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Academic course scheduling is a complex operation that 
requires the interaction between different users including 
instructors and course schedulers to satisfy conflicting 
constraints in an optimal manner. Traditionally, this 
problem has been addressed as a constraint satisfaction 
problem where the constraints are stationary over time. 
In this paper, we address academic course scheduling as 
a dynamic decision support problem using an agent-
enabled adaptive decision support system. In this paper, 
we describe the Intelligent Agent Enabled Decision 
Support (IAEDS) system, which employs software 
agents to assist humans in making strategic decisions 
under dynamic and uncertain conditions. The IAEDS 
system has a layered architecture including different 
components such as a learning engine that uses historic 
data to improve decision-making and an intelligent 
applet base that provides graphical interface templates to 
users for frequently requested decision-making tasks. 
We illustrate an application of our IAEDS system where 
agents are used to make complex scheduling decisions in 
a dynamically changing environment.  
 
Keywords:  Course Scheduling, Adaptive Decision 
Support System, Software Agents 

 
     The advent of the Internet has enabled interaction between users using different 
formats such as text and multimedia, over geographically dispersed areas, for solving 
complex problems. Rapid interaction between users over the Internet has already 
automated various processes including file-sharing and e-commerce. In this paper, we 
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address the problem of academic course scheduling in a networked environment. 
Academic course scheduling constitutes a complex problem that requires the interaction 
between different users including instructors and course schedulers to resolve conflicting 
constraints in an optimal manner. Traditionally, this problem has been addressed as a 
constraint satisfaction problem where the constraints are available at the central location 
that performs the course scheduling. Here, we address academic course scheduling in a 
networked environment using intelligent agents within a decision support framework. 
     Decision Support Systems (DSS) comprise software systems that assist humans in 
making complex decisions in real-life problem domains. With the advent of the Internet 
and powerful computing devices over the last decade, dynamic and intelligent decision 
support is rapidly emerging as the new research direction in the field of decision support 
systems. Decision-making problems in real life are characterized by complex, 
unstructured nature of problem domains, unpredictable outcome of decisions due to the 
dynamic nature of problems and information, and the potential risks associated with 
making an incorrect/inaccurate decision. In such a scenario, a naive model that uses a 
stationary mapping from situation to decision is inadequate for making correct decisions. 
The information from prior decisions needs to be adapted to the constraints and 
parameters specified by the current environment to make an accurate decision in a 
dynamic scenario. With the development of software technologies such as intelligent 
agents, it is now possible to address the fundamental challenge of combining real-time 
environmental data with existing decision rules and historical knowledge about the 
domain obtained from previous experience. In this paper, we address the problem of 
dynamic decision making using a software agent enabled adaptive DSS that combines 
real-time environmental data with existing decision rules and historical knowledge about 
the domain to engender informed decision making. 
     The rest of the paper is organized as follows. In the next section, we establish the 
background of this research by discussing related work on DSS and software agents. We 
elaborate on the notion of agent-enabled DSS in the next section and describe our 
Intelligent Agent-Enabled Decision Support (IAEDS) architecture after that. 
Subsequently, we illustrate the proposed IAEDS architecture with a detailed discussion of 
a dynamic academic course scheduling system. In the final section, we summarize this 
paper and discuss future research directions.  

 
RELATED WORK 

 
     DSS are software applications that have been used over the last few decades to 
provide support for many structured and unstructured problems such as strategic 
planning, investment planning, stock portfolio management, enterprise planning, human 
resources management, supply chain planning, knowledge management, case-based 
reasoning and help desk automation (Clemen, 1996; Mallach, 2000; Marakas, 1998; 
Mora, Forgionne, & Gupta, 2002; Turban and Aronson, 1997). DSS components such as 
knowledge management systems, model management systems and data management 
systems aid humans in making better decisions by incorporating previous knowledge and 
information about the domain. Over the past two decades, decision support systems and 
software agent enabled systems have been researched independently both in academia 
and in commercial applications. Several businesses have successfully implemented 
decision support systems to solve problems including human resources management, 
supply chain planning, help desk automation, and placement of new office locations. 
Most of these decision support systems use static models of the problem domain because 
the underlying data in these applications does not change drastically over time. Some 
dynamic decision models are used in applications such as sales forecasting, predicting 
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consumer responses and deciding company strategies. Decision support using dynamic 
models is more complicated because it involves parameters that change over time and are 
difficult to predict or estimate beforehand. Although dynamic decision support systems 
have been developed successfully, not many applications exist that intelligently 
incorporate the dynamics of a real-time setting into the decision making process. 
Intelligent software agents provide a technology that can be used to obtain knowledge 
from dynamically changing environments and thus potentially allowing DSS users to 
make more informed and accurate decisions (Mora et al., 2002). 
     Software agents (Russell & Norvig, 2003; Weiss, 1999) are used widely in various 
applications such as searching information on the Web (Dasgupta, Narasimhan, Moser, & 
Melliar-Smith, 1999; Knapik & Johnson, 1997), tracking browsing behavior of online 
users (Sahai, Billiart & Morin, 1997), implementing trading algorithms for online 
auctions (Sandholm, 2002), assisting humans in online activities such as filling forms or 
presenting information in a concise form (Padgham & Winikoff , 2004), and, even for 
security and privacy applications such as detecting spyware, implementing security 
policies on Web servers, and, filtering spam (Dasgupta, Moser & Melliar-Smith, 2000). 
For example, MySimon.com uses software agents to compare the prices of items from 
different online sellers while online merchants such as Amazon.com and E-bay employ 
software agents for adjusting the prices of items dynamically depending on factors such 
as consumer preferences and market demand. In the Virtual Information Processing 
Agent Research (VIPAR) project that is targeted for military applications, intelligent 
software agents are used to extract relevant information from data collected from various 
sources into a form that can be analyzed by humans (Potok, Elmore, Reed, & Sheldon, 
2003). Recently, the LogNet system being developed for Boeing uses decision support 
techniques enabled by an agent based learning engine to determine re-supply decisions 
for fuel, ammunition and medical supplies during wartime. The real-time information 
obtained from the battlefield is used to improve logistics by observing correlations 
between current situations and the outcomes of past re-supply decisions.  
     Academic course scheduling or timetabling has been traditionally viewed as a 
constraint satisfaction problem (Blanco & Khatib, 1998; Dignum, Nuijten, & Janssen, 
1995). Various techniques including linear programming (Carter, 1986), logic 
programming (Frangouli, Harmandas, & Stamatopoulos, 1995; Stamatopoulos, Viglas & 
Karaboyas, 1998), genetic algorithms (Burke, Elliman & Weare, 1995; Elmohamed, 
Coddington, &  Fox, 1998), self adaptive algorithms (Socha, Sampels, & Manfrin, 2003) 
and heuristic-based approaches (Burke, Elliman, & Weare, 1994; Lewandowski & 
Condon, 1996) have been used to resolve conflicts in course scheduling problems. 
However, most of these algorithms assume that the constraints are already available at the 
central location performing the course scheduling. In this paper, our focus is on 
addressing course scheduling problems in a distributed environment within the 
framework of a decision support system using software agents. 
 

DYNAMIC DECISION SUPPORT USING SOFTWARE AGENTS 
 

     A dynamic environment is characterized by non-deterministic and possibly rapid 
changes. DSS operating in dynamic environments should therefore adapt the decision 
making procedure to the current parameters and constraints of the real-time environment 
to assist the decision maker in reaching an accurate and effective decision. Making the 
correct decision can be looked upon as solving a constraint satisfaction problem given the 
relevant historical information and a set of parameters describing the current 
environment. For complex applications, the solution of this problem can become quite 
involved. Therefore, it is difficult, and at times even impossible, for humans to make 
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correct decisions without any computational aid. Software agents provide a suitable 
paradigm for automating complex tasks and solving complex problems more accurately 
and rapidly than humans. Software agents can enhance traditional DSS by rapidly 
updating and using knowledge and domain information from a DSS so that the agents can 
respond efficiently and accurately to user queries.  
     An agent is a software entity that can autonomously perform the tasks that have been 
encoded into it without continuous supervision (Bigus & Bigus, 2001; Bradshaw, 1997; 
Weiss, 1999, Wooldridge, 2002). Besides being autonomous, a software agent is 
characterized by the following key features: 

• Goal-directed: An agent can be provided with a goal such as making a 
decision on a particular attribute of a system. The tasks that are encoded into 
the agent enable it to work towards that goal. 

• Reactive: An agent responds to its queries or requests from its environment 
and takes responds to those queries through actions. 

• Pro-active: An agent is also self-motivated to perform actions that help it to 
achieve its goal more efficiently. 

     Software agents can also be adapted to provide support for strategic decision-making 
and/or semi-structured problem solving. For example, a software agent can be 
programmed to dynamically learn system parameters and use these parameters to 
improve or evolve its actions so that it can reach its goal more efficiently. However, the 
knowledge that an intelligent agent acquires during execution cannot be stored beyond its 
lifetime. Discarding this knowledge would also be inappropriate as later decisions might 
require the experience gained by previous agents. An intelligent agent is frequently 
augmented with a knowledge base to store the experiences it acquires from the 
environment (Bui & Lee, 1999; Power, 2000). DSS contain components such as 
knowledge management subsystems, data management subsystems and model 
management subsystems that store domain data, knowledge and rules for enabling the 
decision process (Turban, 2001). In consequence, an intelligent agent enabled decision 
support system can potentially store the knowledge gained by software agents in a 
knowledge base along with existing rules governing the domain and data about the 
environment. 
 

IAEDS SYSTEM ARCHITECTURE 
 
     The objective of our proposed Intelligent Agent Enabled Decision Support (IAEDS) 
system architecture is to combine the advantages from the domains of software agent 
enabled computing and decision support systems. Traditional DSS comprise knowledge 
and rules that are static in nature. The knowledge gained by software agents can be used 
to dynamically update the information stored in a DSS so that it can respond to user 
queries and requests more efficiently. Our proposed IAEDS system architecture 
combines software agent based computation with a dynamically updated DSS. The 
software model for the IAEDS system is illustrated in Figure 1. The functionality of the 
system can be broadly categorized into two separate layers; viz., a software agent layer 
that encapsulates the operation of agents and a decision support layer that contains the 
modules for decision support.  
 
SOFTWARE AGENT LAYER 
 
     The software agent layer contains the tasks performed by the intelligent software 
agents in the IAEDS system. These tasks include: 
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• Extract and filter the user query. 
• Translate the user query from a Web-based markup language such as XML 

into a domain specific query language understandable by agents. We propose 
to use FIPA ACL (FIPAACL, 2004) as the language for interactions between 
our agents. FIPA ACL is a performative based language that has been 
proposed and adopted by the Foundation for Intelligent Physical Agents 
(FIPA) as the standard for interoperations between heterogeneous software 
agents. 

• Create and execute agents to perform the tasks requested by the user.  
• Store reusable agents in an agent repository for performing frequently 

requested tasks. 
• Assimilate the knowledge gathered by the agents to improve the system’s 

intelligence and decision-making capabilities. 

 
 

 
      

Figure 1. High-level Schematic for IAEDS System 
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Figure 2. Detailed IAEDS System Architecture 
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     The different modules designed to perform these tasks are illustrated in the IAEDS 
system architecture shown in Figure 2. The software agent layer is initially equipped with 
software agents that are capable of performing common tasks in the problem domain. The 
agents learn from their actions (Mitchell, 1997) and update the agent repository, and, data 
and knowledge bases in the decision support layer while the system operates. As the 
knowledge about the domain increases, the agents are dynamically evolved to perform 
tasks that are more complex. The specific functionality of each of these modules is 
summarized in Table 1. 

 
Table 1. Functionality of Modules in the Software Agent Layer 

Module Functionality 
User Query 
Module 

User enters query through an XML annotated GUI. 
A query parsing agent converts the query into the FIPA ACL syntax 
The query-parsing agent then validates the query for consistency by accessing the domain 
and knowledge management subsystems. 
The validated query is forwarded to the agent creation module. 

Agent 
Creation 
Module 

Creates an agent for performing the specific action requested in the query. 
Looks up in the agent repository to detect previously created agents with similar 
functionality as that desired in the current query. 
If such an agent is found, it is cloned from the agent repository and adapted to execute the 
current query. Cloning the agent supports asynchronous operation of the system. If an agent 
with a similar functionality is once again required before the current query completes, the 
agent from the repository can be cloned again without waiting for the agent executing the 
current query to complete its operation. 
If an agent with the desired functionality is not found in the repository, a new agent is 
created and its information is entered in the agent repository. 

Agent 
Execution 
Platform 

An agent runs on the agent execution platform to perform tasks outlined in user-query. The 
agent needs to access the components in the decision support layer to determine whether its 
actions are consistent with the domain knowledge and rules. 
After execution, the agent is stored in the agent repository. 
The result of agent execution is returned to user through the GUI. 

User Response 
Log 

The user expresses his or her level of satisfaction with the query from the results returned by 
the agent on a predetermined scale.  
User responses are logged in the user response log along with the identity of the agent that 
executed the query. 
The contents of the user response log are used to update the knowledge management 
subsystem in the decision support layer. 

Agent 
Repository 

Contains agents created by the agent creation module.  
Description of its behavior,  
     Actions taken by the agent during execution and 
     Responses returned by users after the agent's execution. 

Learning 
Engine 

Uses machine-learning techniques to combine information about the agents stored in the 
agent repository and information about the domain from the decision support layer.  
Updates and refines the facts and rules stored in the knowledge management subsystem 
within the decision support layer 
Uses domain knowledge that it gathers from the software agents and the knowledge 
management subsystem to create intelligent applets that aid the user.  
Applets are equipped with the knowledge obtained from executing tasks requested by 
previous users of the IAEDS system; they present a more intelligent and educated interface 
to the user than the basic GUI. 

Intelligent 
Applet 
Repository 

Contains applets generated by the learning engine. 
As new applets are generated, they are made accessible to the user 
Agents in the user query-parsing module also check the applet repository while performing 
consistency checks on user queries. 
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DECISION SUPPORT LAYER 
 
     The decision support layer performs the traditional functions of a DSS and also adapts 
and improves itself from the results returned by the agents in the software agent layer. As 
shown in Figure 2, this layer comprises a data management subsystem, a model 
management subsystem, and a knowledge management subsystem. The functionality of 
each of these subsystems is summarized in Table 2. 
 
Table 2.Functionality of Modules in the Decision Support Layer 

Module Functionality 
Data 
Management 
Subsystem 

Comprises a database for storing the data and information gathered from the 
environment by the software agents, and a system to access that data through a 
query tool.  

Model 
Management 
Subsystem 

Encapsulates the analytical model employed by the decision support layer to 
solve the decision-making problem.  
Different parameters associated with the decision-making problem are 
provided as input and the model finds the optimal solution to the problem for 
the present set of inputs.  
The model is refined dynamically with the feedback given by the users so that 
it can predict the optimum result more accurately.  

Knowledge 
Management 
Subsystem 

Contains the knowledge and rules for the domain.  
Initially, the knowledge and rule bases are provided with information obtained 
from historical data or from simulation runs.  
As software agents gain information from the environment, the knowledge 
base is updated with new knowledge and rules.  

Query Handler Accepts queries sent to the decision support layer from the software agent layer 
and hands it over to the appropriate subsystem within the decision support 
layer. 
Obtains the relevant information from all the subsystems in the decision 
support layer and returns a single coherent reply to the software agent layer. 

 
AN ACADEMIC COURSE SCHEDULING SYSTEM USING IAEDS 

 
     In academic environments such as school, college, and university courses that are 
offered during a particular term have to be assigned to instructors. The person 
coordinating the course assignments also has to ensure that there are rooms available to 
teach the courses, match the contents of courses with the teaching interests of different 
instructors and resolve possible conflicts between different course schedules. The course 
assignment problem can therefore be viewed as a non-trivial constraint satisfaction 
problem. In our IAEDS-enabled course scheduling system, we use software agents that 
utilize information including the course schedules of previous terms, the estimated 
number of students for every course, availability of different classrooms, and the research 
and teaching interests of different instructors, to develop a preliminary assignment of 
courses to instructors. A mobile scheduling agent then requests every instructor to 
respond to the preliminary course assignments. The final course schedule is determined 
by resolving any conflicts that might have arisen after assimilating the instructors' 
responses.  
     We use IBM Aglets (Lange, D. & Oshima, 1998) to implement our course scheduling 
system. Aglets are Java enabled mobile agents that encapsulate the program logic and can 
be transported using HTTP between different computers. A computer should run an aglet 
server on a specified port to be able to send, receive and host aglets. An aglet is 
implemented as a Java thread that can be stopped, packaged into bytecode and transferred 
to a remote site running an aglet server. On reaching the remote site, the aglet’s bytecode 
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is deserialized and the aglet’s execution thread is resumed. A mobile aglet visiting a 
remote site can interact with the remote site through intermediaries in the form of 
stationary aglets to extract information and perform tasks remotely. 
 

 
 
EXTRACTING INSTRUCTORS’ PREFERENCES 
 
     As shown in Figure 3, human users interacting through aglet servers running on 
remote machines represent the instructors in our system. The steps for extracting the 
instructors’ preferences are the following: 

1. A central administrator site is used to initiate and coordinate the activities in the 
course scheduling system. The administrator site contains a stationary 
coordinatorAgent that obtains the information about the courses to be offered for 
the current term from the human course administrator through a GUI. 

2. The coordinatorAgent then accesses the database within the Knowledge 
Management Subsystem (KMS). The database contains information about 
previous course schedules including instructor assignments, teaching preferences, 
preferred class timings, and student enrollment. For existing courses, the 
coordinatorAgent utilizes the course information already present in the KMS. For 
new courses, or courses that require an instructor or schedule change from 

Figure 3: Schematic of operation for an IAEDS course scheduling system 
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previous offerings, the coordinatorAgent determines the instructor that is best 
qualified to teach the course from the KMS. 

3. After gathering the relevant information from the KMS, the coordinatorAgent 
creates one mobile schedulerAgent for every instructor available during the 
current term. The schedulerAgent carries within it the preliminary course 
allotment for the instructor and information about other courses that the 
instructor is eligible to teach for the current term.  

4. When the schedulerAgent arrives on an instructor's machine, it interacts with a 
stationary interfaceAgent on the machine and displays a preliminary course 
allotment through a GUI. The instructor can respond in one of the following 
ways: 

• Accept all the course allotments without making any changes. 
• Respond indicating the attributes such as time or classroom for one or 

more courses that are unacceptable. 
• Respond with a prioritized list of courses including courses that are not 

allotted to the instructor, but the instructor is eligible to teach.  
5. After the schedulerAgent obtains a response from the interfaceAgent of the 

instructor site, it reverts to the administrator site. 
6. After all the schedulerAgents that had been dispatched to the different instructors' 

machines return to the administrator’s site, the coordinatorAgent extracts the 
instructors' responses. At the end of this step, the instructors’ preferences from 
the different instructors are available on the administrator site. The 
coordinatorAgent then proceeds to resolve potential conflicts between the 
different instructors’ preferences. 

 
RESOLVING CONFLICTS BETWEEN INSTRUCTORS’ PREFERENCES 
 
     Conflicts can arise between instructors’ preferences when two or more instructors 
request simultaneous and exclusive access to the same resource such as courses, 
classrooms, class timings, etc. For example, two or more instructors might prefer to teach 
at the same time in the same room, multiple instructors might prefer to teach the same 
course, or, an instructor might prefer to have more students in a course than the capacity 
of the room allotted for the course. In all the above cases, the conflicts need to be 
resolved so that the resources are requested uniquely by each instructor. 
     We have identified the following two types of potential conflicts in our system: 

1. Single Conflict: This type of conflict relates to a single preference.  
2. Multi Conflict: This type of conflict exists across two or more preferences.  

Multi-conflicts are more difficult to resolve than single conflicts. We should also resolve 
single conflicts carefully by ensuring that the resolution does not create a new multi-
conflict.  
     Conflict resolution between instructors’ preferences is done in two steps in our system 
by a conflictResolutionAgent. The first step utilizes the domain rules that are contained 
within the KMS along with an inferencing technique to identify and resolve conflicts. 
Most single conflicts and some multi-conflicts can be resolved during this step. For 
conflicts that still remain unresolved at the end of the first step, the 
conflictResolutionAgent probabilistically selects one instructor preference out of a 
conflicting set of preferences using a score based mechanism for preferences. 
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COURSE SCHEDULING DOMAIN RULES  
 
     The rules in the KMS enforce operational constraints that ensure that different courses 
in the current schedule satisfy certain criteria including timing requirements, enrollment 
size restrictions, and also ensure that preferences from different instructors do not conflict 
in content or schedule with one another. The entire set of rules and conflict resolution 
among the preference is beyond the scope of this paper. Therefore, for describing the 
operation of our system we have selected some basic rules for course scheduling as 
shown below:  

• Rule 1: If two instructors prefer the same classroom at the same time then 
assign a different room for one of the instructors. If an alternate room is not 
available at the same time then change the timing of one of the courses. 

• Rule 2: If a classroom cannot hold the number of students an instructor 
prefers in a course, then limit the enrollment size to the classroom’s capacity. 

• Rule 3: Classes for graduate level courses must be two hours in duration and 
must be taught in the evening, starting between 16:00 and 18:00 hours. 

 
RESOLVING THE CONFLICTS USING THE DOMAIN RULES 
 
     To illustrate the operation of our inferencing technique using the rules shown above 
we have assumed that there are five instructors’ preferences, which have to be inspected 
for potential conflicts. For simplicity, we have shown only the relevant attributes for 
every preference in Table 3. In addition, it is assumed that the preferences relate to 
courses taught on the same day.  
 

Table 3. Instructors’ preferences from five different instructors. 
Preference 

ID 
Instructor 

ID 
Course 

ID 
Room 

Number 
 

Timing 
Enrollment 

Size 
Room 

Capacity 
Course 
Level 

1 I002 15368 352 16:00 25 10 Grad 
2 I003 25678 352 18:00 45 20 Grad 
3 I005 16872 158 08:00 38 30 Grad 
4 I006 23417 352 16:00 20 40 Grad 
5 I009 36128 278 16:00 30 50 Grad 

 
     The conflicts for the instructors’ preferences shown in Table 3 are as follows: 

• Conflict #1: For preferences 1, 2, 3 and 5 the preferred enrollment size is 
greater than the room capacity of the allotted room. This violates rule 2. Each 
of these preferences contains a single conflict because the unacceptable value 
of the attribute enrollment size occurs only within its related preference. 

• Conflict #2: The timing of the graduate class in preference 5 is at 8 am. This 
is also a single conflict because it violates rule 3. 

• Conflict #3: Preferences 1 and 4 occupy the same room at the same time and 
violates rule 1. This is a multi conflict because each preference when 
considered independently is acceptable but when the two preferences are 
considered simultaneously, they represent a conflict. 

     The single conflicts are first chosen by the conflictResolutionAgent and resolved. For 
conflict #1, the preferred enrollment size in each preference is reduced to the room 
capacity according to rule 1. This is a trivial resolution and no new multi-conflicts are 
created due to the resolution. Similarly, conflict #2 is resolved by changing the time of 
the course to an evening time. This resolution also does not create a new multi-conflict 
with the existing preferences.  
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     Next, the conflictResolutionAgent tries to resolve multi-conflict #3. The two courses 
represented by preferences 1 and 4 cannot be offered simultaneously because they are 
preferred to be taught at the same classroom at the same time. A trivial solution to the 
problem can be to assign a later time such as 18:00 hours for one of the courses. 
However, this creates another multi-conflict with preference 2. 

      
     To illustrate the operation of our system for conflicts that cannot be resolved using 
rule-based inferencing, let us assume that there are no other classrooms available at the 
allowed times for preferences 1 and 4. Therefore, only one of the courses in preferences 1 
and 4 can be offered. Conflicts of this type cannot be resolved using inferencing, instead 
the conflictResolutionAgent determines a score for every preference. The relevant 
attributes for the preference are represented as nodes in a graph while edges in the graph 
represent the dependency between a pair of attributes. Each edge is associated with a 
weight and a value for the dependency represented by the edge. The value of a 
dependency is determined from the KMS. For example and as shown in Figure 4, 
information about the instructor such as experience in teaching a particular course, 
suitability of class timings and qualification to teach a particular course level are 
contained within the table containing instructor information within the KMS. Similarly, 
the suitability of the timing information for a course level is contained within the domain 
rule base of the KMS. The human course administrator initially determines the weight 
associated with an edge. These weights are adaptively learnt by the 
conflictResolutionAgent and adjusted according to the course requirements. The score for 
a preference is determined by the conflictResolutionAgent using the pseudo-code 
algorithm shown in Figure 5. The preference that gets the highest score is selected as the 
course to be offered in the final course schedule. 
     After all the conflicts between the instructors’ preferences have been removed, the 
preferences are ready to be allocated as the final course schedule. The coordinatorAgent 
then creates a mobile courseAllotmentAgent that visits every instructor’s machine and 
displays the courses and the related attributes assigned to the respective instructors. 
 
 
 
 

Figure 4. Dependencies between selective attributes of a preference 
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LEARNING ENGINE OF THE COURSE SCHEDULING SYSTEM  
 
     The learning engine in our system is implemented by a learningAgent that accepts and 
analyzes the responses from the schedulerAgents and updates different parameters related 
to the performance of the system. The schedulerAgents that visit different instructor 
machines collect different parameters including the response time required by instructors, 
the variance between the preliminary course assignments and the preferences expressed 
by each instructor, and the flexibility of instructors for teaching different courses. The 
coordinatorAgent on the administrator’s site extracts these parameters and provides them 
to the learningAgent. The learningAgent then attempts to improve and adapt these 
parameters for use by future schedulerAgents created in the system. For example, from 
the response times of different instructors the learningAgent can identify those instructors 
that are slow in their response and for future course scheduling cycles, it can send 
periodic reminders to them. The learningAgent can also use the variance in the 
preliminary and final assignments to make preliminary course assignments more 
intelligently in the future. Finally, by learning the degree of flexibility of different 
instructors, the learningAgent can attempt to assign courses with variable content and 
schedule to flexible instructors while limiting to standardized courses when responding to 
the other instructors. The learningAgent therefore can improve the intelligence of 
different agents used in the system by estimating various parameters involved in the 
course scheduling process and, therefore, potentially increase the efficiency of the 
system. 
 
USER RESPONSE LOG AND INTELLIGENT APPLET BASE IN THE COURSE 
SCHEDULING SYSTEM 
 
     The interactions between the interfaceAgent and the human instructors on different 
machines are stored in the user response log. The contents of the user response log are 
reported to the learningAgent at certain intervals. The learningAgent can use these 
responses to estimate the behavior of humans using the system. Behavior characteristics 
can include frequently asked questions, GUI components that are used mostly and 
commonly encountered problems. The learningAgent can then improve the interaction 
with human users by creating slightly different versions of interfaces for different types 

double calculatePreferenceScore (Graph g){ 

    score = 0.0; 

    cond = conjunction of boolean valued dependencies; 

    if (cond == true) 

for every edge with numeric valued dependency 

score = score + (weight of edge) * (value of dependency 

Figure 5. Pseudo-code algorithm for calculating the score associated with a preference 
represented as a graph. 



Adaptive DSS Using Intelligent Agents 75

of users and storing them as Java applets in an intelligent applet base. The interfaceAgent 
in the system can then select the appropriate applet from the intelligent applet base 
depending on the user characteristics. For example, an instructor who is comfortable with 
graphics is displayed an applet with a GUI that contains more graphics and less text as 
compared to the default GUI. As another example, an applet that contains few 
navigational instructions can be used to interact with veteran users of the system while 
applets that contain various usage and navigational hints can be used for novices. The 
intelligent applets improve the efficiency of the system by reducing the time required by 
human users to learn and use the software. The variety of applets stored in the intelligent 
applet base also improves the usability and satisfaction of the different types of human 
users in the system. 
 
Table 4. Mapping between the Course Scheduling and IAEDS Architecture. 

Common Components Course Scheduling System 
Graphical User 
Interface 
 

GUI for Administrator 
GUI for Instructor’s machines  
 

User Query module Logic behind the GUI  

Agent Creation 
Module 

Creates the following agents: 
Interface Agent  
Scheduler Agent 
Coordinator Agent  

Agent Execution 
Platform 

Create and Dispatch Scheduler agents 

User response log Stores Instructor’s responses. 
Agent Repository  
 

Stores the following agents for future reference:  
Interface Agent  
Scheduler Agent 
Coordinator Agent  
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Learning Engine 
 

Learning Engine 
Creates Intelligent Applets based on user characteristics 

Query Handler  Query Handler: 
Brings necessary information from the Knowledge Management 
subsystem for the previous course schedules, existing agents in 
database etc. 

Knowledge 
Management 
Subsystem 

Knowledge Management Subsystem  

Data Management 
Subsystem 

Data Management Subsystem 
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Model management 
Subsystem  

Model management Subsystem  

 
CONCLUDING REMARKS 

 
     With advancements in the fields of software agents and decision support systems, we 
envisage that the development of systems combining these two fields will rapidly emerge 
as an essential technology in the future. Augmenting decision support systems with 
software agents gives the human user and/or machines the ability to complement 
historical information with the knowledge acquired from the environment. In this paper, 
we proposed a generic IAEDS system and demonstrated its architecture within the 
problem domain of academic course scheduling. Table 4 illustrates the correspondence 
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between the generic proposed IAEDS architecture and the components of the course 
scheduling system. This prototype academic instructor/course scheduling system 
demonstrates various facets of the IAEDS architecture including the use of software 
agents to combine real-time environmental data and decision rules with historical 
knowledge to provide an adaptive and intelligent DSS.  

In the future, we intend to enhance and improve the functionality of our prototype 
system. For example, future extensions to the course scheduling system include a multi-
phase protocol for instructor consensus before finalizing the course schedule. In addition, 
the research described in this paper also contributes to the development of adaptive 
learning techniques and evolutionary algorithms, intelligent user-interfaces, integration of 
software agents in DSS, and implementation of such systems. Finally, the IAEDS 
architecture is potentially applicable to other more complex problem domains such as 
transport management, financial portfolio management, commodity trading, and strategic 
decision support during emergency and combat situations. 
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