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Abstract

The network simplex method, a minimum-cost network flow algorithm, was first

created in 1956 by George Dantzig to solve transportation problems. This thesis

improves upon Dantzig’s method by pivoting two arcs instead of one at each iteration.

The proposed algorithm is called the double-pivot network simplex method. Both

leaving arcs are determined by solving a two-variable linear program. Due to the

structure of these two-variable problems, this thesis also presents an approach to

quickly solve them. The network and double-pivot network simplex methods make

use of a modified eXtended Threading Index technique to efficiently create cycles

and maintain the spanning tree basis. Computational experiments showed that the

double-pivot network simplex method solved minimum-cost network flow problems

from the NETGEN benchmark library using approximately 50% fewer total iterations,

on average, than the network simplex method. In regards to CPU time, the double-

pivoting method outperformed the network simplex algorithm by about 12% in large

NETGEN instances. The network simplex method solved smaller NETGEN instances

faster than the double-pivot network simplex method by approximately 8%. When

averaging all instances, the double-pivoting method proposed in this thesis is over 5%

faster than the network simplex method.
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1 Introduction

The network simplex method, a minimum-cost network flow algorithm, was first

created in 1956 by George Dantzig to solve transportation problems20. This algo-

rithm solves minimum-cost network flow problems significantly faster than the sim-

plex method he first developed in 1947 to solve linear programs9, and was tested to

solve transportation problems in 195110. This thesis improves upon Dantzig’s net-

work method by pivoting two arcs instead of one at each iteration. This new approach

is called the double-pivot network simplex method.

For simplicity, the remainder of this thesis denotes the network simplex method as

the single-pivot network simplex method. The minimum-cost network flow problem

is a mathematical optimization problem that aims to minimize the cost of sending a

certain amount of resources (supply) to various destinations (demand) in a network.

The supply and demand locations are represented by nodes, and the pathways that

connect them are represented by directed arcs. Additional nodes represent transship-

ment points at which flow can be aggregated and re-distributed. Arcs may have an

upper bound that limits the amount of resources that can traverse them, and there

may even exist a lower bound. However, most presentations of the minimum-cost

network flow problem do not directly deal with this, as pre-solving with lower bound

substitution simplifies the problem.

1
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Various real-world applications of the minimum-cost network flow problem exist.

Some of them include solving currency distributions in Kegalle, Sri Lanka6, patrol

coverage for law enforcement to monitor highway locations with frequent vehicular

accidents11, inventory transshipment in airline cargo management39, emergency fleet

management in disastrous situations7, RNA secondary-structure prediction15, and

optimizing fire emergency routes in coal mines24. The demand for fast, reliable net-

work optimization methods to solve continually arising real-world problems remains.

The single-pivot network simplex method is a specialized variant of the simplex

method. The simplex method moves from one basic feasible solution to another basic

feasible solution at each iteration until an optimal solution is found. While the sim-

plex method can solve minimum-cost network flow problems if presented as a linear

program, the single-pivot network simplex method is faster than the simplex method

because it preserves the graphical aspects of the original problem by maintaining the

basis as a spanning tree. Overall, the single-pivot network simplex method starts

with a spanning tree as a solution. The algorithm selects one entering arc and adds

to the spanning tree, thus creating a cycle. A leaving arc is then determined and

removed from the solution to maintain the spanning tree structure, and the process

is repeated until an optimal solution is found.

One of the most time-consuming steps of the single-pivot network simplex method

is how the spanning tree basis is stored, maintained, and updated. Glover et al. in
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1973 developed the Augmented Threaded Index method, which is one of the most

efficient data labeling procedures for the single-pivot network simplex method14. In

the late 1990s, Orlin26 and Tarjan30 also deployed various improving methods to the

single-pivot network simplex method, including how the data structure within the

spanning tree basis is maintained. Other research on the efficiency of the single-pivot

network simplex method also exists38 26 27 1.

One should notice that most optimization methods are considered one-dimensional

search algorithms. That is, at each iteration an improved solution is obtained by

moving along a single direction32. However, multidimensional search methods have

also been explored, and aim to solve optimization problems faster than the tradi-

tional one-dimensional search methods via searching over multiple directions at each

iteration instead of one.

Karmarkar and Ramakrishnan discussed the first presentation of a multidimensional

search algorithm in 198519. Since then, various multidimensional methods have been

developed to optimize a wide range of problems. This includes the double-pivot sim-

plex method from Vitor and Easton33, their two-dimensional search interior point

algorithms34 36 35, Vitor’s ratio algorithm for two-constraint linear programs31, the

two and three-dimensional search interior point methods of Boggs et al.5 and Domich

et al.12, Santos et al.’s optimization methods for interior point algorithms28, and Yang

and Vitor’s double-pivot degenerate-robust simplex algorithm37.
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Given the potential of multidimensional search methods to solve optimization prob-

lems faster than their corresponding one-dimensional search techniques, this thesis

creates the first multidimensional search algorithm to solve minimum-cost network

flow problems if presented as a network. Instead of exchanging one arc in the spanning

tree basis at each iteration, the double-pivot network simplex method can exchange

up to two arcs at a time. Both leaving arcs are determined by solving a two-variable

linear program, and this thesis also presents a quick technique to solve these sub-

problems. This thesis also compares the computational efficiency of the double-pivot

network simplex method versus the single-pivot network simplex method. Both al-

gorithms were implemented using Barr et al.’s data labeling procedure2.

Comparisons of the single and double-pivoting methods are measured by average CPU

runtime and the number of pivots performed on a set of benchmark problems from

the NETGEN test suite stored by Kovács23. Computational experiments showed that

the double-pivot network simplex method solved some benchmark minimum-cost net-

work flow problems using approximately 50% fewer iterations, on average, than the

single-pivot network simplex method. Regarding CPU time, the double-pivot network

simplex method solved larger benchmark instances by more than 12% faster than the

single-pivot network simplex method. Conversely, the single-pivoting method solved

smaller benchmark problems around 8% faster than the double-pivoting technique.

When averaged, the double-pivot network simplex method is more than 5% faster

than the single-pivoting method.
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The remainder of this thesis is organized as follows. Chapter 2 presents the necessary

background information for the reader to understand the single-pivot network simplex

method. This includes the core definitions and formulations of the minimum-cost net-

work flow problem, various pivoting rules that reduce the per-iteration computation

times for entering arcs, the aforementioned enhanced labeling procedures by Barr et

al. to reduce the number of calculations required to maintain the spanning tree basis,

a summary on how to implement the single-pivoting method, and an example.

Chapter 3 describes the theoretical and algorithmic results of the double-pivoting

method, and presents an approach to determine the change of flow when two arcs

are exchanged in the spanning tree basis at a time. The section introduces the core

definitions and casework needed to understand the complications that arise when in-

troducing two cycles into the spanning tree basis, a two-variable problem to account

for the change of flow of overlapping cycles, and enhanced labeling procedures to re-

duce the overall runtime needed to calculate overlapping cycles and flow. It concludes

with an implementation summary of the double-pivoting method, and an example.

Chapter 4 presents the results of computational experiments performed to test both

pivoting methods on the NETGEN benchmark instances. The computational study

also compares against open-source and commercial mathematical programming solvers.

Implementation details are also discussed. Lastly, Chapter 5 concludes the thesis and

presents future research topics that can further advance the double-pivot network

simplex method.



2 Background Information

This chapter presents the necessary background information needed to understand

this thesis. The chapter discusses the formulation of the minimum-cost network

flow problem as well as the single-pivot network simplex method, the block pivoting

rule21, Barr et al.’s enhanced spanning tree labeling procedure, the complete steps of

the single-pivot network simplex method, and a numerical example.

2.1 The Minimum-Cost Network Flow Problem

Formally, let G = (N,A) be a graph where N denotes the set of nodes and A represents

the set of arcs. The minimum-cost network flow problem can be formulated as the

following linear program:

Minimize: z =
∑

(i,j)∈A

cijxij

Subject to:
∑

(i,n)∈A

xin −
∑

(n,j)∈A

xnj = bn ∀n ∈ N

0 ≤ xij ≤ uij ∀(i, j) ∈ A

where uij denotes the upper-bound of each arc (i, j) ∈ A, cij denotes the cost per unit

of flow sent on every arc (i, j) ∈ A, and bn is the demand (bn ≤ 0) or supply (bn > 0)

6
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of each node n ∈ N . The sole constraint represents the notion that flow must be

conserved. That is, the flow that goes into every node must go out. To demonstrate

the minimum-cost network flow problem, consider Example 1 where bn denotes the

supply/demands of each node n ∈ N , and the costs and upper bounds appear in the

form (c, u) above the arcs.

Example 1 Suppose there exist six warehouses with several delivery trucks. The

problem seeks to transport goods between these warehouses minimizing the total cost.

The supply/demand for each warehouse, the transportation cost, and the number of

goods that can be transported between roads due to the truck’s carrying capacity are

shown in Figure 2.1.

1

{-1}

3

{-1}

2

{4}

4

{1}←− b

5{-4} 6 {1}

(10
,5) (7,2)

(5,6)

(6,7) (8,9) ← (c, u)

(1,8)

(6,
1) (3,3)

Figure 2.1: Network of Example 1.
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Notice that Example 1 can be modeled as the following linear program and solved

using the simplex method9:

Minimize: z = 7x13 + 5x14 + 10x21 + 6x25 + 6x35 + 8x46 + x56 + 3x63

Subject to: x13 + x14 − x21 = −1

x21 + x25 = 4

−x13 + x35 − x63 = −1

−x14 + x46 = 1

−x25 − x35 + x56 = −4

−x46 − x56 + x63 = 1

0 ≤ xij ≤ uij ∀(i, j) ∈ A.

However, the single-pivot network simplex method is a more effective technique since

it preserves all the graphical aspects of the problem. The following sections discusses

the single-pivoting method in details.

2.2 The Single-Pivot Network Simplex Method

The single-pivot network simplex method uses a spanning tree to represent each basis,

also called the spanning tree basis. Arcs in this spanning tree are referred to as basic

arcs. Likewise, the term non-basic arcs denotes those arcs that do not appear in

the spanning tree. The flow on a non-basic arc is either zero or equal to its upper

bound. For convenience, this thesis implements only the Big-M method for generating
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an initial basic feasible solution8 3. However, other methods exist, such as the Two-

Phase method3.

The initial spanning tree basis is obtained by introducing an artificial node into

the network and connecting artificial arcs from all supply and demand nodes to the

artificial node. If bi > 0 for a node i, the arc points toward the artificial node from

node i. If bi ≤ 0, the arc points from the artificial node toward the node i. The

spanning tree basis should only contain n arcs where n is the number of nodes in N

excluding the artificial node. The artificial node has a demand/supply of zero, and

artificial arcs have no upper bound and are not included in the set of arcs A. The

per-unit cost of using any of the arcs from the supply nodes is denoted as M where,

M =
∑

(i,j)∈A

|cij|

If cij = 0 ∀(i, j) ∈ A, then M is set to one. This technique prevents skewing the

algorithm in the number of iterations it takes to solve if artificial arc costs are too

high. Lastly, a basic root arc with zero flow is appended to the tree such that the

constraint matrix is full rank. In this thesis, the root arc is attached to the root node

of the spanning tree and is represented as a black square. An initial spanning tree

basis to Example 1 is presented in Figure 2.2 with the tree being rooted on the

artificially introduced node seven.

Given an initial spanning tree basis, the single-pivot network simplex method arbi-

trarily chooses a node and make it the “root” of the spanning tree, and set its dual
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7

3 42

1

5

6
1

4
1 1

4
1

Figure 2.2: Initial spanning tree of Example 1.

variable wi, referred to as node potential, equal to zero. The algorithm thus computes

the dual variables of all other nodes by wi−wj = cij where i and j are indices denot-

ing nodes that appear in the (i, j) arc structure. The single-pivot network simplex

method then computes cπij, referred to as the reduced cost, of all non-basic arcs using

the equation cπij = wi − wj − cij.

If there exists a cπij > 0 for a non-basic arc at its lower bound or a cπij < 0 for a

non-basic arc at its upper bound, the algorithm introduces this non-basic arc to the

spanning tree basis. Consequently, a cycle in the spanning tree is created. Typically,

this non-basic arc is referred to as the entering arc and also an improving arc. If

the entering arc is on its lower bound, then the algorithm finds within the cycle the

minimum between xij of all arcs in the opposite direction of the entering arc and

uij − xij of all arcs in the same direction of the entering arc. If the entering arc is on

its upper bound, then the single-pivot network simplex method finds the minimum

between xij of all arcs in the same direction of the entering arc and uij − xij of all

arcs in the opposite direction of the entering arc.
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To demonstrate the change of flow in every one of these cases, consider the cycle

presented in the network shown in Figure 2.3. For this example, (7, 11) is the arc

entering on its lower bound.

1

2

5

6

3

8
9

4

13

10

11 12

7

←
flo

w ←
flow

flow
→

flow
→

←
flow

flo
w
→

flo
w
→

flow →

Figure 2.3: Example of a cycle in a spanning tree basis.

Let ∆f denote the allowable change of flow for all the arcs within a cycle. The

following shows the change of flow for all the arcs within the cycle from Figure 2.3:

(7, 11) : u(7,11) (10, 11) : x(10,11) (10, 13) : u(10,13) − x(10,13) (4, 13) : x(4,13)

(1, 4) : x(1,4) (2, 1) : x(2,1) (2, 5) : u(2,5) − x(2,5) (5, 7) : u(5,7) − x(5,7).



12

Therefore,

∆f = min{u(7,11), x(10,11), u(10,13) − x(10,13), x(4,13), x(1,4), x(2,1), u(2,5) − x(2,5),

u(5,7) − x(5,7)}.

If the entering arc is on its lower bound, xij = 0, the single-pivot network simplex

method updates the flow of all the arcs within the cycle in the amount of ∆f where

arcs in the same direction of the entering arc are decreased and arcs in the opposite

direction of the entering arc are increased. If the entering arc is on its upper bound,

xij = uij, then the algorithm updates all the arcs within the cycle in the amount of

∆f where arcs in the same direction of the entering arc are decreased and arcs in the

opposite direction of the entering arc are increased.

The single-pivot network simplex method then updates all node potentials and all

reduced costs for all nodes and arcs, respectively. The process repeats until an arc

with an improving cπij no longer exists. In this case, the algorithm returns the optimal

minimum-cost z∗ =
∑

(i,j)∈A
cijxij and the optimal spanning tree basis.

One of the bottlenecks of the single-pivot network simplex method is computing the

reduced cost for all the arcs to determine the most improving arc16. One technique

used to ease this computational effort is the block pivoting. The following section

discusses this pivoting rule.
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2.3 Block Pivoting

Efficient implementations of the single-pivot network simplex method find the most

improving arc at each iteration from a selected pool of non-basic arcs instead of com-

puting the reduced cost of all non-basic arcs. Király and Kovács show that block

pivoting outperforms most other pivoting rules if the block size is
√
m where m is the

total number of arcs in A excluding the artificial arcs21. Király and Kovács also dis-

cuss other pivoting techniques, such as candidate list pivoting, alternating candidate

pivoting, first eligible arc pivoting, and best eligible arc pivoting. The authors also

benchmark each pivoting rule against the NETGEN23 problem suit and found that

block pivoting and alternating candidate pivoting tend to produce the best results.

The Block Search method operates by partitioning the non-basic arcs into blocks of

a particular size using multiple tracking indices for the arc list and computing the

reduced costs of the arcs between those indices. If no improving arcs are found within

a block, the algorithm moves on to the next available block and repeats until an im-

proving arc is found, or it iterates through all arcs in every block and terminates.

Another important implementation aspect of the single-pivot network simplex method

is how the spanning tree basis is maintained and updated throughout the basis ex-

change process. The following section discusses the procedure used in this thesis.
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2.4 The XTI Method

Barr et al. proposed a basis exchange method in 1979 called the XTI (eXtended

Threaded Index) method, in which the spanning tree basis can be represented as four

lists of length n where n is the total number of nodes in N . The advantage of this

approach is that it allows for updating node potentials in a minimal number of steps

and quick cycle construction, thereby reducing the total runtime required to update

and modify the spanning tree basis. The following notation is used to describe various

properties of the spanning tree basis for the XTI method:

p(i) = predecessor of node i where p(n) = 0 if i is the root node,

s(i) = number of child nodes of node i including itself,

T (q) = subtree rooted at node q,

T − T (q) = subtree rooted on the root node, not including the nodes in T (q),

e(i) = bottom-right, deepest ending node of the subtree rooted at node i,

t(i) = thread of node i (see Section 2.4.3 for more details),

(l, q) = the leaving arc where l is the predecessor of q,

(u, v) = the entering arc where v is the node contained in the predecessor

path from q to the root node.

Each function p, s, e, and t reference list elements whose indices, i, refer to the node

at that index within the list. An example is given in Figure 2.4.
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1

3

8
9

2

5

6

4

13

10

11 12

7

n p s e t rt d
1 0 13 12 2 12 0
2 1 4 7 5 7 T
3 1 3 9 8 1 F
4 1 5 12 13 9 F
5 2 3 7 6 2 F
6 5 1 6 7 5 F
7 5 1 7 3 6 F
8 3 1 8 9 3 F
9 3 1 9 4 8 F
10 13 3 12 11 13 T
11 10 1 11 12 10 F
12 10 1 12 1 11 F

Figure 2.4: Example of the XTI method used to document a spanning tree basis.

To facilitate the implementation of the XTI method, the function d(i) was introduced

in this thesis where

d(i) =



True if the arc at node i points towards the root node

False if the arc at node i points away the root node

0 if i is the root node.

Using this function, one can quickly build the arcs of any node n using the predecessor

path where the arc is (n, p(n)) if d(n) is true or (p(n), n) if d(n) is false. In addition,

rt(i) = reverse thread of node i (see Section 2.4.3 for more details)

is presented as a function in this thesis instead of a procedure as in the original version

of the XTI method2.



16

2.4.1 Cycle Construction

Using the predecessor and successor functions, one can generate a cycle between nodes

u and v (where v is the node contained in the predecessor path from q to the root

node of the entering arc), traversing the predecessor paths of both nodes until an

intersecting node is found. Once this intersecting node is discovered, the entire cycle

has been traversed. The method to find a cycle is shown in Algorithm 1. Observe

that Algorithm 1 assumes arcs are being collected while traversing the paths using

the direction function d(i) to generate arcs.

Algorithm 1 XTI method to find a cycle using the predecessor path and successors
function.

1: procedure Find Cycle(u, v, p, s)
2: Let i← u
3: Let j ← v
4: while i ̸= j do
5: if s(i) > s(j) then
6: j ← p(j)
7: else if s(i) < s(j) then
8: i← p(i)
9: else

10: j ← p(j)
11: i← p(i)
12: end if
13: end while
14: end procedure
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2.4.2 Sub-trees T (q) and T − T (q)

To start the basis exchange, the XTI method splits the spanning tree basis into two

smaller sub-trees: one rooted on the q node (where q is a part of the leaving arc with

l being its predecessor) and the other being all the nodes not in the q subtree. For

example, consider the spanning tree basis presented in Figure 2.3. The entering arc

is (7, 11). Suppose (2, 1) is the leaving arc. Since q = 2, the spanning tree basis is

split into two sub-trees using the leaving arc as presented in Figure 2.5.

Algorithm 2 demonstrates this splitting process. The XTI method finds the smaller

subtree to reverse and reattach onto the larger subtree, and it does this by comparing

the number of successors in the subtree rooted at q and the subtree T − T (q). This

is done so that the fewest nodes are updated. Algorithm 3 determines the smaller

subtree. Once the smaller subtree is determined, its root is denoted as x2. The

threaded path between x2 and y2 must be traversed to update all the node potentials

within the subtree.
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1

3

8 9

2

5

6

4

13

10

11 12

7

n p s e t rt d
1 0 9 12 3 12 0
2 0 4 7 5 7 0
3 1 3 9 8 1 F
4 1 5 12 13 9 F
5 2 3 7 6 2 F
6 5 1 6 7 5 F
7 5 1 7 2 6 F
8 3 1 8 9 3 F
9 3 1 9 4 8 F
10 13 3 12 11 13 T
11 10 1 11 12 10 F
12 10 1 12 1 11 F

Figure 2.5: Example of the subtree split operation where q = 2.

2.4.3 Threading and Updating Node Potentials

Threading can be described as turning the spanning tree basis into a continuous

“beaded necklace”. It is the process of traversing left-to-right on this necklace, and

reverse threading is the process of traversing right-to-left to temporarily ignore the

depth of the tree to visit nodes. A thread is constructed by traversing the tree in

a top-down, left-to-right process. For example, the threaded array of Figure 2.2 is

t = [2, 3, 4, 5, 6, 7, 1] and the reverse thread is rt = [7, 1, 2, 3, 4, 5, 6]. This is graphically

presented in Figure 2.6.

1 2 3 4 5 6 7

Figure 2.6: Threading diagram of the spanning tree basis depicted in Figure 2.2.
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Algorithm 2 XTI method to split T (q) and T − T (q) into separate subtrees.
1: procedure Split Subtrees(rt, t, e, s, d, root_node)
2: Let y ← rt(q) ▷ Updates T − T (q)
3: t(y)← t(e(q)).
4: rt(t(e(q)))← y.
5: Let x∗ ← p(t(e(q))
6: if x∗ = 0 then
7: x∗ ← root_node
8: end if
9: for every node i on the path from p to x∗ do

10: e(i)← y
11: end for
12: for every node i on the path from p to root_node do
13: s(i)← s(i)− s(q)
14: end for
15: p(q)← 0 ▷ Updates T (q)
16: t(e(q))← q
17: rt(q)← e(q)
18: d(q)← 0
19: end procedure

When a sub-tree is rooted at q, this process is “cutting the strings” of the threaded

path. Suppose for the spanning tree basis shown in Figure 2.2 that the entering arc

is (2, 5) and the leaving arc is (2, 7) such that q = 2. Therefore, a sub-tree T (2) is

created, and the threading diagram in Figure 2.7 is formed.

1 3 4 5 6 7 2

Figure 2.7: Split diagram of the threading diagram depicted in Figure 2.6.

Node potentials, wi, of the smaller subtree on the threaded path from x2 to y2 are

updated using Algorithm 4 for each node i. Once this procedure is finished, the

smaller subtree must be reversed and reattached to the larger subtree to finalize the

basis exchange.
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Algorithm 3 XTI method to determine the smaller subtree between T (q) and T −
T (q).

1: procedure Determine Smaller Tree(u,v,q, root_node)
2: Let x1 ← q
3: Let x2 ← root_node.
4: Let y1 ← v
5: Let y2 ← u.
6: if s(x1) ≤ s(x2) then
7: x1, y1, x2, y2 ← x2, y2, x1, y1
8: end if
9: end procedure

Algorithm 4 Node potential updating procedure for the threaded path.
1: procedure Update Node Potentials(entering arc, x2, y2)
2: Let cpiv ← cπij of the entering arc.
3: if y2 equals the “from” node of the entering arc then
4: cpiv ← −cpiv
5: end if
6: w[x2]← w[x2] + cpiv
7: x← t[x2]
8: while x ̸= x2 do
9: w[x]← w[x] + cpiv

10: x← t[x]
11: end while
12: end procedure

2.4.4 Reversing and Reattaching the x2 Sub-Tree.

The XTI method reverses the smaller subtree to turn y2 into its new root in prepa-

ration for attaching y2 to y1. The process of reversing this tree has been greatly

improved from the original XTI presentation, inspired by NetworkX’s XTI imple-

mentation17, in that instead of doing multiple looping procedures, it can be reduced

to one. This is done by treating every level of the subtree as its own smaller subtree

and reversing it upwards the predecessor path. Algorithm 5 presents the reversing

procedure.
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Reattaching the subtree, rooted on y2, back onto the x1 subtree via y2 is done in Al-

gorithm 6. After the reattaching process, the final spanning tree basis is reattached

to the x1 subtree as shown in Figure 2.8 concluding the basis exchange procedure.

1

3

8 9

4

13

10

11
12

7

5

6 2

n p s e t rt d
1 0 9 12 3 12 0
2 0 4 7 5 7 T
3 1 3 9 8 1 F
4 1 5 12 13 9 F
5 2 3 7 6 2 T
6 5 1 6 7 5 F
7 5 1 7 2 6 T
8 3 1 8 9 3 F
9 3 1 9 4 8 F
10 13 3 12 11 13 T
11 10 1 11 12 10 F
12 10 1 12 1 11 F

Figure 2.8: The new spanning tree basis after the reattachment process is complete.
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Algorithm 5 Reformed XTI method for reversing the subtree.
1: procedure Reverse Subtree(rt, t, e, p, s, x2, y2)
2: if y2 ̸= x2 then
3: Let P ← a list of all the nodes on the reverse predecessor path y2 to x2.
4: Let Q← a list of all nodes on the reverse predecessor path p(y2) to x2.
5: for every node i in P and node j in Q do
6: Let si ← s(i)
7: Let ei ← e(i)
8: Let rtj ← rt(j)
9: Let ej ← e(j)

10: Let tj ← t(j)
11:
12: d(i)← ¬d(j).
13: p(i)← j.
14: p(j)← 0.
15: s(i)← s(i)− s(j).
16: s(j)← si.
17: t(rtj)← tj.
18: rt(tj)← rtj.
19: t(ej)← j and t(ei)← j.
20: rt(i)← ej and rt(j)← ej.
21: if ei = ej then
22: e(i)← rtj and ei ← rtj
23: end if
24: t(ej)← i.
25: rt(j)← ei and e(j)← ei.
26: end for
27: end if
28: end procedure
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Algorithm 6 XTI method for reattaching the x2 subtree onto x1.
1: procedure Reattach Subtree(rt, t, e, p, s, entering arc, x2, y2)
2: Let ty1 ← t(y1)
3: t(e(y2))← t(y1)
4: rt(t(y1))← e(y2)
5: t(y1)← y2
6: rt(y2)← y1
7: p(y2)← y1
8: if y1 equals the “to” node in the entering arc then
9: d(y2)← True

10: else
11: d(y2)← False
12: end if
13: Let x∗ = p(t(y1)
14: if x∗ = 0 then
15: x∗ ← x1

16: for Every node i on the path from y1 to x∗ do
17: if i ̸= x∗ then
18: e(i)← e(y2)
19: end if
20: s(i)← s(i) + s(y2)
21: end for
22: else
23: for Every node i on the path from y1 to x∗ do
24: e(i)← e(y2)
25: s(i)← s(i) + s(y2)
26: end for
27: end if
28: end procedure
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2.5 Summary of the Single-Pivot Network Simplex Algorithm

Algorithm 7 presents all the steps of the single-pivot network simplex method con-

sidering all implementation details discussed in previous sections. The next section

presents an iterative example of the single-pivoting method to solve minimum-cost

network flow problems.

Algorithm 7 The Single-Pivot Network Simplex Method.
1: procedure Single-Pivot Network Simplex Method(V,E)
2: Let M ←

∑
(i,j)∈A

|cij| or 1 if M = 0

3: Let n← |N |+ 1
4: Let p← [n, n, n, . . . , n, n, n︸ ︷︷ ︸

length n− 1

, 0]

5: Let s← [1, 1, 1, . . . , 1, 1, 1︸ ︷︷ ︸
length n− 1

, n]

6: Let e← [1, 2, 3, 4, . . . , n− 3, n− 2, n− 1]
7: Let t← [2, 3, 4, . . . , n− 1, n, n+ 1, 1]
8: Let rt← [1, 2, 3, 4, . . . , n− 3, n− 2, n− 1]
9: Let w ← [0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸

length n

]

10: Let d← [False, False, False, . . . , False, False, False︸ ︷︷ ︸
length n− 1

, 0]

11: for all i ∈ N do
12: wi ←M if bi > 0
13: di ← True if bi > 0
14: end for
15: Calculate the reduced costs cπij for block pivoting
16: while there exists an improving cπij via block pivoting do
17: Let the entering arc equal the most improving cπij
18: Call Algorithm 1
19: Find minimum arc and then update flows
20: Call Algorithm 2, 3, 4, 5, and 6
21: Recalculate the reduced costs cπij for block pivoting
22: end while
23: Return z∗ =

∑
(i,j)∈A

cijxij and the optimal spanning tree basis.

24: end procedure
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2.6 Iterative Example of the Single-Pivot Network Simplex Method

This section solves Example 1 using the single-pivot network simplex. Remind that

Figure 2.1 shows the network and Figure 2.2 presents the initial spanning tree. For

this example, improving arcs are not selected on the traditional best-arc approach.

Instead, the block pivoting rule is used. The size of each block is three and they are

shown using dashed lines in the tables. In addition, M = 46 is used to compute the

cost of the artificial arcs.

Iteration One, z = 276

7

3 42

1 6

5+

1−

4
− 1 1

4
1

n t rt p s e d w
1 2 7 7 1 1 F 0
2 3 1 7 1 2 T 46
3 4 2 7 1 3 F 0
4 5 3 7 1 4 T 46
5 6 4 7 1 5 F 0
6 7 5 7 1 6 T 46
7 1 6 0 7 6 0 0

∆f = min{u21, x71}
= min{5, 1, 4} = 1

(i,j) wi − wj − cij cπij Status
(1, 3) 0 - 0 - 7 7 Lower
(1, 4) 0 - 46 - 5 -51 Lower

P ∗(2, 1) 46 - 0 - 10 36 Lower
(2, 5) 46 - 0 - 6 40 Lower
(3, 5) 0 - 0 - 6 -6 Lower
(4, 6) 46 - 46 - 8 -8 Lower
(5, 6) 0 - 46 - 1 -47 Lower
(6, 3) 46 - 0 - 3 43 Lower

Figure 2.9: Iteration one of Example 1.

Firstly, the node potentials w and reduced costs cπij are computed for each node and

arc, respectively, as shown in Figure 2.9. Since arc (2,1) has the largest reduced cost
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among the arcs within the first block (arcs (1,3), (1,4), and (2,1)), then it is selected

as the entering arc forming a cycle in the spanning tree basis. The flow in the cycle

is updated such that the new spanning tree has x21 = 1, x27 = 3, and x71 = 0.

Consequently, arc (7,1) is removed from the spanning tree.

Iteration Two, z = 240

7

3
4

2

1

5

6

+1

3
−

1 1
4 −

1 n t rt p s e d w
1 3 2 2 1 1 F 36
2 1 7 7 2 1 T 46
3 4 1 7 1 3 F 0
4 5 3 7 1 4 T 46
5 6 4 7 1 5 F 0
6 7 5 7 1 6 T 46
7 2 6 0 7 6 0 0

∆f = min{u25, x75, x27} = 3

(i,j) wi − wj − cij cπij Status
(1, 3) 36 - 0 - 7 29 Lower
(1, 4) 36 - 46 - 5 -15 Lower
(2, 1) 46 - 36 - 10 0 BV

P ∗(2, 5) 46 - 0 - 6 40 Lower
(3, 5) 0 - 0 - 6 -6 Lower
(4, 6) 46 - 46 - 8 -8 Lower
(5, 6) 0 - 46 - 1 -47 Lower
(6, 3) 46 - 0 - 3 43 Lower

Figure 2.10: Iteration two of Example 1.

On the second iteration (Figure 2.10), the dual variables and reduced costs are

calculated for all nodes and arcs, respectively. In this case, the arc with the largest

reduced cost in the second block is (2,3), which results in this being the entering arc.

When this arc is introduced, a cycle between arcs (2,5), (7,5), and (2,7) is created.

The change of flow, in this case, is ∆f = 3, and the leaving arc is (2,7). The flow

is updated so that x25 = 3, x75 = 1, and x27 = 0 in the next spanning tree basis.

Therefore, arc (2,7) is removed.



27

Iteration Three, z = 120

73

4

2

1

6

5

+

3

1

1−

1 1
1−

n t rt p s e d w
1 6 2 2 1 1 F -4
2 1 5 5 2 1 T 6
3 4 7 7 1 3 F 0
4 5 3 7 1 4 T 46
5 2 4 7 3 1 F 0
6 7 1 7 1 6 T 46
7 1 6 0 7 6 0 0

∆f = min{u63, x73, x67} = 1

(i,j) wi − wj − cij cπij Status
(1, 3) -4 - 0 - 7 -11 Lower
(1, 4) -4 - 46 - 5 -55 Lower
(2, 1) 6 - -4 - 10 0 BV
(2, 5) 6 - 0 - 6 0 BV
(3, 5) 0 - 0 - 6 -6 Lower
(4, 6) 46 - 46 - 8 -8 Lower
(5, 6) 0 - 46 - 1 -47 Lower

P ∗(6, 3) 46 - 0 - 3 43 Lower

Figure 2.11: Iteration three of Example 1.

The same process is repeated for the next iterations. The third block is used for the

third iteration (Figure 2.11) and arcs (6,3) and (7,3) are the entering and leaving arcs,

respectively. For the fourth iteration (Figure 2.12), the second block is used. This

is because there are no improving arcs in the first block. In this case, arc (3,5) is the

entering one while arc (7,6) is the leaving one. Furthermore, notice that the change

of flow in the fourth iteration is determined by the minimum between u35, x75, x76,

and u63 − x63.
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Iteration Four, z = 77

7

4 6
5

3
2

1

+ 1
+

3

1

1 1
−

0 −
n t rt p s e d w
1 3 2 2 1 1 F -4
2 1 7 7 2 1 T 6
3 4 1 7 1 3 F 43
4 5 3 7 1 4 T 46
5 6 4 7 1 5 F 0
6 7 5 7 1 6 T 46
7 2 6 0 7 6 0 0

∆f = min{u35, x75, x76, u63 − x63} = 0

(i,j) wi − wj − cij cπij Status
(1, 3) -4 - 0 - 7 -54 Lower
(1, 4) -4 - 46 - 5 -55 Lower
(2, 1) 6 - -4 - 10 0 BV
(2, 5) 6 - 0 - 6 0 BV

P ∗(3, 5) 43 - 0 - 6 37 Lower
(4, 6) 46 - 46 - 8 -8 Lower
(5, 6) 0 - 46 - 1 -47 Lower
(6, 3) 46 - 43 - 3 0 BV

Figure 2.12: Iteration four of Example 1.
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Iteration Five, z = 77

7

4
5

2

1

3

6

+

0
+

1+

3

1

1
−

1
− n t rt p s e d w

1 7 2 2 1 1 F -4
2 1 6 5 2 1 T 6
3 6 5 5 2 6 T 6
4 5 7 7 1 4 T 46
5 3 4 7 5 1 F 0
6 2 3 3 1 6 T 9
7 4 1 0 7 1 0 0

∆f = min{u46, u63 − x63,
u35 − x35, x75, x47} = 1

(i,j) wi − wj − cij cπij Status
(1, 3) -4 - 6 - 7 -17 Lower
(1, 4) -4 - 46 - 5 -55 Lower
(2, 1) 6 - -4 - 10 0 BV
(2, 5) 6 - 0 - 6 0 BV
(3, 5) 6 - 0 - 6 0 BV

P∗(4, 6) 46 - 9 - 8 29 Lower
(5, 6) 0 - 9 - 1 -10 Lower
(6, 3) 9 - 6 - 3 0 BV

Figure 2.13: Iteration five of Example 1.

During iteration five (Figure 2.13), the entering arc is determined from the second

block. This makes arc (4,6) the entering one, thus creating a cycle between arcs (4,6),

(6,3), (3,5), (7,5), and (4,7). In this case, the minimum occurs at arc (7,4), which

makes it the leaving arc. After the node potentials and reduced costs are updated

as shown in Figure 2.14, one can see that no improving arcs exist. Therefore, the

spanning tree basis presented in Figure 2.14 is optimal and the corresponding optimal

objective function value is z∗ = 48.
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Final Results, z∗ = 48

7

5

2

1

3

6

4

1

1

2

3

1
0

n t rt p s e d w
1 7 2 2 1 1 F -4
2 1 4 5 2 1 T 6
3 6 5 5 3 4 T 6
4 2 6 6 1 4 T 17
5 3 7 7 6 1 F 0
6 4 3 3 2 4 T 9
7 5 1 0 7 1 0 0

(i,j) wi − wj − cij cπij Status
(1, 3) -4 - 6 - 7 -17 Lower
(1, 4) -4 - 17 - 5 -26 Lower
(2, 1) 6 - -4 - 10 0 BV
(2, 5) 6 - 0 - 6 0 BV
(3, 5) 6 - 0 - 6 0 BV
(4, 6) 17 - 9 - 8 0 BV
(5, 6) 0 - 9 - 1 -10 Lower
(6, 3) 9 - 6 - 3 0 BV

Figure 2.14: Final result of Example 1.



3 The Double-Pivot Network Simplex Method

This chapter presents the major theoretical and algorithmic developments of the

double-pivot network simplex method. It discusses the challenges of introducing

two cycles into a spanning tree basis, how to formulate and solve the change of

flow problem, the various pivoting types that can occur, the labeling procedure for

double-pivoting, the complete double-pivot network simplex algorithm, and a numer-

ical example.

3.1 Multi-Cycling

The primary difference between the single and double-pivot network simplex methods

is the number of arcs entering and leaving the spanning tree basis per iteration. As

previously mentioned, the single-pivoting method introduces and removes one arc

per iteration, while the double-pivoting method introduces and removes two arcs per

iteration if possible - there are cases where only one arc is introduced and removed at

a time. Introducing two arcs into a spanning tree basis induces two cycles within the

tree. The overlapping aspect of these cycles provokes various issues that are explored

with casework using the network presented in Figure 3.1 where (7, 11) and (10, 13)

are the entering arcs.
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Figure 3.1: Spanning tree basis used for the overlapping casework with cycle one denoted in blue,
cycle two in orange, and overlapping arcs in magenta.

When two arcs enter the spanning tree basis, there are four possible cases for cycles:

only one overlapping arc leaves the basis (Section 3.1.1), two different overlapping

arcs leave the basis (Section 3.1.2), one overlapping and one non-overlapping arcs

leave the basis (Section 3.1.3), and only non-overlapping arcs leave the basis (Section

3.1.4).

3.1.1 Case One: Only One Overlapping Arc Leaves the Basis

Let (3, 10) be the leaving arc for the blue and orange cycles. The resulting graph is

presented in Figure 3.2. Notice that a cycle still exists; therefore, it is no longer a

tree. Consequently, only one overlapping arc cannot leave the basis.
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Figure 3.2: Spanning tree “basis” in which both cycles converge on (3, 10) being the leaving arc.

3.1.2 Case Two: Two Different Overlapping Arcs Leave the Basis

Let (1, 3) and (3, 10) be the leaving arcs for the blue and orange cycles. Figure 3.3

demonstrates resulting graph. Not only does a cycle exist, but it is also disconnected

making it no longer a tree. Therefore, two overlapping arcs cannot leave the basis.

1

2
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6 7

3

8
9 10

11 12

13

4

Figure 3.3: Spanning tree “basis” in which both cycles converge on (1, 3) and (3, 10) being the leaving
arcs.
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3.1.3 Case Three: One Overlapping and One Non-overlapping Arc

Leave the Basis

Let (2, 5) be the leaving arc for the blue cycle while (3, 10) is the leaving arc for the

orange cycle. Figure 3.4 shows the spanning tree basis after both arcs are removed.

Since there are no cycles or disjoint nodes in the tree, then one overlapping and one

non-overlapping arc can leave the basis.

1

2 4
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9

10

11 12

7

5

6

Figure 3.4: Spanning tree basis in which (2, 5) and (3, 10) are the leaving arcs.
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3.1.4 Case Four: Only Non-overlapping Arcs Leave the Basis

Let (2, 5) be the leaving arc for the blue cycle, and the (1, 4) be the leaving arc for

the orange cycle. Figure 3.5 shows the spanning tree basis for this case. One can

see that no cycles or disjoint nodes exist in the tree. Therefore, only non-overlapping

arcs can leave the basis.
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Figure 3.5: Spanning tree basis in which (2, 5) and (1, 4) are the leaving arcs.
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3.2 Two-Variable Change of Flow Problem

One can see that cases one (Section 3.1.1) and two (Section 3.1.2) are not valid

pivots while cases three (Section 3.1.3) and four (Section 3.1.4) are. If entering two

arcs results in case one, one can choose the overlapping arc and the minimum non-

overlapping arc from both cycles or choose one minimum non-overlapping arc from

each cycle to leave the basis. If two entering arcs result in case two, one can choose

the minimum overlapping arc and the minimum non-overlapping arc from both cycles

or choose one minimum non-overlapping arc from each cycle to leave the basis. If

entering two arcs results in cases three and four, then one can find the minimum arcs

in cycles one and two, respectively, and alter the amount of flow on the cycle in the

same manner as the single-pivoting method.

Observe that determining which arcs to leave the basis is defined by the change of

flow. Therefore, consider Example 2 to demonstrate the change of flow when two

arcs enter the basis and there are overlapping arcs between both cycles.

Example 2 Consider the spanning tree rooted at node 1 presented in Figure 3.6.

1

32 4

765 8 9

Figure 3.6: Spanning tree of Example 2.
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Let x1 and x2 be variables denoting the change of flow in cycles one and two, re-

spectively. Let bi denote the arc values found in the minimum overlapping and non-

overlapping arcs. Two types of overlapping cases happen independently of each other:

the positive-flow overlapping case (x1+x2 ≤ b1) and the mixed flow overlapping case

(−x1 + x2 ≤ b1 and x1 − x2 ≤ b2).

3.2.1 Change of Flow for the Positive Flow Case

The positive flow overlapping case is where the flow of overlapping arcs between both

cycles occurs in the same direction, as shown in Figure 3.7 where the overlapping

arc, colored in magenta, is experiencing a double decreasing flow from both cycles

one (blue) and two (orange).

1

32 4

7

5 9

6 8

←
flo

w

flow
→

←
flow

←
flow

Figure 3.7: Example of cycle one (blue) and cycle two (orange) in the same direction where the
overlapping arc is colored in magenta.

There are only two possible outcomes for the positive flow case for the overlapping

arc(s) depending on how the cycles are oriented: x1+x2 ≤ uij−xij (increasing flow) or

x1 + x2 ≤ xij (decreasing flow). Note that each arc is bounded between 0 ≤ xij ≤ uij
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for all (i, j) ∈ A such that the lowest possible change of flow value for any of these

cycles is zero. The change of flow for the positive flow case can be modeled as the

following two-variable linear program:

max z = c1x1 + c2x2

Subject to : x1 + x2 ≤ b1

0 ≤ x1 ≤ b2

0 ≤ x2 ≤ b3

Standard Form−−−−−−−−−−−−→

max z = c1x1 + c2x2

Subject to : x1 + x2 + s1 = b1

x1 + s2 = b2

x2 + s3 = b3

(3.1)

where c1 and c2 denote the reduced costs, cπij, of the entering arcs corresponding to

each cycle, b1 represents the minimum overlapping arc, b2 and b3 denote the minimum

change of flow for the arcs on cycles one and two that are non-overlapping, and s1, s2

and s3 are slack variables used to convert the two-variable problem to standard form.

3.2.2 Change of Flow for the Mixed Flow Case

The mixed flow overlapping case is where the flow of overlapping arcs between both

cycles occurs in opposite directions, as presented in Figure 3.8.

The change of flow for the overlapping arc(s) is determined by either −x1 + x2 or

x1 − x2. Notice that in this case, flow can be increased by the amount uij − xij

or decreased by the amount xij. In other words, both −x1 + x2 ≤ uij − xij and

x1−x2 ≤ xij need to be considered since flow is occurring in opposite directions. The
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Figure 3.8: Example of cycle one (blue) and cycle two (orange) in the opposite direction where the
overlapping arc is colored in magenta.

mixed flow case can be modeled as the following two-variable linear program:

max z = c1x1 + c2x2

Subject to : −x1 + x2 ≤ b1

x1 − x2 ≤ b2

0 ≤ x1 ≤ b3

0 ≤ x2 ≤ b4

Standard Form−−−−−−−−−−→

max z = c1x1 + c2x2

Subject to : −x1 + x2 + s1 = b1

x1 − x2 + s2 = b2

x1 + s3 = b3

x2 + s4 = b4

(3.2)

where b1 and b2 represent the amount by which flow can be increased or decreased,

respectively, b3 and b4 denote the minimum change of flow for the arcs on cycles one

and two that are independent of the overlapping arcs, and s1, s2, s3 and s4 are slack

variables used to convert the two-variable problem to standard form. The feasible

region of this linear program is presented in Figure 3.9 with the x1 − x2 constraint

in blue, the −x1 + x2 constraint in orange, the x1 ≤ xij (or x1 ≤ uij − xij) constraint

in purple, the x2 ≤ xij (or x2 ≤ uij−xij) constraint in green, feasible region in gray.
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Figure 3.9: Feasible region of the two-variable linear program from the mixed flow case. Observe that
the right-hand side values on the constraints can be swapped depending on the order in which

minimum arcs and cycles are labeled and computed.

There is a need to produce a computationally efficient approach to solving these

two-variable problems. The following section discusses this.

3.3 Solving the Two-Variable Linear Program

Observe that the change of flow in the single-pivoting method is determined by solv-

ing a one-dimensional search problem. In contrast, the double-pivoting method deter-

mines the change of flow by solving a two-dimensional search problem. Solving a two-

dimensional problem is computationally more difficult than solving a one-dimensional

problem. Therefore, to make the double-pivoting method more effective, one needs

to solve these two-variable linear programs using a faster technique than traditional
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methods such as the simplex method or interior point methods3. This is because

the first requires updating a basis inverse at each iteration while the second requires

solving a system of equations using either the LU or Cholesky decomposition meth-

ods3. Additionally, if a traditional linear programming algorithm is used to solve

the two-variable problems, then the double-pivot simplex method cannot be catego-

rized as a multidimensional search method according to Definition 1 since neither

the simplex method nor interior point algorithms are techniques designed to perform

multidimensional searches32.

Definition 1 To be characterized as a multidimensional search method, the algorithm

must:

1. Search over multiple search directions at each iteration (more than one).

2. Optimally solve a multidimensional subspace problem to determine the step
length for each search direction using methods designed to perform multidimen-
sional searches.

Shamos and Hoey created one of the first techniques to perform multidimensional

searches. Their method solves two-variable linear programs by determining if any two

constraints have a common intersection29. Afterward, Megiddo proposed algorithms

to solve two and three-variable LPs25. Dyer independently derived a similar approach

to Megiddo to solve two and three-variable linear programs13. Vitor and Easton

developed a method to find an optimal basis for two-variable linear programs called

the slope algorithm, which handles degenerate two-variable linear programs as well33.

A dual space method for solving two-variable linear programs was created by Vitor in
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2018 in which he developed the ratio algorithm for two-constraint linear programs31.

Additionally, Jamrunroj and Boonperm propose a method to solve two-variable linear

programs by considering only the coefficient of the constraints18. In terms of non-

linear optimization, Santos et al. created an algorithm to solve three-variable non-

linear polynomial optimization problems28.

While these methods to perform multidimensional searches are fast and could be

used, a faster approach to solve two-variable linear programs is created for this thesis.

This is because the two-variable problems for the double-pivoting method are much

simpler. Notice that Models (3.1) and (3.2) have at most four constraints and the

constraint matrix is composed of either 0, +1, or -1 values. An optimal solution to

the two-variable linear program, which determines the leaving arcs, occurs when the

arc’s constraint is binding at an extreme point (when the slack variable, si, is equal

to zero). Given the special structure of these two-variable problems, it is easy to

enumerate all extreme points. The following sections discuss this procedure for the

positive flow and mixed flow model cases. The casework for which non-overlapping

arcs leave the basis is not considered, since this is the same as performing a one-

dimensional search. That is, computing the change of flow in the same manner as the

single-pivot network simplex method.
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3.3.1 Positive Flow Model Cases

This section investigates every case where an arc’s constraint is binding at an extreme

point for Model (3.1). The section starts with the case of cycle one minimum arc

and minimum overlapping arc leaving the basis.

Case One: Cycle One Minimum Arc and the Minimum Overlapping Arc

Leave the Basis

The minimum arc on cycle one and the overlapping arc x1 + x2 ≤ b1 leave the basis

with s1 = 0 and s2 = 0. Hence,

z = c1b2 + c2(b3 − s3)

b3 − s3 = b1 − b2

−→ z = c1b2 + c2(b1 − b2).

Consequently, x1 = b2 and x2 = b1 − b2. Substituting these back into Model (3.1)

results in z = b2(c1 − c2) + c2b1 as long as b1 ≥ b2 and b1 − b2 ≤ b3 are true.

Case Two: Cycle One Minimum Arc and Cycle Two Minimum Arc Leave

the Basis

The minimum arc on cycle one and the minimum arc on cycle two leave the basis

with s2 = 0 and s3 = 0. Therefore,

z = c1b2 + c2b3

b2 + b3 − b1 = −s1.
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In this case, x1 = b2 and x2 = b3. Substituting these back into Model (3.1) results

in z = c1b2 + c2b3 as long as b2 + b3 ≤ b1 is true.

Case Three: Cycle Two Minimum Arc and the Minimum Overlapping

Arc Leave the Basis

The minimum arc on cycle one and the minimum overlapping arc leaves the basis

with s3 = 0 and s1 = 0. Notice that

z = c1(b2 − s2) + c2b3

b2 − s2 = b1 − b3

−→ z = c1(b1 − b3) + c2b3.

Thus, x1 = b1 − b3 and x2 = b3. Substituting these back into Model (3.1) produces

z = c1(b1 − b3) + c2b3 as long as b1 ≥ b3 and b1 − b3 ≤ b2 are true.

Case Four: Only the Minimum Overlapping Arc Leaves the Basis

The minimum overlapping arc is the only one that leaves the basis with s1 = 0. Thus,

z = c1(b2 − s2) + c2(b3 − s3)

b2 + b3 − b1 = s2 + s3.
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However, taking advantage of the fact that if the minimum overlapping arc is the

only arc to leave, then either x1 = 0 or x2 = 0. If x1 = 0, then

z = c2(b3 − s3)

b3 − s3 = b1

−→ z = c2b1.

Consequently, x1 = 0 and x2 = b1. Substituting these back into Model (3.1) results

in z = c2b1 as long as b1 ≤ b2 is true.

If x2 = 0, then

z = c1(b2 − s2)

b2 − s2 = b1

−→ z = c1b1.

In this case, x1 = b1 and x2 = 0. Substituting these back into Model (3.1) results in

z = c1b1 as long as b1 ≤ b3 is true.

3.3.2 Positive Flow Model Procedure

For the positive flow model, one needs to find the minimum overlapping arc in cycles

one and two, and the minimum non-overlapping arcs in cycles one and two, and set

their values to b1, b2, and b3, respectively. Let c1 and c2 denote the reduced costs, cπij,

of the entering arcs of cycles one and two, respectively. Algorithm 8 formalizes the

procedure discussed in Section 3.3.1.
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Algorithm 8 Positive Flow Model Procedure
1: procedure Positive Flow Procedure(b1, b2, b3, c1, c2)
2: Let s1 ← b2(c1 − c2) + c2b1, if b1 − b2 ≤ b3 and b1 ≥ b2, else −∞
3: Let s2 ← c1b2 + c2b3, if b2 + b3 ≤ b1, else −∞
4: Let s3 ← b2(c2 − c1) + c1b1, if b1 − b3 ≤ b2 and b1 ≥ b3, else −∞
5: Let s4 ← c1b1, if b1 ≤ b2, else −∞
6: Let s5 ← b1c2, if b1 ≤ b3, else −∞
7: Let i← argmax(s1, s2, s3, s4, s5)
8: if i = 1 then
9: x1 ← b2

10: x2 ← b1 − b2
11: Remove the minimum arc on cycle one and the minimum overlapping arc
12: else if i = 2 then
13: x1 ← b2
14: x2 ← b3
15: Remove the minimum arc on cycle one and the minimum arc on cycle two
16: else if i = 3 then
17: x1 ← b1 − b3
18: x2 ← b3
19: Remove the minimum arc on cycle two and the minimum overlapping arc
20: else if i = 4 then
21: x1 ← b1
22: x2 ← 0
23: Remove the minimum overlapping arc
24: else if i = 5 then
25: x1 ← 0
26: x2 ← b1
27: Remove the minimum overlapping arc
28: end if
29: end procedure

Notice that an arc always leaves the basis since arcs cannot have negative flow due to

b1, b2, b3 ≥ 0. Furthermore, using the argmax function prioritizes the cases where two

arcs leave the spanning tree basis in the event of a tie since the function evaluates on

a left-to-right occurrence. Figure 3.10 presents a graphical depiction of the feasible

region and extreme points of the positive flow case.
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Figure 3.10: Feasible region and extreme points of the two-variable linear program from the positive
flow case.

3.3.3 Mixed Flow Model Cases

Similarly to the positive flow model, there is a need to develop casework for the mixed

flow model presented in Model (3.2). The following sections present the casework.

Case One: Cycle One Minimum Arc and the Minimum Overlapping Arc

Leave the Basis

The minimum arc on cycle one and the minimum overlapping arc leaves the basis

with s1 = 0 and s3 = 0. This results in

z = c1b3 + c2(b4 − s4)

b4 − s4 = b1 + b3

b3 − b4 + s4 + s2 = b2

−→
z = c1b3 + c2(b1 + b3)

b1 + b2 = s2.
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Consequently, x1 = b3 and x2 = b1 + b3. Substituting these back into Model (3.2)

results in z = c1b3 + c2(b1 + b3) as long as −b1 ≤ b2, −b1 ≤ b3, and b1 + b3 ≤ b4 are

true. However, since it is already known that b1, b3, b2 ≥ 0, then b1 + b3 ≤ b4 is the

only condition that needs to be checked.

Case Two: Cycle Two Minimum Arc and the Minimum Overlapping Arc

Leave the Basis

The minimum arc on cycle two and the minimum overlapping arc leaves the basis

with s1 = 0 and s4 = 0. Therefore,

z = c1(b3 − s3) + c2b4

b3 − s3 − b4 = −b1

b3 − s3 − b4 + s2 = b2

−→
z = c1(b4 − b1) + c2b4

s2 = b2 + b1.

Thus, x1 = b4 − b1 and x2 = b4. Substituting these back into Model (3.2) returns

z = c1(b4− b1)+ c2b4 as long as −b1 ≤ b2, b1 ≤ b4, and b4− b1 ≤ b3 are true. However,

since b1, b3, b2 ≥ 0, then only b1 ≤ b4 and b4 − b1 ≤ b3 needs to be checked.
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Case Three: Cycle One Minimum Arc and the Minimum Overlapping

Arc Leave the Basis

The minimum arc on cycle one and the minimum overlapping arc leaves the basis

with s2 = 0 and s3 = 0. This results in

z = c1b3 + c2(b4 − s4)

−b3 + b4 − s4 + s1 = b1

−b3 + b4 − s4 = −b2

−→
z = c1b3 + c2(b3 − b2)

s1 = b1 + b2.

Thus, x1 = b3 and x2 = b3 − b2. Substituting these back into Model (3.2) results in

z = c1b3+ c2(b3− b2) as long as −b2 ≤ b1, b3− b2 ≤ b4, and b2 ≤ b3 are true. However,

since b1, b2, b3, b4 ≥ 0, then only b3 − b2 ≤ b4 and b2 ≤ b3 need to be checked.

Case Four: Cycle Two Minimum Arc and the Minimum Overlapping

Arc Leave the Basis

The minimum arc on cycle two and the minimum overlapping arc leaves the basis

with s2 = 0 and s4 = 0. One can see that

z = c1(b3 − s3) + c2b4

b3 − s3 − b4 − s1 = −b1

b3 − s3 − b4 = b2

−→
z = c1(b2 + b4) + c2b4

b2 − s1 = −b1.
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Hence, x1 = b2 + b4 and x2 = b4. Substituting these back into Model (3.2) results in

z = c1(b2 + b4) + c2b4 as long as −b2 ≤ b1, b2 + b4 ≤ b3, and −b2 ≤ b4 are true. But

since b1, b2, b3, b4 ≥ 0, then only b2 + b4 ≤ b3 needs to be checked.

Case Five: Cycle One Minimum arc and Cycle Two Minimum Arc Leave

the Basis

The minimum arc on cycle one and the minimum arc on cycle two leaves the basis

with s3 = 0 and s4 = 0. Observe that

z = c1b3 + c2b4

b3 − b4 = s1 − b1

b3 − b4 = b2 − s2

−→
z = c1b3 + c2b4

b1 + b2 = s1 + s2.

In this case, x1 = b3 and x2 = b4. Substituting these back into Model (3.2) produces

z = c1b3 + c2b4 as long as b4 ≤ b1 + b3 and b3 − b4 ≤ b2 are true.

Case Six: Only the Minimum Overlapping arc Leaves the Basis

The minimum overlapping arc leaves the basis with s1 = 0. In this case

z = c1(b3 − s3) + c2(b4 − s4)

−b3 + s3 + b4 − s4 = b1

b3 − s3 − b4 + s4 + s2 = b2.
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However, taking advantage of the fact that if the overlapping arc is the only arc to

leave, then either x1 = 0 or x2 = 0. Proceeding with x1 = 0:

z = c2(b4 − s4)

b4 − s4 = b1

b4 + s4 + s2 = b2

−→
z = c2b1

s2 = b2 − b1.

Hence, x1 = 0 and x2 = b1. Substituting these back into Model (3.2) results in

z = c2b1 as long as b1 ≤ b4 is true. For the case of x2 = 0:

z = c1(b3 − s3)

b3 − s3 = −b1

b3 − s3 + s2 = b2

−→
z = −c1b1

s2 = b2 + b1.

This, however, implies that x1 = −b1, but since arc flows cannot be negative, in that

b1 ≥ 0, and since x1 ≥ 0, then x1 = 0 making z = 0 and a needless case for the

algorithm to consider.

Case Seven: Only the Minimum Overlapping Arc Leaves the Basis

The minimum overlapping arc leaves the basis with s2 = 0. Notice that

z = c1(b3 − s3) + c2(b4 − s4)

−b3 + s3 + b4 − s4 + s1 = b1

b3 − s3 − b4 + s4 = b2.



52

But, taking advantage of the fact that if the overlapping arc is the only arc to leave,

then either x1 = 0 or x2 = 0. Proceeding with x1 = 0:

z = c2(b4 − s4)

b4 − s4 + s1 = b1

b4 − s4 = −b2

−→
z = −c2b2

s1 = b1 + b2.

This, however, implies that x2 = −b2, but since arcs cannot have negative flow, in

that b2 ≥ 0, and since x2 ≥ 0, then x2 = 0 making z = 0 and another needless case

for the algorithm to consider. For x2 = 0,

z = c1(b3 − s3)

−b3 + s3 + s1 = b1

b3 − s3 = b2

−→
z = c1b2

s1 = b1 + b2.

Hence, x1 = b2 and x2 = 0, and substituting these back into Model (3.2) results in

z = c2b2 as long as b2 ≤ b3 is true.
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3.3.4 Mixed Flow Model Procedure

For the mixed flow model, one needs to find the minimum overlapping arc on cycles

one and two for both −x1 + x2 and x1 − x2, and the minimum non-overlapping arcs

on both cycles and have their values be b1, b2, b3 and b4 respectively. Let c1 and c2

denote the reduced costs, cπij, of the entering arcs of cycles one and two. Algorithm

9 presents the procedure and Figure 3.11 shows a graphical depiction of the feasible

region and extreme points of the mixed flow case.

Figure 3.11: Feasible region and extreme points of the two-variable linear program from the mixed
flow case.

Similarly, an arc will always leave the basis since b1, b2, b3, b4 ≥ 0. Moreover, in the

event of a tie, the cases where two arcs leave the spanning tree basis are chosen due

to the argmax function.
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Algorithm 9 Mixed Flow Model Procedure
1: procedure Mixed Flow Procedure(b1, b2, b3, b4, c1, c2)
2: Let s1 ← c1b3 + c2(b1 + b3), if b1 + b3 ≤ b4, else −∞
3: Let s2 ← c1(b4 − b1) + c2b4, if b1 ≤ b4 and b4 − b1 ≤ b3, else −∞
4: Let s3 ← c1b3 + c2(b3 − b2), if b3 − b2 ≤ b4 and b2 ≤ b3, else −∞
5: Let s4 ← c1(b2 + b4) + c2b4, if b2 + b4 ≤ b3, else −∞
6: Let s5 ← c1b3 + c2b4, if b4 ≤ b1 + b3 and b3 − b4 ≤ b2, else −∞
7: Let s6 ← c2b1, if b1 ≤ b4, else −∞
8: Let s7 ← b2c2, if b2 ≤ b3, else −∞
9: Let i← argmax(s1, s2, s3, s4, s5, s6, s7)

10: if i = 1 then
11: x1 ← b3
12: x2 ← b1 + b3
13: Remove the minimum arc on cycle one and the overlapping arc
14: else if i = 2 then
15: x1 ← b4 − b1
16: x2 ← b4
17: Remove the minimum arc on cycle two and the overlapping arc
18: else if i = 3 then
19: x1 ← b3
20: x2 ← b3 − b2
21: Remove the minimum arc on cycle one and the overlapping arc
22: else if i = 4 then
23: x1 ← b2 + b4
24: x2 ← b4
25: Remove the minimum arc on cycle two and the overlapping arc
26: else if i = 5 then
27: x1 ← b3
28: x2 ← b4
29: Remove the minimum arcs on cycle one and cycle two
30: else if i = 6 then
31: x1 ← 0
32: x2 ← b1
33: Remove the minimum overlapping arc
34: else if i = 7 then
35: x1 ← b2
36: x2 ← 0
37: Remove the minimum overlapping arc
38: end if
39: end procedure
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3.4 Double-Single Pivots

A particular case exists in the two-cycle problem in which no overlapping arcs in-

terfere with the upper bounds of the other two minimum arcs on both cycles, or no

overlapping arcs exist at all. The feasible region of the two-variable linear program

for both situations is depicted in Figure 3.12.

[a] [b]

Figure 3.12: Graphical depiction of two cases where double-single pivoting can occur with an
overlapping arc.

The feasible region (red) on Figure 3.12a denotes the situation in which the overlap-

ping arc (blue line) intersects the two minimum non-overlapping arcs (red square). In

this scenario, two arcs can leave the spanning tree basis on the top-right extreme point.

However, Figure 3.12b can only double-single pivot the minimum non-overlapping

arcs in both cycles on that same extreme point. Regarding the non-overlapping arcs

situation, one can single-pivot both cycles and avoid the extra computational effort

of setting up and solving the two-variable problem.

Additionally, if the minimum arcs of both cycles are found before entering the two-

variable problem, both arcs are not identical, and both arcs have their change of flow
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equals zero, then both arcs can leave the spanning tree basis with a zero change of

flow. In this case, there is no need to set up and solve the two-variable problem.

3.5 False Double-Pivots

False double pivots occur when the overlapping arc is the only arc to leave the basis

in the two-variable problem. This refers to cases four and five of the positive flow

problem (Section 3.3.2) and cases six and seven of the mixed flow problem (Section

3.3.3). One can view false double-pivots as an unnecessary computational effort since

a two-variable problem has to be set up and solved for only one arc to leave the

spanning tree basis. However, this is unavoidable as it is difficult to determine this

behavior before all the computations are made.

3.6 Enhanced Labeling Procedure

The XTI method for the double-pivot network simplex method essentially inherits

the operations described in Section 2.4. However, it is called upon twice and sequen-

tially when two arcs leave and enter the basis. Additionally, the reduced cost cπij is

recomputed for the second entering arc to account for the change in node potential

values from the threading procedure of the previous XTI method operation. Fur-

ther research is needed on modifying the XTI method to account for double pivots

simultaneously instead of calling the XTI method twice and sequentially. This can

potentially reduce the overall computational time of the double-pivoting method.
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Other improvements have been made to speed up the time of the double-pivot net-

work simplex method. One of them is in finding the three minimum arcs in both

cycles: the minimum overlapping arc, the minimum non-overlapping arc in cycle one,

and the minimum non-overlapping arc in cycle two. The next section discusses this.

3.6.1 Overlap and Flow Direction Arrays

Let Oi denote an integer array of length n where i is the node index for each value in

O, and n is the total number of nodes in N . Initialize O as O = [0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸
length n

].

Then, when constructing cycles one and two, denote Oi for every node i that appears

in either cycle as:

Oi =


Oi + 1 if node i is in cycle one.

Oi + 2 if node i is in cycle two.

After both cycle constructions, any index i in O should be categorized under one of

the following cases:

Oi =



0 if node i is not in cycles one or two.

1 if node i is in cycle one.

2 if node i is in cycle two.

3 if node i is in both cycle one and two.



58

Instead of investigating cycles one and two independently for the minimum non-

overlapping arcs and then investigating both cycles for the minimum overlapping arc

as three distinct steps, one can investigate the nodes that appear in O where Oi > 0

for a node i. This can be more effective if one collects the visited nodes during both

cycle constructions and only visits the indices in O that appear in the collected node

list. For each iteration, one can set Oi = 0 for every node i visited in previous cycle

constructions to reuse them during the next iteration.

Let C1
i and C2

i denote boolean arrays of length n where i is the node index for each

list, and n is the total number of nodes in N . Initialize both as

C1 = [False, False, . . . , False, False︸ ︷︷ ︸
length n

] C2 = [False, False, . . . , False, False︸ ︷︷ ︸
length n

]

where C1
i is the direction of flow associated with the nodes in cycle one and their

predecessors p(i) at any index i. Likewise, C2
i is the direction of flow associated with

the nodes in cycle two and their predecessors p(i). When building cycles one and two,

respectively, the following is done for any node that appears in C:

C =


True if the arc at node i is increasing in flow

False if the arc at node i is decreasing in flow.

Observe that these values do not need to be cleared at each iteration since both C1

and C2 should only be called upon at an index i where Oi > 0.
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3.7 Summary of the Double-Pivot Network Simplex Method

Algorithm 10 presents all the steps of the double-pivot network simplex method

considering all implementation details discussed in previous sections. The following

section presents an iterative example of the double-pivot network simplex method to

solve minimum-cost network flow problems.

Algorithm 10 The Double-Pivot Network Simplex Method.
1: procedure Double-Pivot Network Simplex Method(V,E)
2: Let M ←

∑
(i,j)∈A

|cij|

3: if M = 0 then
4: M ← 1
5: end if
6: Let n← |N |+ 1
7: Let p← [n, n, n, . . . , n, n, n︸ ︷︷ ︸

length n− 1

, 0]

8: Let s← [1, 1, 1, . . . , 1, 1, 1︸ ︷︷ ︸
length n− 1

, n]

9: Let e← [1, 2, 3, 4, . . . , n− 3, n− 2, n− 1]
10: Let t← [2, 3, 4, . . . , n− 1, n, n+ 1, 1]
11: Let rt← [1, 2, 3, 4, . . . , n− 3, n− 2, n− 1]
12: Let w ← [0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸

length n

]

13: Let O ← [0, 0, 0, . . . , 0, 0, 0︸ ︷︷ ︸
length n

]

14: Let C1 ← [False, False, . . . , False, False︸ ︷︷ ︸
length n

]

15: Let C2 ← [False, False, . . . , False, False︸ ︷︷ ︸
length n

]

16: Let d← [False, False, False, . . . , False, False, False︸ ︷︷ ︸
length n− 1

, 0]

17: for all i ∈ N do
18: wi ←M if bi > 0
19: di ← True if bi > 0
20: end for
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21: Calculate the reduced costs cπij for block pivoting
22: while there exists an improving cπij(s) via block pivoting do
23: Let entering arc one equal the most improving cπij
24: Let entering arc two equal the second most improving cπij
25: Call Algorithm 1 for cycle one
26: if there exists a second entering arc then
27: Call Algorithm 1 for cycle two
28: if there is no overlap then
29: Double-single pivot both cycles
30: else
31: Call Algorithm 8 or 9 to calculate the flow change for both cycles
32: end if
33: else
34: Single-pivot cycle one
35: end if
36: Update the flow(s) for the cycle(s)
37: Call Algorithm 2, 3, 4, 5, 6
38: Recalculate the reduced costs cπij for block pivoting
39: end while
40: Return z∗ =

∑
(i,j)∈A

cijxij and the optimal spanning tree basis

41: end procedure

3.8 Iterative Example of the Double-Pivot Network Simplex Method

To illustrate the double-pivot network simplex method, consider Example 3.

Example 3 Consider the minimum-cost network flow problem presented in Figure

3.13 and the initial spanning tree rooted at node 6.

Let M = 49 in this case. Improving arcs are selected using the traditional best-arc

approach, except for the first iteration, for a better demonstration of the algorithm.

Let ∆f = [x1, x2] where x1 is the change of flow for cycle one and x2 is the change of

flow for cycle two.
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Figure 3.13: Network and initial spanning tree of Example 3.

First, compute the node potential w for all nodes in the spanning tree basis and the

reduced cost cπij for all arcs as shown in Figure 3.14. Let (2, 5) and (2, 4) be the

entering arcs for this iteration. Observe that entering both arcs into the spanning

tree shown in 3.14 induces two cycles: 2-5-6-2 and 2-4-6-2. Furthermore, both cycles

are in the same direction and they overlap. Since this is a positive flow case, the two-

variable linear program is solved using Algorithm 8. The change of flow returned is

∆f = [2, 7]. The flow on both cycles is updated such that the new spanning tree has

x2,5 = 2, x6,5 = 11, x2,4 = 7, x6,4 = 0, and x2,6 = 0. Therefore, the leaving arcs are

(2, 6) and (2, 5) at its upper bound.
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Iteration One, z = 980

6

43 2

1 5

+

+

1
9 −−

10

7
−

13−

n t rt p s e d w o C1 C2

1 2 6 6 1 1 T 49 0 F F
2 3 1 6 1 2 T 49 3 F F
3 4 2 6 1 3 T 49 0 F F
4 5 3 6 1 4 F 0 2 F F
5 6 4 6 1 5 F 0 1 F F
6 1 5 0 6 5 0 0 0 F F

Call Algorithm 8, ∆f = [2, 7]

(i,j) wi − wj − cij cπij Status
(1, 2) 49 - 49 - 12 -12 Lower
(1, 3) 49 - 49 - 3 -3 Lower
(2, 3) 49 - 49 - 5 -5 Lower

P ∗(2, 4) 49 - 0 - 7 42 Lower
P ∗(2, 5) 49 - 0 - 6 43 Lower

(3, 2) 49 - 49 - 4 -4 Lower
(3, 4) 49 - 0 - 3 46 Lower
(3, 5) 49 - 0 - 4 45 Lower
(4, 5) 0 - 0 - 5 -5 Lower

Figure 3.14: Iteration one of Example 3.

On the second iteration (Figure 3.15), the dual variables and reduced costs are

computed. In this case, arcs (3, 4) and (3, 5) enter the basis since they have the

largest reduced costs. Notice that two cycles are created: 3-4-6-3 and 3-5-6-3. Both

cycles are in the same direction and the change of flow ∆f = [0, 1] is determined by

Algorithm 8. The leaving arcs for this iteration are (6, 4) and (3, 5). The flow is

updated so that x3,4 = 0, x6,4 = 0, x3,5 = 1, x6,5 = 10, and x3,6 = 0 in the next

spanning tree.
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Iteration Two

6

4 32

1 5

+

+

7

1 −−

10

0
−

11−

n t rt p s e d w o C1 C2

1 3 6 6 1 1 T 49 0 F F
2 5 4 4 1 2 T 7 0 F F
3 4 1 6 1 3 T 49 3 F F
4 2 3 6 2 2 F 0 1 F F
5 6 2 6 1 5 F 0 2 F F
6 1 5 0 6 5 0 0 0 F F

Call Algorithm 8, ∆f = [0, 1]

(i,j) wi − wj − cij cπij Status
(1, 2) 49 - 7 - 12 30 Lower
(1, 3) 49 - 49 - 3 -3 Lower
(2, 3) 7 - 49 - 5 -47 Lower
(2, 4) 7 - 0 - 7 0 BV
(2, 5) 7 - 0 - 6 1 Upper
(3, 2) 49 - 7 - 4 38 Lower

P ∗(3, 4) 49 - 0 - 3 46 Lower
P ∗(3, 5) 49 - 0 - 4 45 Lower

(4, 5) 0 - 0 - 5 -5 Lower

Figure 3.15: Iteration two of Example 3.

The process is repeated for the next iterations. The entering arcs in iteration three

(Figure 3.16) are (1, 3) and (1, 2), thus inducing the following two cycles: 1-3-5-6-1

and 1-2-4-3-5-6-1. Since ∆f = [2, 0], which is determined by Algorithm 8, then arcs

(1, 3) at its upper bound and (3, 4) leave the basis.
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Iteration Three

6

4 32

1 5
++

0−

1+
+

7+

10−− 10−−

n t rt p s e d w o C1 C2

1 5 6 6 1 1 T 49 3 F F
2 6 4 4 1 2 T 8 2 F T
3 4 5 5 3 2 T 4 3 T T
4 2 3 3 2 2 F 1 2 F F
5 3 1 6 4 2 F 0 3 F F
6 1 2 0 6 2 0 0 0 F F

Call Algorithm 8, ∆f = [2, 0]

(i,j) wi − wj − cij cπij Status
P ∗(1, 2) 49 - 8 - 12 29 Lower
P ∗(1, 3) 49 - 4 - 3 42 Lower

(2, 3) 8 - 4 - 5 -1 Lower
(2, 4) 8 - 1 - 7 0 BV
(2, 5) 8 - 0 - 6 2 Upper
(3, 2) 4 - 8 - 4 -8 Lower
(3, 4) 4 - 1 - 3 0 BV
(3, 5) 4 - 0 - 4 0 BV
(4, 5) 1 - 0 - 5 -4 Lower

Figure 3.16: Iteration three of Example 3.

For the fourth iteration (Figure 3.17), arcs (2, 3) and (4, 5) enter the basis resulting

in the following cycles: 2-3-5-6-1-2 and 4-5-6-1-2-4. Algorithm returns ∆f = [4, 4]

and the spanning tree is updated. The leaving arcs are (3, 5) and (6, 5) in this case.

After the node potentials and reduced costs are updated as depicted in Figure 3.18,

no improving arcs exist. Therefore, the spanning tree depicted in Figure 3.18 is

optimal and its corresponding objective function value is z∗ = 259.
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Iteration Four

6

4 32

1 5

+

+

0
+
+ 3+

7+

8−− 8−−

n t rt p s e d w o C1 C2

1 2 6 6 5 5 T 49 3 F F
2 3 1 1 4 5 F 37 3 T T
3 4 2 2 1 3 F 32 1 T F
4 5 3 2 2 5 F 30 2 F T
5 6 4 4 1 5 F 25 3 F F
6 1 5 0 6 5 0 0 0 F F

Call Algorithm 8, ∆f = [4, 4]

(i,j) wi − wj − cij cπij Status
(1, 2) 49 - 37 - 12 0 BV
(1, 3) 49 - 4 - 3 42 Upper

P ∗(2, 3) 37 - 4 - 5 28 Lower
(2, 4) 37 - 30 - 7 0 BV
(2, 5) 37 - 0 - 6 31 Upper
(3, 2) 4 - 37 - 4 -37 Lower
(3, 4) 4 - 30 - 3 -29 Lower
(3, 5) 4 - 0 - 4 0 BV

P ∗(4, 5) 30 - 0 - 5 25 Lower

Figure 3.17: Iteration four of Example 3.
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Final Results, z = 259

6

1

2

4
3

5

4

4
8

11

0

n t rt p s e d w o C1 C2

1 2 6 6 5 5 T 49 3 F F
2 3 1 1 4 5 F 37 3 T T
3 4 2 2 1 3 F 32 1 T F
4 5 3 2 2 5 F 30 2 F T
5 6 4 4 1 5 F 25 3 F F
6 1 5 0 6 5 0 0 0 F F

(i,j) wi − wj − cij cπij Status
(1, 2) 49 - 37 - 12 0 BV
(1, 3) 49 - 32 - 3 14 Upper
(2, 3) 37 - 32 - 5 0 BV
(2, 4) 37 - 30 - 7 0 BV
(2, 5) 37 - 25 - 6 6 Upper
(3, 2) 32 - 37 - 4 -9 Lower
(3, 4) 32 - 30 - 3 -1 Lower
(3, 5) 32 - 25 - 4 3 Upper
(4, 5) 30 - 25 - 5 0 BV

Figure 3.18: Final result of Example 3.



4 Computational Results and Analysis

This chapter discusses the computational study performed in this thesis to determine

whether the double-pivot network simplex method solves minimum-cost network flow

problems faster than the single-pivot network simplex method. The computational

study also provides results on the double-pivot network simplex method’s perfor-

mance regarding the number of iterations.

Cython, a programming language that is an extension of Python allowing for highly

efficient programming optimization, was used along with Jupyter Notebook to imple-

ment the algorithms presented in this thesis22 4. Computational experiments tested

problems using an HP EliteBook 830 G6 Laptop with an Intel® Core™ i7-8665U

1.90GHz processor and 16GB of RAM.

67
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4.1 NETGEN Benchmark Library

The benchmark data used to test the network simplex methods are from Kovác’s

LEMON test-suite23. The test suite comprises graphs of various sizes as depicted in

Table 4.1.

Table 4.1: Number of arcs and nodes contained in each NETGEN instance.

NETGEN 8 NETGEN 9 NETGEN 10
256 Nodes x 2048 Arcs 512 Nodes x 4096 Arcs 1024 Nodes x 8192 Arcs

NETGEN 11 NETGEN 12 NETGEN 13
2048 Nodes x 16,384 Arcs 4096 Nodes x 32,768 Arcs 8192 Nodes x 65,536 Arcs

NETGEN 14 NETGEN 15 NETGEN 16
16,384 Nodes x 131,072 Arcs 32,768 Nodes x 262,144 Arcs 65,536 Nodes x 524,288 Arcs

NETGEN 17 NETGEN 18 NETGEN 19
131,072 Nodes x 1,048,576 Arcs 262,144 Nodes x 2,097,152 Arcs 524,288 Nodes x 4,194,304 Arcs

NETGEN 20 NETGEN 21 NETGEN 22
1,048,576 Nodes x 8,388,608 Arcs 2,097,152 Nodes x 16,777,216 Arcs 4,194,304 Nodes x 33,554,432 Arcs

Each NETGEN instance in Table 4.1 has five problems: A, B, C, D, and E. Therefore,

there are 70 benchmark instances in total. Additionally, three sets of testing were

performed: alpha testing of the best block sizes for the double-pivoting method;

CPU time testing of the single and double-pivoting methods, CPLEX, Gurobi, and

NetworkX; and the number of iterations needed to solve every benchmark problem

for both the single and double-pivoting methods.

4.2 Alpha Testing

The implementation of both the single and double-pivot network simplex algorithms

in this thesis uses the block pivoting rule to reduce the computation time needed

to determine entering arcs at each iteration. However, the double-pivoting method
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attempts to look for two entering arcs instead of one in each block - but if the

algorithm searches in a block and only finds one entering arc, then it accepts only

that one improving arc for that iteration.

Both implementations use a block size of α
√
m where α ∈ R+ and m is the total

number of arcs in A excluding the artificial arcs. Kiraly and Kováck in 2012 found that

a block size where α = 1 produces the best results for the single-pivoting method21.

Since the double-pivoting method takes in twice the arcs per iteration, a natural

choice for the double-pivoting method is to set α = 2.

To test this hypothesis, the computational study within this thesis solved some of the

benchmark instances for various values of α. NETGEN instances 8, 9, and 10 were

used since in early development it was found that these small benchmark instances

would slow down the double-pivoting method due to false pivoting. Testing was

done incrementally (by a value of 0.01), increasing the value of α from 1 until the

double-pivoting method outperformed the single-pivoting method in terms of CPU

runtime. Testing has shown that the double-pivoting method outperformed the single-

pivoting method when α ∈ [1.7, 2.3], and the best results were obtained when α = 2.

Consequently, the double-pivoting method was implemented with α = 2.
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4.3 CPU Runtime Testing

The double-pivoting method outperformed the single-pivoting method for substan-

tially larger problems in terms of CPU runtime. For small instances, the single-

pivoting method outperformed the double-pivoting algorithm, and this is suspected

due to the number of false pivots the latter method encountered throughout the

problems. NETGEN 22 was inconclusive from problems B onwards for both network

methods as they hit a 48-hour computational threshold established in this thesis.

Tables 4.2-4.4 contains all the CPU times for the benchmark problems. Because

background processes in machines can compromise the CPU times during the bench-

marking, each of the five problems within the benchmark instances was run many

times, and the results presented in Tables 4.2-4.4 are the averages of these runs.

For instances NETGEN 08 through 11, each of the five problems was run 100 times.

For instances NETGEN 12 through 15, problems were run 50 times. Furthermore,

problems within instances NETGEN 16-19 were run 10 times while problems within

instances NETGEN 20-22 were run a single time due to the size of the problems.

The percentage improvement shown in Tables 4.2-4.4 are computed as 1− DP
SP

where

DP is the CPU time of the double-pivoting method and SP is the CPU time of the

single-pivoting method.
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Observe that in every single instance, the single and double-pivoting methods out-

performed NetworkX but could not compare to the commercial solvers CPLEX and

Gurobi. It is worth noting that Gurobi had beaten CPLEX in every instance. Notice

that NETGEN 8 through 12 is where the single-pivoting method outperforms the

double-pivoting technique by about 8%, on average, and NETGEN 13 through 22

is where the double-pivoting method outperforms the single-pivoting algorithm by

approximately 12% on average. Figures A.1-A.5 helps better visualize these results,

and are shown in Appendix A.
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Table 4.2: CPU runtime, in milliseconds, for NETGEN instances 8-12.

NETGEN 08 A B C D E AVERAGES
Single 31 64 97 135 162 97.8
Double 29 62 107 155 189 108.4

DoCPLEX 5 11 18 24 30 17.6
Gurobi 3 5 7 10 14 7.8

NetworkX 95 174 267 365 453 270.8
% Improvement

Double over Single 6.45% 3.13% -10.31% -14.81% -16.67% -10.84%

NETGEN 09 A B C D E AVERAGES
Single 245 328 425 518 606 424.4
Double 281 373 480 604 696 486.8

DoCPLEX 44 58 71 85 99 71.4
Gurobi 20 27 33 38 42 32

NetworkX 713 930 1231 1501 1768 1228.6
% Improvement

Double over Single -14.69% -13.72% -12.94% -16.60% -14.85% -14.70%

NETGEN 10 A B C D E AVERAGES
Single 838 1046 1232 1471 1714 1260.2
Double 931 1154 1354 1607 1861 1381.4

DoCPLEX 125 143 162 184 204 163.6
Gurobi 57 67 79 93 106 80.4

NetworkX 2404 2972 3602 4200 4836 3602.8
% Improvement

Double over Single -11.10% -10.33% -9.90% -9.25% -8.58% -9.62%

NETGEN 11 A B C D E AVERAGES
Single 2237 2843 3373 3856 4414 3344.6
Double 2295 2942 3549 4147 4683 3523.2

DoCPLEX 238 276 314 348 381 311.4
Gurobi 167 235 308 368 436 302.8

NetworkX 6469 8199 9917 11514 13001 9820
% Improvement

Double over Single -2.59% -3.48% -5.22% -7.55% -6.09% -5.34%

NETGEN 12 A B C D E AVERAGES
Single 1763 1923 3737 5885 7911 4243.8
Double 1816 1908 3849 5869 7842 4256.8

DoCPLEX 97 124 283 371 421 259.2
Gurobi 201 270 539 790 837 527.4

NetworkX 4671 5858 11313 16772 24114 12545.6
% Improvement

Double over Single -3.01% 0.78% -3.00% 0.27% 0.87% -0.31%
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Table 4.3: CPU runtime, in milliseconds, for NETGEN instances 13-17.

NETGEN 13 A B C D E AVERAGES
Single 7404 12474 18046 24066 30654 18528.8
Double 5853 10530 15883 23390 31722 17475.6

DoCPLEX 205 613 802 1210 1382 842.4
Gurobi 377 691 1052 1443 1772 1067

NetworkX 23227 39655 56466 73973 90996 56863.4
% Improvement

Double over Single 20.95% 15.58% 11.99% 2.81% -3.48% 5.68%

NETGEN 14 A B C D E AVERAGES
Single 46681 65916 80730 95966 110125 79883.6
Double 48910 65143 79524 94434 108281 79258.4

DoCPLEX 2292 3296 4144 4991 5775 4099.6
Gurobi 2428 3181 3762 4343 4908 3724.4

NetworkX 138143 186692 231398 275879 322285 230879.4
% Improvement

Double over Single -4.77% 1.17% 1.49% 1.60% 1.67% 0.78%

NETGEN 15 A B C D E AVERAGES
Single 58062 117176 177080 241780 294620 177743.6
Double 53021 80462 131439 174598 225643 133032.6

DoCPLEX 3264 5571 8050 9933 11964 7756.4
Gurobi 1914 3958 5646 7121 8646 5457

NetworkX 130504 287851 441287 619805 747594 445408.2
% Improvement

Double over Single 8.68% 31.33% 25.77% 27.79% 23.41% 25.15%

NETGEN 16 A B C D E AVERAGES
Single 172270 311380 455025 575176 715733 445916.8
Double 114312 170064 227589 295756 380560 237656.2

DoCPLEX 7014 11816 16743 21450 26049 16614.4
Gurobi 5665 9510 13283 17284 20986 13345.6

NetworkX 399855 703089 1025871 1393218 1724544 1049315.4
% Improvement

Double over Single 33.64% 45.38% 49.98% 48.58% 46.83% 46.70%

NETGEN 17 A B C D E AVERAGES
Single 1093722 1460181 1857008 2233305 2626483 1854139.8
Double 752622 1139723 1554850 1931334 2137485 1503202.8

DoCPLEX 39749 52930 66824 80459 95086 67009.6
Gurobi 30684 40823 50256 59562 69107 50086.4

NetworkX 2878612 3994127 5118681 6150404 7237863 5075937.4
% Improvement

Double over Single 31.19% 21.95% 16.27% 13.52% 18.62% 18.93%
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Table 4.4: CPU runtime, in milliseconds, for NETGEN instances 18-22.

NETGEN 18 A B C D E AVERAGES
Single 3753203 4851626 6002848 7113914 8227601 5989838.4
Double 3125211 4272068 5471412 6594556 7728895 5438428.4

DoCPLEX 136305 180306 222907 266498 310226 223248.4
Gurobi 94704 119238 144956 172615 200220 146346.6

NetworkX 9872275 12706944 15309654 18007831 20470115 15273363.8
% Improvement

Double over Single 16.73% 11.95% 8.85% 7.30% 6.06% 9.21%

NETGEN 19 A B C D E AVERAGES
Single 1161318 3293757 7186112 10093936 13006177 6948260
Double 1118410 3178282 6884711 10062284 12824091 6813555.6

DoCPLEX 475836 158654 327772 478914 635814 415398
Gurobi 264373 64695 131873 192984 251329 181050.8

NetworkX 2996906 9792062 18437868 28633543 37589834 19490042.6
% Improvement

Double over Single 3.69% 3.51% 4.19% 0.31% 1.40% 1.94%

NETGEN 20 A B C D E AVERAGES
Single 21959593 30741853 39182776 48034459 56816386 39347013.4
Double 21351020 29801298 37641499 46037648 54328431 37831979.2

DoCPLEX 1019536 1408870 1820416 2216601 2618110 1816706.6
Gurobi 398832 541414 679802 828331 977651 685206

NetworkX 54306195 70343004 85929587 102515221 118930377 86404876.8
% Improvement

Double over Single 2.77% 3.06% 3.93% 4.16% 4.38% 3.85%

NETGEN 21 A B C D E AVERAGES
Single 24313672 23411156 49691492 49284175 75516235 44443346
Double 23949972 22667257 48207037 46159168 73960077 42988702.2

DoCPLEX 1031472 1055617 2123584 2455442 3477647 2028752.4
Gurobi 351023 337298 692694 754548 1103169 647746.4

NetworkX 64736731 130087247 > 48hrs > 48hrs > 48hrs 142644795.6
% Improvement

Double over Single 1.50% 3.18% 2.99% 6.34% 2.06% 3.27%

NETGEN 22 A B C D E AVERAGES
Single 153643645 > 48hrs > 48hrs > 48hrs > 48hrs 168968729
Double 147731174 > 48hrs > 48hrs > 48hrs > 48hrs 167786234.8

DoCPLEX 2649300 5448027 8194377 10934995 13694524 8184244.6
Gurobi 853342 1722620 2560526 3397069 4293840 2565479.4

NetworkX > 48hrs > 48hrs > 48hrs > 48hrs > 48hrs > 48hrs
% Improvement

Double over Single 3.85% 0.00% 0.00% 0.00% 0.00% 0.70%
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4.4 Iterations and Pivot Type Occurrences

The computational study tested the double-pivoting method and the single-pivoting

method for their iteration counts. The double-pivoting method solved NETGEN in-

stances (problems A through E) in fewer iterations than the single-pivoting method

in every single problem by approximately 50%. Tables 4.5-4.7 present the results.

The percentage improvements are computed similarly as in Tables 4.2-4.4.

Observe that the range of 49%∼53% is consistent across the values regardless of prob-

lem size. Tables 4.5-4.7 contain all the iterative data for each benchmark problem

and show the problem breakdown by iteration type for the double-pivoting network

simplex method: single-pivots, double-single pivots, double pivots, and false pivots.

Additionally, one can see that the larger the problem, the smaller the number of false

double-pivots, as shown in the tables. The author believes this may cause the CPU

time slowdown in the double-pivoting network simplex method for small instances.

One could reduce the number of false double-pivots by removing the cases where only

an overlapping arc leaves the basis from the two-variable casework. In developmental

testing, it made the runtime results even worse. Thus, future work could determine if

there are methods that can be deployed for smaller problems concerning the double-

pivoting method. Additionally, alpha testing will affect these results due to scaling

the block size by various amounts. Thus, more testing will be needed to investigate

if there is a correlation between the number of iterations, runtime, and alpha sizes.
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To summarize, the double-pivoting method outperformed the single-pivoting method

by 5% in CPU runtime and gained an advantage towards the larger NETGEN prob-

lems where the double-pivoting method outperforms the single-pivoting algorithm

by approximately 12% on average. Therefore, based on the results obtained in this

thesis, the recommendation is that the double-pivot network simplex method should

be used to solve substantially large minimum-cost network flow problems over the

single-pivot network simplex method.
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Table 4.5: Iteration numbers for NETGEN instances 8-12.

Single Pivot Double Pivot
Problem Name Iterations Iterations % Fewer

Iterations Single Double
Single Double False

Double
% False
Double

NETGEN 08 A 1022 417 59.20% 25 162 230 68 29.57%
B 1030 439 57.38% 33 133 273 100 36.63%
C 1085 595 45.16% 27 152 416 130 31.25%
D 1158 581 49.83% 24 173 384 121 31.51%

256 Nodes
2048 Arcs

E 973 481 50.57% 159 24 298 100 33.56%
% Iterations Less: 52.43% Average % False Pivots: 32.50%

NETGEN 09 A 2253 1044 53.66% 46 346 652 174 26.69%
B 2214 1035 53.25% 65 351 619 198 31.99%
C 2189 1053 51.90% 38 353 662 186 28.10%
D 2227 1232 44.68% 32 381 819 203 24.79%

512 Nodes
4096 Arcs

E 2150 968 54.98% 56 340 572 178 31.12%
% Iterations Less 51.69% Average % False Pivots: 28.54%

NETGEN 10 A 4739 2210 53.37% 86 833 1191 239 20.07%
B 4338 2044 52.88% 86 838 1120 258 23.04%
C 3936 1846 53.10% 89 716 1041 257 24.69%
D 4969 2327 53.17% 116 802 1409 307 21.79%

1024 Nodes
8192 Arcs

E 4854 2224 54.18% 82 794 1348 286 21.22%
% Iterations Less 53.34% Average % False Pivots: 22.16%

NETGEN 11 A 7967 3240 59.33% 111 1569 1560 289 18.53%
B 9093 4212 53.68% 125 1696 2391 452 18.90%
C 8136 3997 50.87% 89 1715 2193 417 19.02%
D 7726 4068 47.35% 128 1659 2281 402 17.62%

2048 Nodes
16,384 Arcs

E 8492 3795 55.31% 101 1689 2005 370 18.45%
% Iterations Less 53.31% Average % False Pivots: 18.50%

NETGEN 12 A 16652 8244 50.49% 172 3483 4021 568 14.13%
B 17442 8017 54.04% 181 3670 4166 522 12.53%
C 15534 7712 50.35% 232 3408 4072 578 14.19%
D 17570 7576 56.88% 186 3456 3934 575 14.62%

4096 Nodes
32,768 Arcs

E 17770 8179 53.97% 283 3781 3573 542 15.17%
% Iterations Less 53.15% Average % False Pivots: 14.13%
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Table 4.6: Iteration numbers for NETGEN instances 13-17

Single Pivot Double Pivot
Problem Name Iterations Iterations % Fewer

Iterations Single Double
Single Double False

Double
% False
Double

NETGEN 13 A 31859 14371 54.89% 253 7288 6830 782 11.45%
B 31339 14006 55.31% 251 7451 6304 764 12.12%
C 32282 14607 54.75% 262 7545 6800 752 11.06%
D 31268 14919 52.29% 213 7385 7321 823 11.24%

8192 Nodes
65,536 Arcs

E 35291 16685 52.72% 204 7691 8790 968 11.01%
% Iterations Less 53.99% Average % False Pivots: 11.38%

NETGEN 14 A 60230 29333 51.30% 364 15370 13599 1263 9.29%
B 62126 28203 54.60% 362 15224 12617 1202 9.53%
C 61341 27619 54.97% 307 15147 12165 1230 10.11%
D 62846 28807 54.16% 427 15229 13151 1260 9.58%

16,384 Nodes
131,072 Arcs

E 61140 28120 54.01% 379 15384 12357 1261 10.20%
% Iterations Less 53.81% Average % False Pivots: 9.74%

NETGEN 15 A 120967 59512 50.80% 483 32793 24543 1693 6.90%
B 119188 56638 52.48% 524 32182 23932 1767 7.38%
C 120439 60228 49.99% 452 32482 25463 1831 7.19%
D 124413 57260 53.98% 574 31930 24756 1742 7.04%

32,768 Nodes
262,144 Arcs

E 122327 58310 52.33% 521 31546 24612 1631 6.63%
% Iterations Less 51.92% Average % False Pivots: 7.03%

NETGEN 16 A 224368 108545 51.62% 631 67340 38229 2345 6.13%
B 234563 108720 53.65% 673 68696 39351 2495 6.34%
C 239246 105161 56.04% 641 63840 38334 2346 6.12%
D 212214 98884 53.40% 799 65260 32825 2245 6.84%

65,536 Nodes
524,288 Arcs

E 233185 109351 53.11% 808 66215 42328 2583 6.10%
% Iterations Less 53.57% Average % False Pivots: 6.31%

NETGEN 17 A 430380 204520 52.48% 1176 134773 68571 3592 5.24%
B 425039 211360 50.27% 1253 140177 69930 3885 5.56%
C 451727 218227 51.69% 1078 141718 75431 4012 5.32%
D 425820 206933 51.40% 1123 134317 71493 3862 5.40%

131,072 Nodes
1,048,576 Arcs

E 441602 212553 51.87% 1178 137882 73493 3673 5.00%
% Iterations Less 51.54% Average % False Pivots: 5.30%
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Table 4.7: Iteration numbers for NETGEN instances 18-22

Single Pivot Double Pivot
Problem Name Iterations Iterations % Fewer

Iterations Single Double
Single Double False

Double
% False
Double

NETGEN 18 A 858857 427353 50.24% 1335 292074 133944 5529 4.13%
B 835788 417235 50.08% 1749 284713 130773 5398 4.13%
C 862589 429266 50.24% 1607 292381 135278 5442 4.02%
D 839578 411146 51.03% 1903 286162 123081 5259 4.27%

262,144 Nodes
2,097,152 Arcs

E 857899 417443 51.34% 1635 294578 121230 5583 4.61%
% Iterations Less 50.59% Average % False Pivots: 4.23%

NETGEN 19 A 1729660 842714 51.28% 2308 578783 261623 7832 2.99%
B 1659379 826596 50.19% 2482 576633 247481 8087 3.27%
C 1822304 904988 50.34% 2509 610462 292017 8567 2.93%
D 1652555 814204 50.73% 2278 596512 215414 7768 3.61%

524,288 Nodes
4,194,304 Arcs

E 1674124 830166 50.41% 2348 598287 229531 7920 3.45%
% Iterations Less 50.59% Average % False Pivots: 3.25%

NETGEN 20 A 3404357 1709210 49.79% 3020 1216637 489553 11904 2.43%
B 3373116 1678670 50.23% 2819 1216408 459443 11385 2.48%
C 3244738 1645593 49.28% 3578 1225397 416618 10612 2.55%
D 3364363 1689285 49.79% 3433 1219114 466738 12382 2.65%

1,048,576 Nodes
8,388,608 Arcs

E 3304945 1648457 50.12% 3687 1228480 416290 10486 2.52%
% Iterations Less 49.84% Average % False Pivots: 2.53%

NETGEN 21 A 6583414 3287272 50.07% 4666 2491555 791051 16104 2.04%
B 6688396 3354324 49.85% 6239 2515462 832623 16520 1.98%
C 6590795 3208409 51.32% 4861 2503235 700313 15249 2.18%
D 6574608 3262824 50.37% 3770 2471077 787977 16159 2.05%

2,097,152 Nodes
16,777,216 Arcs

E 6711856 3378319 49.67% 4827 2564609 808883 15919 1.97%
% Iterations Less 50.25% Average % False Pivots: 2.04%

NETGEN 22 A 13129550 6653175 49.33% 6015 5104422 1542738 23372 1.51%
B 13127413 6525605 50.29% 8743 5174089 1342773 21501 1.60%
C 13499812 6758496 49.94% 6963 5242587 1508946 22527 1.49%
D 13453430 6654379 50.54% 7321 5173238 1473820 21930 1.49%

4,194,304 Nodes
33,554,432 Arcs

E 13320597 7010351 47.37% 7957 5483920 1518474 21839 1.44%
% Iterations Less 49.49% Average % False Pivots: 1.51%



5 Conclusion and Future Research

This thesis created the double-pivot network simplex method, the first multidimen-

sional search algorithm to solve minimum-cost network flow problems if presented as a

network. The traditional network simplex method, also referred to as the single-pivot

network simplex method in this thesis, moves from one spanning tree basis to another

spanning tree basis by exchanging exactly one arc per iteration. In comparison, the

double-pivot network simplex method can exchange up to two arcs into the spanning

tree basis instead of the one-arc approach. This can be done by solving a two-variable

linear program that determines the leaving arcs. Due to the special structure of these

two-variable problems, this thesis also presents a procedure to quickly solve them.

The network methods in this thesis were implemented using Barr et al.’s data labeling

techniques to attempt to bring them closer in terms of average runtime with com-

mercial network optimization solvers such as CPLEX and Gurobi, and the current

Python open-source solver NetworkX. Comparisons of the analyzed algorithms were

measured by average CPU time in milliseconds and number of pivots using a set of

benchmark problems from the NETGEN test suite stored by Kovács.

80
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Computational experiments showed that the double-pivoting method solved some

benchmark minimum-cost network flow problems using approximately 50% fewer it-

erations, on average, than the single-pivoting method. Regarding CPU time, the

double-pivoting method outperformed the single-pivot algorithm by about 12% in

instances NETGEN 13 through 22. The single-pivoting method solved instances

NETGEN 08 through 12 faster than the double-pivoting method by approximately

8%. When averaging all instances, the double-pivoting method proposed in this the-

sis is over 5% faster than the single-pivoting method. Additionally, the single and

double-pivoting methods outperformed NetworkX but could not compare to the com-

mercial solvers CPLEX and Gurobi.

Future work for the double-pivoting method includes exploring alpha testing to fine-

tune the ranges of α for block pivoting, as adjusting values with smaller increments

may provide further insight into the fragility of the block pivoting approach for the

double-pivoting method. Additionally, exploring other pivoting procedures such as

the best pivoting arc rule, first pivoting arc rule, candidate list, and alternating can-

didate list is a future research topic.

Another research avenue is extending the XTI method to split the spanning tree basis

into three sub-trees to reduce the computation time of traversing and updating node

potentials and reverse sub-trees on that basis. This is not as trivial as it sounds, as

there exists difficulties in understanding how the predecessor path and overlap affect

the sub-trees before disconnecting, and how they also affect the reattachment process.
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Exploring parallelization for various components of the double-pivot network simplex

method is also a future research topic. Notice that the XTI method cheapens dis-

covering cycles with entering arcs. Therefore, in a parallel system, one can enter all

possible eligible arcs in an iteration and only multi-single pivot those cycles that do

not overlap. For cycles that do overlap, one can deploy the two-variable methods to

solve if it is only a two-cycle overlap. Furthermore, the double-pivot network simplex

method solved minimum-cost network flow problems faster than the single-pivot net-

work simplex method, what about a triple-pivoting approach? Quadruple-pivoting?

Quintuple-pivoting? n-pivoting?
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Figure A.1: Performance graphs of the single-pivot network simplex algorithm versus the double-pivot
network simplex algorithm for NETGEN instances 8-10.
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Figure A.2: Performance graphs of the single-pivot network simplex algorithm versus the double-pivot
network simplex algorithm for NETGEN instances 11-13.



93

Figure A.3: Performance graphs of the single-pivot network simplex algorithm versus the double-pivot
network simplex algorithm for NETGEN instances 14-16.
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Figure A.4: Performance graphs of the single-pivot network simplex algorithm versus the double-pivot
network simplex algorithm for NETGEN instances 17-19.
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Figure A.5: Performance graphs of the single-pivot network simplex algorithm versus the double-pivot
network simplex algorithm for NETGEN instances 20-21.
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