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Abstract—

Fragment-based approaches have now become an important
component of the drug discovery process. At the same time,
pharmaceutical chemists are more often turning to the natural
world and its extremely large and diverse collection of natural
compounds to discover new leads that can potentially be
turned into drugs. In this study we introduce and discuss
a computational pipeline to automatically extract statistically
overrepresented chemical fragments in therapeutic classes, and
search for similar fragments in a large database of natural
products. By systematically identifying enriched fragments in
therapeutic groups, we are able to extract and focus on few
fragments that are likely to be active or structurally important.
We show that several therapeutic classes (including antibac-
terial, antineoplastic, and drugs active on the cardiovascular
system, among others) have enriched fragments that are also
found in many natural compounds. Further, our method is able
to detect fragments shared by a drug and a natural product
even when the global similarity between the two molecules is
generally low. A further development of this computational
pipeline is to help predict putative therapeutic activities of
natural compounds, and to help identify novel leads for drug
discovery.

I. INTRODUCTION

A crucial factor for realizing the promises of personalized
medicine is the availability of novel and safe drugs to modulate
the increasing number of targets that are being identified. Of
all the medical branches, oncology is posed to be among those
that could benefit the most from a new array of therapeutics [1].

Despite substantial progress in understanding the molecular
basis of human cancers, there is still a pressing need for more
effective, rational and personalized treatments. A few drugs for
specific cancer types have achieved a good degree of selectivity
with relatively low toxicity, but for the vast majority of human
cancers, standard chemotherapy regimens (with their related
toxicity) remain the only viable option. However, the situation
is rapidly changing.
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Breakthroughs in cancer genomics are now leading to
the identification of new actionable targets [2], opening up
unprecedented opportunities for personalized treatment. As
a result of our improved understanding of cancer biology,
with some notable exceptions the search for “silver bullet”
therapies has now largely been replaced by a quest for novel
targets that can be simultaneously modulated by combinatorial
therapies [1], [3], akin to what has been accomplished for the
treatment of HIV infections [4]. As a result, a vast number of
suitable new drugs will soon be required to modulate a large
array of cancer targets.

Another area where the availability of new effective drugs
is becoming a pressing need is the treatment of infectious
diseases, as antibiotic-resistant bacteria are becoming more
common and widespread and are a cause for serious con-
cern [5].

The natural product derived structure plays a significant
role in the discovery of novel pharmaceutical agents and/or
bioactive molecules. The anti-diabetic activity in lupins has
been attributed to quinozolidine alkaloids [6] and a review of
the literature shows many such examples of natural products
as sources of new drugs [7] including Paclitaxel, which is
one of the most widely prescribed anticancer drugs on the
market. Most of the natural products are biologically active and
have favorable absorption, distribution, metabolism, excretion
and toxicology properties. Plants are often the predominant
source for the discovery of natural products due to the relative
ease of access. However, more recently microbial as well as
marine sources have been identified as alternative resources,
particularly for antibiotics [8]. Several databases of natural
products have been published and reviewed [9], [10], [11],
[12].

Although many pharmaceutical companies emphasize high
throughput (HTP) screening of combinatorial libraries, natural
products continue to provide enormous structural and chemical
diversity to guide the careful design of drug-like leads. More
importantly, the products of HTP screening often do not inter-
act well with biomolecules and induce unexpected and possibly
severe side effects. Therefore, over the years (since 1980)



only 2 drugs obtained through the HTP screening have been
approved by the FDA, while over 85 drugs are either natural
products-based or compounds derived from them [13], [14]. In
the past decade, several databases focusing on the collection
of medically important natural products and medicinal herbs
have been established [10], [11] and the use of computer aided
drug design including virtual screening of large databases has
become an important part of the drug discovery process [15].

Pharmaceutically relevant natural products are of low
molecular weight and often restricted to special plant families.
While these compounds are not important for the primary
metabolism of the plants, they are of great importance for
their survival in a given environment. Therefore, medicinally
important plants are often collected from the wild or their
natural habitat and are more likely to be endangered due
to severe over collection [16]. Unfortunately, we still have
limited knowledge about plant secondary metabolism, its reg-
ulation, molecular mechanisms concerning gene expression
and rate-limiting enzymes found within a diverse network of
biosynthetic pathways in living organisms.

While molecular biology and biotechnology are being
used to produce phytopharmaceuticals and natural pesticides,
integration of different disciplines in plant sciences including
computational strategies are necessary to unravel metabolic
networks and to elucidate the biosynthesis of pharmaceuti-
cally relevant secondary metabolite. With the development
of the fragment-based method described in this study, it is
now possible to determine potentially important structures in
natural products in silico, which may be investigated further to
determine their pharmaceutical value as lead or intermediate
compound, and potentially produced by cells cultivated in
vitro utilizing plant biotechnology methods. To the best of our
knowledge, this is the first time that a fragment-based approach
using enrichment analysis is applied to identify potentially
important chemical fragments in natural products.

II. MATERIALS AND METHODS
A. Obtaining and representing drugs and natural products

The DrugBank database [17] (version 4.1) was used to
obtain information on drugs that were approved for therapeutic
use in at least one country. The initial set of drugs contained
1,554 molecules. Natural products were obtained from the
SuperNatural II database [12], containing 325,508 molecules.

Drugs and natural products were represented using the
SMILES system [18], a widely used notation that makes it pos-
sible to encode chemicals as ASCII strings. SMILES strings
for drugs and natural products were directly obtained from the
DrugBank and SuperNatural II databases, respectively.

B. Fragmenting the molecules

Both drugs and natural products were fragmented with
the fragment program, part of the molBLOCKS suite [19],
which breaks molecules along chemically important bonds
and returns the corresponding fragments (or putative building
blocks). The list of chemical bonds that were used by the
program to fragment the molecules is shown in Figure 2, and is
based on Lewell et al. [20]. The minimum size for a fragment
was set to four atoms, and the fragmentation was carried out

with the “extensive” flag turned on, which yields all possible
fragments that can be generated given the list of chemical
bonds of interest [19].

It is noteworthy to mention that the fragmentation rules are
encoded as SMARTS (SMiles ARbitrary Target Specification),
an extension to the SMILES notation created by Daylight
Chemical Information System, Inc. and widely
used in computational chemistry. Using SMARTS patterns the
particular bonds that are to be cleaved are encoded as regular
expressions, making it straightforward to add other cleavable
bonds to the fragmentation rules.

C. Clustering fragments

Drug fragments obtained as described above were clustered
with the analyze [19] program using standard parameters.
In order to compute the fragment similarity for clustering, the
program converts the fragment to a fingerprint representation,
based on linear segments of up to 7 atoms in length (FP2
fingerprints [21]). The fingerprints are stored as bit arrays,
where the presence or absence of a particular linear segment
is represented by a 1 or 0, respectively. The FP2 fingerprint
representation is obtained via the Open Babel library'. Then,
the Tanimoto coefficient T between two fragments x and y is
computed as:

_ Zz Xi NY;
B Zz Xi VY
where X and Y are the bit array representations of the linear

segments found in fragment = and y, respectively, and A and
V are the bitwise and and or operators.

Ts ey

The analyze program computes pairwise similarities be-
tween fragments and converts them to a graph representation,
where an edge between fragments indicates a pairwise Tani-
moto greater than the chosen threshold, which was set to 0.7 in
this study. Subsequently, the program extracts the connected
components of the graph, and selects the representative ele-
ment for each cluster as the fragment with the highest average
similarity against all the other fragments in the cluster.

D. Extracting enriched fragments for each ATC code

In order to assign functional categories to drugs, we used
the Anatomical Therapeutic Chemical (ATC) classification
system?, a widely used nomenclature that organizes drugs
according to the organ or system which they modulate and
their therapeutic properties. The ATC code system is hierar-
chically organized into five levels of increasing specificity. We
considered the second level, which describes the therapeutic
main groups. We note that a single drug can be annotated with
multiple ATC codes, if it has multiple therapeutic indications.
For this study, to get meaningful statistics we selected all the
ATC codes that annotated at least 10 distinct drugs.

Enrichment analysis was carried out in order to identify
the specific fragments (or clusters of fragments) that appear in
a set of molecules more frequently than expected by chance,

Thttp://openbabel.org/wiki/Tutorial:Fingerprints
Zhttp://www.whocc.no/atc/structure_and_principles/



given a background distribution. In this study the background
was represented by the union of all approved drugs.

The analyze program uses the hypergeometric distri-
bution to model the probability of obtaining a number of
fragments (or clusters of fragments) equal to or greater than
the observed by chance alone:

iy 3 (B0

= ()

where N is the total number of fragments; K is number of

2

fragments of the given type; n is the total number of fragments
in the main set; and « is the total number of fragments of the
given type in the main set.

The program returns both uncorrected p—values and False
Discovery Rate (FDR) corrected p—values, obtained with
the procedure of Benjamini-Hochberg [22]. In this study we
selected fragments that were enriched with an FDR < 0.05.

E. Comparing enriched fragments in the drug dataset against
fragments from natural compounds.

The final step of the pipeline involves the comparison
between enriched fragments from the drug dataset against
fragments obtained from the natural compounds set. In order
to calculate the pairwise similarity between each of the en-
riched drug fragments and each of the fragments from natural
compounds we used the Tanimoto coefficient (see equation 1).
To carry out the calculations we wrote an in-house program
that uses the Python API [23] of the OpenBabel library [21],
and retained the drug fragment—natural product fragment pairs
that had a Tanimoto similarity > 0.9.

F. Computational requirements.

The most time-consuming step of the pipeline is rep-
resented by the pairwise fragment comparison, which took
approximately 12 hours on a 24-core machine. Fragmentation
of the 325,509 molecules found in the SuperNatural II database
took approximately eight hours on a 24-core machine, bringing
the entire analysis to roughly 20 hours.

III. RESULTS

A. A computational pipeline to systematically compare func-
tionally relevant drug fragments and natural products

We set out to systematically compare approved drugs
obtained from the DrugBank database [17] against a large
collection of natural products, assembled in the SuperNatural
IT database [12]. The novelty of our approach consists first in
extracting the fragments that are statistically overrepresented
in each pharmacological category, and then in comparing
those fragments against the ones derived from the natural
compounds.

The rationale behind this approach is twofold. On the one
hand, chemical fragments capture important properties of the
full molecules, and on the other hand they may be shared by
otherwise globally dissimilar molecules, which might go un-
detected when using a global similarity measure. The pipeline
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Fig. 1. Simplified overview of the pipeline. Each approved drug (ob-
tained from Drugbank [17]) is assigned a therapeutic class using the ATC
nomenclature. The drugs are then broken down into fragments using the
molBLOCKS software [19], and enrichment analysis is performed on each
therapeutic class to identify statistically overrepresented fragments (FDR
< 0.05). Each overrepresented fragment is then compared against similarly
obtained fragments from a database of natural compounds (SuperNatural
1I [12]), and (see Materials and Methods for further details).
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Fig. 2. RECAP rules used to fragment drugs and natural products.
The 11 eleven types of chemical bonds depicted above (green dashed lines)
indicate the potential sites that can be broken in the small molecules, resulting
in smaller fragments. These 11 fragmentation rules were derived from Lewell
et al. [20], and are believed to capture chemically relevant synthetic reactions
that combine building blocks into more complex molecules.

is briefly outlined in Figure 1, which shows the main steps
of the procedure. More details are found in the Materials and
Methods section of the paper.

In order to fragment the molecules we used the
mo1BLOCKS suite [19] with the RECAP rules [20] (Figure 2),
which allow us to break small molecules apart along chem-
ically important bonds. It is noteworthy to mention that in
several cases no fragmentation rule applies to a small molecule,
which is then left as it is and treated as a whole fragment. In
our initial dataset of 1,543 approved drugs we were able to
fragment 949 (62%) of the drugs. The remaining ones, for
which no fragmentation RECAP rule applies, were treated as
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Fig. 3. Distribution of enriched fragments and matching natural
compounds per ATC code. Panel (a) shows the number of drug fragments
that are enriched in given therapeutic categories (ATC codes) that have at least
one matching fragment in the set of natural compounds. Panel (b) shows the
total number of natural compounds whose fragments match one or more of
the enriched drug fragments in each therapeutic category.

one fragment. In the case of natural products, the fragmentation
rules applied to 174,156 (54%), and the remaining molecules
were treated as one fragment.

Subsequently, we grouped drugs by Anatomic Therapeutic
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Fig. 4. Examples of fragments shared by natural compounds and drugs
in the absence of high global similarity. The two examples shown here illus-
trate how a fragment-based approach can automatically detect commonalities
between molecules that are globally different. Panel (a) shows a tetracyclic
fragment present both in a natural compound and in an anti-cancer agent
(Paclitaxel). In spite of the common core shared by the two molecules, the
Tanimoto similarity between the drug and the natural compound is relatively
low (0.56).

In panel (b), the beta-lactam ring is detected (which a small variation) in both
an approved antibiotic (tazobactam) and a natural compound (SN0240101).

However, the Tanimoto similarity between the natural compound and tazobac-
tam is low (0.49).



Code, which gives the therapeutic group of a drug (e.g., “LO1”
stands for “Antineoplastic Agents”, “C03” for “Diuretics”,
etc.). Multiple membership of a drug in several ATC groups
was allowed if the drug was annotated in DrugBank with
multiple ATC codes. We ended up with 40 ATC groups,
each containing at least 10 distinct drugs. For each ATC
group, we performed clustering of the fragment followed by
enrichment analysis with the molBLOCKS suite, extracting
statistically overrepresented fragments for each group, with an
FDR < 0.05. The total number of enriched fragments across
all therapeutic groups was 141.

In the last step of the pipeline, we systematically compared
the enriched fragments from each ATC group against the
fragments obtained from the natural compounds, and retained
for further analysis all the pairs that had a Tanimoto similarity
> 0.9.

B. Drugs and natural compounds are related at the fragment
level in specific therapeutic groups

We considered the number of fragments for each ther-
apeutic group with at least one matching fragment in the
natural products dataset, obtaining the distribution shown in
Figure 3(a). The top-ranking group was represented by the
antibacterial drugs, followed by drugs active on the cardiovas-
cular system, antiviral drugs, antineoplastic drugs, and anti-
inflammatory drugs. The prominence of antibacterial drugs in
this list is consistent with the importance that natural products
have had in the development of antibiotics [24].

An alternative way of analyzing these data is to consider
the number of natural products whose fragments match at least
one of the fragments in each therapeutic group. The results are
shown in Figure 3(b). The therapeutic group with the largest
number of natural products is now the anti-inflammatory class,
closely followed by diuretic drugs, muscle relaxants, and
corticosteroids.

C. Case studies

In Figure 4(a) and 4(b) we show two examples of fragments
shared by a drug and a natural product in the context of
low global similarity. One of the advantages of our fragment-
based approach is the automatic identification of common and
chemically important building blocks among molecules that
may be globally dissimilar.

A proof of concept is given by the anticancer drug Pacli-
taxel and the natural product SN00162945 (Figure 4(a)), which
share a tetracyclic core but have different substituents. In fact,
Paclitaxel itself was first isolated from the bark of a yew,
and belongs to the taxane family, whose members all share
the core fragment shown in the figure (or a closely related
variation). However, because of the different substituents in
the two molecules, the Tanimoto coefficient between Paclitaxel
and SN00162945 turns out to be only 0.56.

Another example that showcases the power of using frag-
ments is shown in Figure 4(b). The antimicrobial Tazobactam
contains a (-lactam ring, which is the building block of
a highly important group of widely prescribed antibiotics,
including penicillin, cephalosporins and carbapenems, and it
occurs in several natural compounds. As in the example of

Figure 4(a), Tazobactam has a low Tanimoto similarity (0.49)
for the natural product SN00240101, in spite of the fact that
they both share the (-lactam ring.

IV. DiscUSSION AND CONCLUSIONS

The natural world as a source of highly diverse and com-
plex chemicals has always been of value to synthetic chemists,
and is becoming even more relevant today, given the output
slump of the pharmaceutical industry. The pipeline introduced
here allows to automatically detect relationships between small
molecules using a fragment-based approach. Using a fragment-
based approach is motivated by the fact that natural products
are often assembled from independent building blocks via a
chain of enzymatic reactions. These processes are somewhat
similar to what is common practice in synthetic chemistry.

By first extracting statistically overly represented fragments
for each therapeutic class we reduced the complexity of the
approved drugs to a handful of chemical fragments that are
likely to be responsible (at least in part) for the pharmaceutical
activity of the given drugs, or are important as chemical
scaffolds. Comparing these fragments against the fragments
obtained from a large library of natural products allowed us
to establish potential relationships between drugs and natural
products even in the absence of high global similarity between
the molecules. As an analogy, we could compare this fragment-
based approach to a local sequence alignment procedure, which
can identify highly similar protein domains among globally
different protein sequences.

As a note of caution, we should mention that the choice
of the Tanimoto similarity thresholds or the stringency of the
fragment clustering step would affect the final results, in that
more or less matching fragments would be found depending
on how stringent the parameters that control the similarity are
set to be. Unfortunately, there are no hard and fast rules to
guide the user in the choice of parameters. However, as it is
often the case in bioinformatics applications, the results should
be interpreted as a guide to help design further experiments
or perform more thorough literature searches. In this context,
our pipeline could be used to ask the question of whether
a natural product that happens to share a fragment with an
antihypertensive drug does in fact have pressure lowering
activity. Alternatively, the pipeline could be used to investigate
whether a natural product shows potential as a lead compound
for a given therapeutic indication.

In the future we plan to further test the pipeline and extend
it by including the sources of natural products. Although
this may not be possible for all compounds, databases like
the “Universal Natural Product Database” [11] (contained in
SuperNatural II) do include source information for several
compounds. Combined with metabolic information on plant
and microbial pathways, this will yield a better understanding
of natural product synthesis. As shown by a pioneering study
by Runguphan et al. [25], this could eventually lead to co-
opting natural systems for engineering better drugs.
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