauseFirstUIP . By Ci we denote a value

of C before the i-th iteration of the while loop.

lcp(M ) aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨b

C1 m ∨ k ∨ l

P dΔ¬k¬k∨¬d ¬l¬l∨b∨k ¬m¬m∨l∨b

R ¬k ∨ ¬d , ¬l ∨ b ∨ k , ¬m ∨ l ∨ b

C2 k ∨ l ∨ b is the resolvent of C1 and ¬m ∨ l ∨ b

C3 k ∨ b is the resolvent of C2 and ¬l ∨ b ∨ k .

The BackjumpClauseFirstUIP algorithm will terminate with the clause k ∨ b. The

proof of the correctness of BackjumpClauseFirstUIP asserts that k∨b is a backjump

clause and the transition

aΔ¬b¬b∨¬a cΔ¬f ¬f∨¬cdΔ¬k¬k∨¬d¬l¬l∨b∨k¬m¬m∨l∨bmm∨k∨l =⇒

aΔ¬b¬b∨¬a kk∨b ||∅
(31)



Abstract Answer Set Solvers with Backjumping and Learning (long version) 41

in sml
↑
Π is an application of Backjump LP .

12 Extended Graph: Generate and Test

In this section we introduce an extended graph gtl
↑
F ,G for the generate and test

abstract framework gtlF ,G similar as in Section 9 we introduced sml
↑
Π for smlΠ.

For a formula H , we say that a clause l ∨C is a reason for l to be in a list P lQ

of literals w.r.t. H if H |= l ∨ C and C ⊆ P .

An (extended) record M relative to a formula H is a list of literals over the set

of atoms occurring in H where

(i) each literal l in M is annotated either by Δ or by a reason for l to be in M

w.r.t. H ,

(ii) M contains no repetitions,

(iii) for any inconsistent prefix of M its last literal is annotated by a reason.

An (extended) state relative to a CNF formula F , and a formula G formed from

atoms occurring in F is either a distinguished state FailState or a pair of the

form M ||Γ, where M is an extended record relative to F ∧ G, and Γ is the same

as in the definition of an augmented state (i.e., Γ is a (multi-)set of clauses formed

from atoms occurring in F that are entailed by F ∧G.) For any extended state S

relative to F and G, the result of removing annotations from all nondecision literals

of S is a state of gtlF ,G : we will denote this state by S ↓.

For a CNF formula F and a formula G formed from atoms occurring in F , we

will define a graph gtl
↑
F ,G . The set of the nodes of gtl

↑
F ,G consists of the extended

states relative to F and G. The transition rules of gtlF ,G are extended to gtl
↑
F ,G

as follows: S1 =⇒ S2 is an edge in gtl
↑
F ,G justified by a transition rule T if and

only if S ↓
1 =⇒ S ↓

2 is an edge in gtlF ,G justified by T .

The lemma below formally states the relationship between nodes of the graphs

gtlF ,G and gtl
↑
F ,G :

Lemma 13

For any CNF formula F and a formula G formed from atoms occurring in F , if S ′

is a state reachable from ∅||∅ in the graph gtlF ,G then there is a state S in the

graph gtl
↑
F ,G such that S ↓ = S ′.

The definitions of Basic transition rules and semi-terminal states in gtl
↑
F ,G are

similar to their definitions for gtlF ,G .

Proposition 9↑

For any CNF formula F and a formula G formed from atoms occurring in F ,

(a) every path in gtl
↑
F ,G contains only finitely many edges labeled by Basic

transition rules,

(b) for any semi-terminal state M ||Γ of gtl↑F ,G , M is a model of F ∧G,

(c) gtl
↑
F ,G contains an edge leading to FailState if and only if F ∧G is unsatis-

fiable.
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We say that a state in the graph gtl
↑
F ,G is a backjump state if its record is

inconsistent and contains a decision literal. As in case of the graph gtlF ,G , any

backjump state in gtl
↑
F ,G is not semi-terminal:

Proposition 10↑

For any CNF formula F and a formula G formed from atoms occurring in F , the

transition rule Backjump GT is applicable in any backjump state in gtl
↑
F ,G .

Proposition 9 (b), (c) and Proposition 10 easily follow from Lemma 13 and Propo-

sition 9↑ (b), (c) and Proposition 10↑ respectively. Proof of Proposition 9 (a) is

similar to the proof of Proposition 9↑ (a).

13 Proofs of Proposition 9↑, Lemma 13, Proposition 10↑

13.1 Proof of Proposition 9↑

Lemma 14

For any CNF formula F , a formula G formed from atoms occurring in F , an ex-

tended record M relative to F ∧ G, and any model X of F ∧ G, if X satisfies all

decision literals in M then X |= M .

Proof

By induction on the length ofM . The property trivially holds for ∅. We assume that

the property holds for any state with n elements. Consider any state M with n +1

elements. Let X be a model of F ∧G such that X satisfies all decision literals in M .

Case 1. M has the form P lΔ. By the inductive hypothesis, X |= P . Since X

satisfies all decision literals in M , X |= lΔ.

Case 2. M has the form P l l∨C . By the inductive hypothesis, X |= P . By the

definition of a reason (i) F ∧ G entails l ∨ C and (ii) C ⊆ P . From (ii) it follows

that P |= ¬C . Consequently, X |= ¬C . From (i) it follows that X |= l ∨ C . We

conclude that X |= l .

The proof of Proposition 9↑ assumes the correctness of Proposition 10↑ that we

demonstrate in Section 13.3.

ıProof of Proposition 9↑

Parts (a) and (c) are proved as in the proof of Proposition 8↑, using Lemma 14.

(b) Let M ||Γ be a semi-terminal state so that none of the Basic rules are applicable.

From the fact that Decide is not applicable, we conclude that M assigns all literals.

Furthermore,M is consistent. Indeed, assume thatM is inconsistent. Then, since

Fail is not applicable, M contains a decision literal. Consequently, M ||Γ is a back-

jump state. By Proposition 10↑, the transition rule Backjump GT is applicable in

M ||Γ. This contradicts our assumption that M ||Γ is semi-terminal.

Also, M is a model of F : since Unit Propagate λ is not applicable, it follows that

for every clause C ∨ l ∈ F ∪ Γ if C ⊆ M then l ∈ M . Consequently, M |= C ∨ l .

Furthermore, M is a model of G: since Test is not applicable, then G 	|= M . We

conclude that M |= G. Consequently, M is a model of F ∧G.
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13.2 Proof of Lemma 13

For a state S in the graph gtl
↑
F ,G , we say that S

↓ in gtlF ,G is the image of S .

Lemma 13

For any CNF formula F and a formula G formed from atoms occurring in F , if S ′

is a state reachable from ∅||∅ in the graph gtlF ,G then there is a state S in the

graph gtl
↑
F ,G such that S ↓ = S ′.

Proof

Since the property trivially holds for the initial state ∅||∅, we only need to prove

that all transition rules of gtlF ,G preserve it.

Consider an edge M ||Γ =⇒ M ′||Γ′ in the graph gtlF ,G such that there is a

state M1||Γ in the graph gtl
↑
F ,G satisfying the condition (M1||Γ)↓ = M ||Γ. We

need to show that there is a state in the graph gtl
↑
F ,G such that M ′||Γ′ is its

image in gtlF ,G . Consider several cases that correspond to a transition rule leading

from M ||Γ to M ′||Γ′:

Unit Propagate λ:

M ||Γ =⇒ M l ||Γ if

{
C ∨ l ∈ F ∪ Γ and

C ⊆ M .

M ′||Γ′ is M l ||Γ. It is sufficient to prove that M1 l
C∨l ||Γ is a state of gtl↑F ,G . It is

enough to show that a clause C ∨ l is a reason for l to be in M l w.r.t. F ∧G, i.e,

F∧G |= C ∨l and C ⊆ M . By applicability conditions of Unit Propagate λ, C ⊆ M .

By the definition of a state F ∧G entails Γ. Since C ∨ l ∈ F ∩ Γ, F ∧G |= C ∨ l .

Test :

M ||Γ =⇒ M l ||Γ if

⎧⎨
⎩

M is consistent,

G |= M ,

l ∈ M .

M ′||Γ′ is M l ||Γ. It is sufficient to prove that M1 l
M
||Γ is a state of gtl↑F ,G . M has

the form l ∨ C . It is enough to show that a clause l ∨ C is a reason for l to be in

M l w.r.t. F ∧ G. It is trivial that C ⊆ M . By applicability condition of the rule,

G |= l ∨ C .

Backjump GT , Decide, Fail , and Learn GT : obvious.

13.3 Proof of Proposition 10↑

For a state M lC ||Γ, we say that a reason C is a backjump clause if there is a

transition Backjump GT leading to M lC ||Γ in gtlF ,G .

In this section F is an arbitrary and fixed CNF formula and G is an arbitrary

and fixed formula formed from atoms occurring in F .

For a record M , by lcp(M ) we denote its largest consistent prefix. We say that a

clause C is conflicting on a list M of literals if F ∧G entails C , and C ⊆ lcp(M ).

Lemmas 10, 11, 12 hold for the case of extended record relative to a formula. The

proofs of the lemmas have to be modified only by replacing Π with F ∧G.

Proposition 10↑ is proved as Proposition 11↑.
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Algorithms BackjumpClause and BackjumpClauseFirstUIP are applicable to the

backjump states of the graph gtl
↑
F ,G .

14 Experiments with Sup

Here we present experimental analysis that compares performance of the system

sup versus cmodels, clasp, smodels, and smodelscc. We start by describing the

implementation details of sup.

The implementation of sup utilizes

• the interface of SAT-solver minisat (v1.12b) that supports non-clausal con-

straints described in (Een and Sörensson 2003) in order to introduce addi-

tional inference possibilities, but unit propagation. In particular, sup im-

plements Backchain True and All Rules Cancelled by means of non-clausal

constraints and it uses the unit propagate of minisat to capture Unit Propa-

gate LP and Backchain False.

• parts of cmodels code that eliminate weight and choice rules; perform model

verification; and compute loop formulas. In particular, sup uses the latter two

parts of cmodels code to capture Unfounded .

In the experiments we used the following versions of the systems: sup v. 0.1,

sup v. 0.2, cmodels v. 3.77 usingminisat v. 1.12b, clasp v. 1.0.5, smodels v. 2.32,

smodelscc v. 1.08 (implemented on top of smodels v. 2.26). System sup (v. 0.1

and v. 0.2) extends the implementation of minisat v. 1.12b. Therefore, we compare

sup performance against cmodels that uses minisat 1.12b for its inference. Sys-

tem sup v. 0.1 stands for a version of sup that implements Unit Propagate LP, All

Rules Cancelled, and Backchain False λ propagation rules, and does not implement

Backchain True. System sup v 0.2, on the other hand, also implements Backchain

True.

All considered solvers use preprocessor lparse (see Footnote 5) to ground the

problems so that the systems are run on identical ground instances. Grounding time

is not accounted for in solving time. All times are reported in seconds. Symbol tout

stands for the fact that a system did not terminate with a solution after 10 minutes.

Sup 0.1, Sup, Cm, Cl, Smcc, and Sm stand for sup v. 0.1, sup v. 0.2, cmodels,

clasp, smodelscc, and smodels respectively. The symbol −t abbreviates the flag

−temp that allows sup to forget learnt clauses due to loop formulas (by default sup

adds these clauses into permanent clause database). The symbol −a abbreviates

the flag −atomreason that forces cmodels, like sup, to add only a clause implied

by some loop formula and unsatisfied by a current model rather than the complete

loop formula unsatisfied by the model. By default, cmodels adds a complete loop

formula unsatisfied by the model. All experiments were run on Intel(R) Pentium(R)

D CPU 3.00GHz, 2 cpu cores, cache size 1024 KB, running Linux.

Table 1 presents the experiments run on tight programs. Recall that for tight

programs (i) the transition rule Unfounded of sup is never used for inference and

(ii) the transition rule Test of cmodels is never used for inference.
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Instance Sup 0.1 Sup Cm Cl Smcc Sm

Towers of Hanoi: http://asparagus.cs.uni-potsdam.de

towers-hanoi.35 6 43.68 92.96 74.03 23.86 115.83 62.19

towers-hanoi.36 6 183.05 70.71 117.56 38.98 112.44 86.01

towers-hanoi.37 6 35.71 30.75 290.65 34.25 84.75 120.53

towers-hanoi.38 6 243.41 233.82 37.03 70.94 99.87 168.88

towers-hanoi.39 6 96.59 tout tout 123.40 384.24 237.90

towers-hanoi.40 6 tout 113.15 30.21 114.39 124.73 329.08

towers-hanoi.41 6 123.00 69.51 103.61 169.43 168.74 466.15

towers-hanoi.42 6 tout 389.88 91.28 182.10 tout tout

towers-hanoi.43 6 tout 42.40 353.74 228.37 204.89 tout

towers-hanoi.44 6 501.80 438.78 498.89 tout tout tout

Pigeon Holes with 10 holes: pgh#pigeons

pgh7 0.18 0.22 0.14 0.10 20.98 1.67

pgh8 0.75 1.10 0.68 1.00 tout 8.87

pgh9 7.60 9.30 4.03 5.73 tout 47.31

Queens Normal Encoding: q.lp.#queens

q.lp.18 0.14 0.14 0.14 0.08 155.62 7.84

q.lp.22 0.28 0.27 0.30 0.14 tout tout

q.lp.24 0.35 0.35 0.38 0.20 tout tout

q.lp.30 0.70 0.71 0.75 0.44 tout tout

Queens Cardinality Constraint Encoding: q.lp2.#queens

q.lp2.18 0.06 0.05 0.06 0.04 147.88 2.24

q.lp2.22 0.11 0.10 0.12 0.08 tout 191.76

q.lp2.24 0.15 0.14 0.17 0.11 tout 267.27

q.lp2.30 0.30 0.28 0.32 0.21 tout tout

TOAST: http://asparagus.cs.uni-potsdam.de

sequence3-ss3-Plain 138.08 49.69 78.45 10.51 444.41 tout

sequence4-ss2-Plain 14.86 14.68 24.50 9.56 99.85 71.42

sequence4-ss3-Plain 408.99 468.25 tout 294.27 tout tout

sequence3-ss2 8.11 9.00 8.34 5.75 79.23 46.07

sequence3-ss3 137.37 49.84 78.45 10.39 444.16 tout

sequence4-ss2 16.13 16.88 13.38 8.96 102.98 74.85

sequence4-ss3 103.33 207.21 16.74 233.09 tout tout

Vertex Cover vcx.# minimum size vertex cover:

http://www.cs.engr.uky.edu/ai/benchmarks.html

vc1.53 8.30 3.23 19.81 tout tout 218.59

vc2.50 11.55 6.76 13.32 94.43 tout 11.73

vc3.55 0.65 4.09 64.44 512.56 tout 10.59

vc4.54 6.49 10.19 23.05 tout tout tout

Table 1: Experiments: Tight problems.

Table 2 presents the experiments run on nontight programs:
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Instance Sup Sup -t Cm Cm -a Cl Smcc Sm

Deterministic Automaton: http://www.fmi.uni-stuttgart.de/szs/

research/projects/synthesis/benchmarks030923.html

mutex3Morin 15.30 15.25 15.68 15.68 15.45 306.30 153.60

mutex4IDFD 0.80 0.74 0.66 0.64 0.80 35.53 13.46

phi3Morin 0.96 0.95 0.62 0.72 0.37 2.50 2.80

phi4IDFD 12.11 14.85 0.39 2.98 0.02 0.31 0.16

phi4Morin tout 448.82 105.54 tout 95.50 tout tout

phi5IDFD tout tout 67.14 tout 138.56 tout tout

Bounded Model Checking:

http://www.tcs.hut.fi/∼kepa/experiments/boundsmodels/

dp10.i.O2.b12 30.88 3.51 10.14 22.29 0.20 tout 63.11

dp10.s.O2.b9 0.54 0.42 0.78 0.68 0.14 26.18 13.04

dp12.i.O2.b14 254.79 88.18 188.89 272.55 7.17 tout tout

dp12.s.O2.b10 5.89 2.01 0.76 2.05 0.72 tout 337.28

dp6.i.O2.b8 0.20 0.20 0.18 0.16 0.02 0.93 0.32

dp8.i.O2.b10 0.98 0.77 1.53 2.60 0.03 12.97 4.12

dp8.s.O2.b8 0.12 0.20 0.15 0.10 0.02 2.58 1.18

Hamiltonian Cycle: http://www.cs.engr.uky.edu/ai/benchmarks.html

hc 1S tout 2.82 tout tout tout tout tout

hc 2S 0.29 5.37 13.50 8.60 0.38 153.44 tout

hc 3S 1.28 8.15 5.94 3.10 tout tout tout

hc 4S 7.08 2.81 tout 0.94 2.18 14.92 tout

Table 2: Experiments: Nontight problems.

Overall the results demonstrated by sup place the system in the class of highly

efficient answer set solvers.

15 Related Work

Simons (2000) andWard (2004) described the smodels and smodelscc algorithms,

respectively, by means of pseudocode and demonstrated their correctness. In this

paper we designed an abstract framework that was used as an alternative method

for describing these algorithms and demonstrating their correctness.

Gebser and Schaub (2006) provided a deductive system for describing inferences

involved in computing answer sets by tableaux methods. The abstract framework

presented here can be viewed as a deductive system also, but of a very different

kind. First, it accounts for phenomena such as backjumping and learning (and also

forgetting and restart) whereas the Gebser-Schaub system does not. Second, we

describe backtracking by an inference rule, and the Gebser-Schaub system does

not. Accordingly, the derivations considered in this paper describe search process,

and derivations in the Gebser-Schaub system do not. Also, the abstract framework
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discussed here does not have any inference rule similar to Cut; this is why its

derivations are paths, rather than trees.

16 Conclusions

In this paper we showed how to model advanced algorithms for computing answer

sets of a program by means of simple mathematical objects, graphs. We extended

the abstract frameworks proposed in (Lierler 2008) for describing native and SAT-

based ASP algorithms to capture such sophisticated features as backjumping and

learning. We characterized the algorithms of systems smodelscc, sup, and cmod-

els that implement these features. We note that the work on this abstract frame-

work suggested the implementation of answer set solver sup and the experimental

analysis presented here demonstrates that sup is a competitive representative in

the family of answer set solvers. The abstract framework simplifies the analysis of

the correctness of algorithms and allows us to study the relationship between vari-

ous algorithms by analyzing the differences in strategies of choosing a path in the

graph. For example, the description of the smodelscc and sup algorithms in this

framework reflects their differences in a simple manner via distinct assignments of

priorities to edges of the graph that characterize these systems. Also we used this

framework to describe two algorithms for computing Decision and FirstUIP back-

jump clauses for the implementation of conflict-driven backjumping and learning.

This formalism provided the transparent means for specifying these algorithms.

We believe that the development of this abstract framework powerful enough to

describe advanced features of answer set solvers in a simple manner will promote

the use of these sophisticated features in more solvers. This work helped us design

the new solver sup, and we hope that in the future it will suggest designs of other

systems for computing answer sets.
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