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Abstract

Using the notion of an elementary loop, Gebser and Schaub refined the theorem on loop
formulas due to Lin and Zhao by considering loop formulas of elementary loops only. In
this article, we reformulate their definition of an elementary loop, extend it to disjunc-
tive programs, and study several properties of elementary loops, including how maximal
elementary loops are related to minimal unfounded sets. The results provide useful in-
sights into the stable model semantics in terms of elementary loops. For a nondisjunctive
program, using a graph-theoretic characterization of an elementary loop, we show that
the problem of recognizing an elementary loop is tractable. On the other hand, we show
that the corresponding problem is coNP-complete for a disjunctive program. Based on the
notion of an elementary loop, we present the class of Head-Elementary-loop-Free (HEF)
programs, which strictly generalizes the class of Head-Cycle-Free (HCF) programs due to
Ben-Eliyahu and Dechter. Like an HCF program, an HEF program can be turned into
an equivalent nondisjunctive program in polynomial time by shifting head atoms into the
body.

KEYWORDS: stable model semantics, loop formulas, unfounded sets

1 Introduction

The theorem on loop formulas due to Lin and Zhao (2004) has contributed to

understanding the relationship between the stable model semantics and classical

logic. Unlike other translations that modify the vocabulary of a logic program

(Ben-Eliyahu and Dechter 1994; Lin and Zhao 2003; Janhunen 2006), the original
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theorem on loop formulas characterizes the stable models of a nondisjunctive pro-

gram in terms of the models of its completion that satisfy the loop formulas of all

loops of the program. This allows us to compute stable models using SAT solvers,

which led to the design of answer set solvers assat
1 (Lin and Zhao 2004) and

cmodels
2 (Giunchiglia et al. 2004). Due to its importance in semantic understand-

ing as well as in stable model computation, the theorem on loop formulas has been

extended to more general classes of logic programs, such as disjunctive programs

(Lee and Lifschitz 2003), infinite programs and programs containing classical nega-

tion (Lee 2005), and programs containing aggregates (Liu and Truszczynski 2006;

You and Liu 2008; Lee and Meng 2009). Moreover, it has been applied to other

nonmonotonic logics, such as circumscription (Lee and Lin 2006) and nonmono-

tonic causal logic (Lee 2004). The stable model semantics for first-order formulas

given in (Ferraris et al. 2007; Ferraris et al. 2011) is also closely related to the idea

of loop formulas, as described in (Lee and Meng 2008).

By slightly modifying the definition of a loop, Lee (2005) showed that loop for-

mulas can be viewed as a generalization of completion (Clark 1978). The model-

theoretic account of loop formulas give in (Lee 2005) also tells us that the idea

of loop formulas is closely related to assumption sets (Saccá and Zaniolo 1990) or

unfounded sets (Leone et al. 1997). In a sense, the theorem by Lin and Zhao is

an enhancement of the unfounded set based characterization of stable models given

in (Saccá and Zaniolo 1990; Leone et al. 1997). The unfounded set based character-

ization takes into account the loop formulas of all sets of atoms, while the theorem

by Lin and Zhao considers the loop formulas of loops only. Gebser and Schaub

(2005) improved this enhancement even further. They defined the notion of an ele-

mentary loop of a nondisjunctive program and showed that the theorem by Lin and

Zhao remains correct even if we consider loop formulas of elementary loops only.

In this article, we reformulate the definition of an elementary loop of a nondisjunc-

tive program by Gebser and Schaub, extend it to disjunctive programs, and study

several properties of elementary loops, including how maximal elementary loops

are related to minimal unfounded sets. Based on the notion of an elementary loop,

we present the class of Head-Elementary-loop-Free (HEF) program, which strictly

generalizes the class of Head-Cycle-Free (HCF) programs due to Ben-Eliyahu and

Dechter (1994). Like an HCF program, an HEF program can be turned into an

equivalent nondisjunctive program in polynomial time by shifting head atoms into

the body—a simple transformation defined in (Gelfond et al. 1991). This tells us

that an HEF program is an “easy” disjunctive program, which is merely a syntactic

variant of a nondisjunctive program. We also observe that several other properties

of nondisjunctive and HCF programs can be generalized to HEF programs. The

main results from (Lin and Zhao 2003) and (You et al. 2003), characterizing sta-

ble models in terms of inherent tightness and weak tightness, respectively, can be

extended to HEF programs, and likewise the operational characterization of stable

models of HCF programs due to Leone et al. (1997) can be extended to HEF pro-

1 http://assat.cs.ust.hk/
2 http://www.cs.utexas.edu/users/tag/cmodels/
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grams. The properties of elementary loops and HEF programs studied here may

be useful in improving the computation of disjunctive answer set solvers, such as

claspd
3 (Drescher et al. 2008), cmodels (Lierler 2005), dlv4 (Leone et al. 2006),

and gnt
5 (Janhunen et al. 2006).

The outline of this paper is as follows. In Section 2, we present our reformulated

definition of an elementary loop of a nondisjunctive program and provide a corre-

sponding refinement of the theorem on loop formulas, as well as some properties of

elementary loops. These results are extended to disjunctive programs in Section 3.

In Section 4, we introduce the class of HEF programs and show that their shifted

variants preserve stable models. In Section 5, we generalize the notion of inherent

tightness to HEF programs. An operational characterization of stable models of

HEF programs is presented in Section 6. Finally, Section 7 concludes the paper.

This paper is an extended version of the conference papers (Gebser et al. 2006)

and (Gebser et al. 2007).6

2 Nondisjunctive Programs

After providing the relevant background on nondisjunctive programs, this section

introduces elementary loops of nondisjunctive programs. We further refine elemen-

tary loops to elementarily unfounded sets, yielding a syntactic characterization of

minimal unfounded sets. Moreover, we show that elementary loops of nondisjunctive

programs can be recognized in polynomial time. (The statements of the theorems

and the propositions in this section which apply to nondisjunctive programs will

be generalized to disjunctive programs or HEF programs in later sections and the

proofs will be given there.) Finally, we compare our reformulation of elementary

loops with the definition by Gebser and Schaub (2005).

2.1 Background

A nondisjunctive rule is an expression of the form

a1 ← a2, . . . , am, not am+1 , . . . ,not an (1)

where n ≥ m ≥ 1 and a1, . . . , an are propositional atoms. A nondisjunctive program

is a finite set of nondisjunctive rules.

We will identify a nondisjunctive rule (1) with the propositional formula

a2 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → a1 , (2)

and will often write (1) as

a1 ← B,F (3)

3 http://potassco.sourceforge.net/
4 http://www.dbai.tuwien.ac.at/proj/dlv/
5 http://www.tcs.hut.fi/Software/gnt/
6 In (Gebser et al. 2006; Gebser et al. 2007), the term “elementary set” was used in place of
“elementary loop.”
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Fig. 1. The dependency graph of Program Π1

where B is a2, . . . , am and F is not am+1 , . . . ,not an . We will sometimes identify B

with its corresponding set of atoms.

We will identify an interpretation with the set of atoms that are true in it. We say

that a set X of atoms satisfies a rule (1) if X satisfies (2). Moreover, X satisfies a

nondisjunctive program Π (symbolically, X |= Π) if X satisfies every rule (1) of Π.

If X satisfies Π, we also call X a model of Π.

The reduct ΠX of a nondisjunctive program Π w.r.t. a set X of atoms is obtained

from Π by deleting each rule (3) such that X �|= F , and replacing each remaining

rule (3) with a1 ← B. A set X of atoms is a stable model, also called an answer

set, of Π if X is minimal among the sets of atoms that satisfy ΠX .

The (positive) dependency graph of a nondisjunctive program Π is the directed

graph such that its vertices are the atoms occurring in Π, and its edges go from a1
to a2, . . . , am for all rules (1) of Π. A nonempty set Y of atoms is called a loop of Π

if, for every pair a, b of atoms in Y , there is a path (possibly of length 0) from a

to b in the dependency graph of Π such that all vertices in the path belong to Y .

In other words, a nonempty set Y of atoms that occur in Π is a loop of Π if the

subgraph of the dependency graph of Π induced by Y is strongly connected. It is

clear that every singleton whose atom occurs in Π is a loop of Π.

For illustration, consider the following program Π1:

p ← not s

p ← r

q ← r

r ← p, q .

Figure 1 shows the dependency graph of Π1. Program Π1 has seven loops: {p}, {q},

{r}, {s}, {p, r}, {q, r}, and {p, q, r}.

For any set Y of atoms, the external support formula of Y for a nondisjunctive

program Π, denoted by ESΠ(Y ), is the disjunction of conjunctions B ∧ F for all

rules (3) of Π such that a1 ∈ Y and B ∩ Y = ∅. The first condition expresses that

the atom “supported” by (3) is an element of Y . The second condition ensures that

this support is “external”: the atoms in B that it relies on do not belong to Y . Thus,

Y is called externally supported by Π w.r.t. a set X of atoms if X |= ESΠ(Y ).

For any set Y of atoms, by LFΠ(Y ), we denote the following formula:

∧

a∈Y

a → ESΠ(Y ) . (4)

(The expression in the antecedent stands for the conjunction of all elements in Y .)

Formula (4) is called the (conjunctive) loop formula of Y for Π. Note that we still

call (4) a loop formula even when Y is not a loop of Π.

The following reformulation of the Lin-Zhao theorem, which characterizes the
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stability of a model by loop formulas, is a part of the main theorem from (Lee 2005)

for the nondisjunctive case.

Theorem 1 ((Lee 2005))

For any nondisjunctive program Π and any set X of atoms that occur in Π, if X is

a model of Π, then the following conditions are equivalent:

(a) X is a stable model of Π;

(b) X satisfies LFΠ(Y ) for all nonempty sets Y of atoms that occur in Π;

(c) X satisfies LFΠ(Y ) for all loops Y of Π.

According to the equivalence between conditions (a) and (b) in Theorem 1, a

model of Π1 is stable iff it satisfies the loop formulas of all fifteen nonempty sets

of atoms formed from the atoms occurring in Π1. On the other hand, condition (c)

tells us that it is sufficient to restrict attention to the following loop formulas of the

seven loops of Π1:

p → ¬s ∨ r

q → r

r → p ∧ q

s → ⊥

p ∧ r → ¬s

q ∧ r → ⊥

p ∧ q ∧ r → ¬s .

(5)

Program Π1 has six models: {p}, {s}, {p, s}, {q, s}, {p, q, r}, and {p, q, r, s}. Among

them, {p} is the only stable model of Π1, which is also the only model of Π1 that

satisfies all loop formulas in (5).

As noted in (Lee 2005), the equivalence between conditions (a) and (c) is a refor-

mulation of the theorem by Lin and Zhao; the equivalence between conditions (a)

and (b) is a reformulation of Corollary 2 from (Saccá and Zaniolo 1990) and The-

orem 4.6 from (Leone et al. 1997) (in the nondisjunctive case), which characterizes

the stability of a model in terms of unfounded sets. For any sets X , Y of atoms,

we say that Y is unfounded by Π w.r.t. X if Y is not externally supported by Π

w.r.t. X . Condition (b) can be stated in terms of unfounded sets as follows:

(b′) X contains no nonempty unfounded sets for Π w.r.t. X .

2.2 Elementary Loops of Nondisjunctive Programs

Gebser and Schaub (2005) showed that Y in LFΠ(Y ) in Theorem 1 can be restricted

to “elementary” loops only. In this section, we present a reformulation of their

definition of an elementary loop and investigate its properties. We compare our

reformulation with the original definition by Gebser and Schaub in Section 2.5.

To begin with, the following proposition tells us that a loop can be defined without

mentioning a dependency graph.
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Proposition 1

For any nondisjunctive program Π and any nonempty set X of atoms that occur

in Π, X is a loop of Π iff, for every nonempty proper subset Y of X , there is a

rule (3) in Π such that a1 ∈ Y and B ∩ (X \ Y ) �= ∅.

For any set X of atoms and any subset Y of X , we say that Y is outbound in X

for a nondisjunctive program Π if there is a rule (3) in Π such that

• a1 ∈ Y ,

• B ∩ (X \ Y ) �= ∅, and
• B ∩ Y = ∅.

The following proposition describes the relationship between the external support

formula of a set Y of atoms and the external support formula of a subset Z of Y

that is not outbound in Y .

Proposition 2

For any nondisjunctive program Π and any sets X , Y , Z of atoms such that

Z ⊆ Y ⊆ X , if Z is not outbound in Y for Π and X |= ESΠ(Z), then X |= ESΠ(Y ).

Proposition 2 tells us that, in order to verify that a set Y of atoms is externally

supported by Π w.r.t. a superset X of Y , it is sufficient to identify some exter-

nally supported subset of Y that is not outbound in Y for Π. Conversely, if Y is

not externally supported by Π w.r.t. X , then every subset of Y that is externally

supported by Π w.r.t. X is outbound in Y for Π.

For any nonempty set X of atoms that occur in Π, we say thatX is an elementary

loop of Π if all nonempty proper subsets of X are outbound in X for Π. As with

loops, it is clear from the definition that every singleton whose atom occurs in Π is

an elementary loop of Π. It is also clear that every elementary loop of Π is a loop

of Π: the condition for being an elementary loop implies the condition for being

a loop as stated in Proposition 1. On the other hand, a loop is not necessarily an

elementary loop. For instance, one can check that {p, q, r} is not an elementary

loop of Π1 since {p, r} (or {q, r}) is not outbound in {p, q, r} for Π1. All other loops

of Π1 are elementary loops. Note that an elementary loop may be a proper subset

of another elementary loop (both {p} and {p, r} are elementary loops of Π1).

The following program replaces the last rule of Π1 with two other rules:

p ← not s

p ← r

q ← r

r ← p

r ← q .

(6)

The program has the same dependency graph as Π1, and hence has the same loops.

However, its elementary loops are different from those of Π1: all its loops are ele-

mentary loops as well, including {p, q, r}.

The definition of an elementary loop X given above is not affected if we check the

outboundness condition only for all loops or for all elementary loops that belong to

X instead of all nonempty proper subsets of X .
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Proposition 3

For any nondisjunctive program Π and any nonempty set X of atoms that occur

in Π, X is an elementary loop of Π iff all proper subsets of X that are elementary

loops of Π are outbound in X for Π.

The following proposition describes an important relationship between loop for-

mulas of elementary loops and loop formulas of arbitrary sets of atoms.

Proposition 4

For any nondisjunctive program Π and any nonempty set Y of atoms that occur

in Π, there is an elementary loop Z of Π such that Z is a subset of Y and LFΠ(Z)

entails LFΠ(Y ).

Proposition 4 allows us to limit attention to loop formulas of elementary loops

only. This yields the following theorem, which is a reformulation of Theorem 3

from (Gebser and Schaub 2005).

Theorem 1 (d)

The following condition is equivalent to each of conditions (a)–(c) in Theorem 1:

(d) X satisfies LFΠ(Y ) for all elementary loops Y of Π.

For instance, according to Theorem 1 (d), a model of Π1 is stable iff it satisfies the

first six loop formulas in (5); the loop formula of the non-elementary loop {p, q, r}

(the last one in (5)) can be disregarded.

2.3 Elementarily Unfounded Sets for Nondisjunctive Programs

If we modify condition (c) in Theorem 1 by replacing “loops” in its statement

with “maximal loops,” the condition becomes weaker, and the modified statement

of Theorem 1 is incorrect. For instance, Π1 has only two maximal loops, {p, q, r}

and {s}, and their loop formulas are satisfied by a non-stable model {p, q, r}. In

fact, maximal loop {p, q, r} is not even an elementary loop of Π1. Similarly, it is

not sufficient to consider maximal elementary loops only. If we replace “elementary

loops” in the statement of Theorem 1 (d) with “maximal elementary loops,” then

the modified statement is incorrect. For instance, the program

p ← q,not p

q ← p, not p

p ← .

has two models, {p} and {p, q}, among which the latter is not stable. On the other

hand, the only maximal elementary loop of the program is {p, q}, and its loop

formula p ∧ q →  is satisfied by both models, so that this loop formula alone is

not sufficient to refute the stability of {p, q}. (Model {p, q} does not satisfy the loop

formula of {q}, which is q → p ∧ ¬p.)

However, in the following we show that, if we consider the “relevant” part of a

program w.r.t. a given interpretation, it is sufficient to restrict attention to maximal

elementary loops. For any nondisjunctive program Π and any set X of atoms, by
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ΠX , we denote the set of all rules (3) of Π such that X |= B,F . The following

proposition states that all nonempty proper subsets of an elementary loop of ΠX

are externally supported by Π w.r.t. X .

Proposition 5
For any nondisjunctive program Π, any set X of atoms, and any elementary loop Y

of ΠX , X satisfies ESΠ(Z) for all nonempty proper subsets Z of Y .

Proposition 5 tells us that any elementary loop Y of ΠX that is unfounded by Π

w.r.t. X is maximal among the elementary loops of ΠX . From this, we obtain the

following result.

Theorem 1 (e)
The following condition is equivalent to each of conditions (a)–(c) in Theorem 1:

(e) X satisfies LFΠ(Y ) for every set Y of atoms such that Y is

— a maximal elementary loop of ΠX , or
— a singleton whose atom occurs in Π.

Given a nondisjunctive program Π and a set X of atoms, we say that a set Y of

atoms that occur in Π is elementarily unfounded by Π w.r.t. X if Y is

• an elementary loop of ΠX that is unfounded by Π w.r.t. X or
• a singleton that is unfounded by Π w.r.t. X .7

Proposition 5 tells us that any non-singleton elementarily unfounded set for Π

w.r.t. X is a maximal elementary loop of ΠX .

It is clear from the definition that every elementarily unfounded set for Π w.r.t.X

is an elementary loop of Π and that it is also unfounded by Π w.r.t. X . However,

the converse does not hold in general. For instance, {p, q} is an elementary loop

that is unfounded by the program

p ← q,not r

q ← p, not r

w.r.t. {p, q, r}, but {p, q} is not an elementarily unfounded set w.r.t. {p, q, r}.

The following corollary, which follows from Proposition 5, states that all non-

empty proper subsets of an elementarily unfounded set are externally supported. It

is essentially a reformulation of Theorem 5 from (Gebser and Schaub 2005).

Corollary 1
For any nondisjunctive program Π, any set X of atoms, and any elementarily un-

founded set Y for Π w.r.t. X , X does not satisfy ESΠ(Y ), but satisfies ESΠ(Z) for

all nonempty proper subsets Z of Y .

Corollary 1 tells us that elementarily unfounded sets form an “anti-chain”: one

of them cannot be a proper subset of another. (On the other hand, an elementary

loop may contain another elementary loop as its proper subset.) Also it tells us

that elementarily unfounded sets are minimal among the nonempty unfounded sets

occurring in Π. Interestingly, the converse also holds.

7 Elementarily unfounded sets are closely related to “active elementary loops” defined
in (Gebser and Schaub 2005). We further investigate this relationship in Section 2.5.
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Theorem 2

For any nondisjunctive program Π and any sets X , Y of atoms, Y is an elementarily

unfounded set for Π w.r.t. X iff Y is minimal among the nonempty sets of atoms

occurring in Π that are unfounded by Π w.r.t. X .

Notably, the correspondence between elementarily unfounded sets and minimal

nonempty unfounded sets has also led to an alternative characterization of UE-

models (Gebser et al. 2008), which characterizes uniform equivalence (Eiter and Fink 2003)

of nondisjunctive programs as well as disjunctive programs.

Similar to Theorem 1 (b′), Theorem 1 (e) can be stated in terms of elementarily

unfounded sets, thereby restricting attention to minimal nonempty unfounded sets.

Theorem 1 (e′)

The following condition is equivalent to each of conditions (a)–(c) in Theorem 1:

(e′) X contains no elementarily unfounded sets for Π w.r.t. X .

The notion of an elementarily unfounded set may help improve computation

performed by SAT-based answer set solvers. Since there are exponentially many

“relevant” loops in the worst case (Lifschitz and Razborov 2006), SAT-based an-

swer set solvers do not add all loop formulas at once. Instead, they check whether

a model returned by a SAT solver is stable. If not, a loop formula that is not sat-

isfied by the model is added, and the SAT solver is invoked again. This process is

repeated until a stable model is found or the search space is exhausted. In view of

Theorem 1 (e′), it is sufficient to restrict attention to elementarily unfounded sets

during the computation. This ensures that the considered loop formulas belong to

elementary loops. Since every elementary loop is a loop, but not vice versa, the

computation may involve fewer loop formulas overall than in the case when arbi-

trary loops are considered. However, whether this idea will lead to more efficient

computation in practice requires further investigation.

2.4 Recognizing Elementary Loops of Nondisjunctive Programs

The definition of an elementary loop given in Section 2.2 involves considering all

its nonempty proper subsets (or at least all elementary loops that are subsets).

This may seem to imply that deciding whether a given set of atoms is an elemen-

tary loop is a computationally hard problem. However, Gebser and Schaub (2005)

showed that this is not the case for nondisjunctive programs. They also noted

that the notion of a positive dependency graph is not expressive enough to distin-

guish between elementary and non-elementary loops (Program Π1 and the program

in (6) have the same dependency graph, but their elementary loops are different),

and instead used the rather complicated notion of a body-head dependency graph to

identify elementary loops. In this section, we simplify their result by still referring

to a positive dependency graph. We show that removing some unnecessary edges

from a positive dependency graph is just enough to distinguish between elementary

and non-elementary loops.
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p qr
� �

Fig. 2. The elementary subgraph of {p, q, r} for Program Π1

For any set X of atoms that occur in a nondisjunctive program Π, we define:

EC 0
Π(X) = ∅ ,

EC i+1
Π (X) = {(a1, b) | there is a rule (3) in Π such that a1 ∈ X ,

b ∈ B ∩X , and all atoms in B ∩X belong to the

same strongly connected component in (X,EC i
Π(X))} ,

ECΠ(X) =
⋃

i≥0EC
i
Π(X) .

This is a “bottom-up” construction based on strongly connected components, i.e.,

maximal strongly connected subgraphs of a given graph. Thus EC i
Π(X) is a subset

of EC i+1
Π (X), and the graph (X,ECΠ(X)) is a subgraph of the positive dependency

graph of Π. We call the graph (X,ECΠ(X)) the elementary subgraph of X for Π.

Figure 2 shows the elementary subgraph of {p, q, r} for Π1, which is not strongly

connected.

The following theorem is similar to Theorem 10 from (Gebser and Schaub 2005),

but instead of referring to the notion of a body-head dependency graph, it refers

to the notion of an elementary subgraph.

Theorem 3
For any nondisjunctive program Π and any nonempty set X of atoms that occur

in Π, X is an elementary loop of Π iff the elementary subgraph ofX for Π is strongly

connected.

Since an elementary subgraph can be constructed in polynomial time, the problem

of deciding whether a given set of atoms is an elementary loop of a nondisjunctive

program is tractable.

2.5 Comparison with Gebser-Schaub Definition

In this section, we compare our reformulation of elementary loops with the original

definition by Gebser and Schaub (2005) for nondisjunctive programs.

Let Π be a nondisjunctive program. A loop of Π is called trivial if it consists of

a single atom such that the dependency graph of Π does not contain an edge from

the atom to itself, and nontrivial otherwise.8 For a nontrivial loop L of Π, let

• R−
Π(L) = {(3) ∈ Π | a1 ∈ L, B ∩ L = ∅}, and

• R+
Π(L) = {(3) ∈ Π | a1 ∈ L, B ∩ L �= ∅}.

Definition 1 ((Gebser and Schaub 2005))
A nontrivial loop L of a nondisjunctive program Π is called a GS-elementary loop

of Π if R−
Π(L

′) ∩R+
Π(L) �= ∅ for all proper subsets L′ of L that are nontrivial loops

of Π.

8 In (Lin and Zhao 2004) and (Gebser and Schaub 2005), loops were defined to be nontrivial.
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Proposition 6

For any nondisjunctive program Π and any set L of atoms, L is a GS-elementary

loop of Π iff L is a nontrivial elementary loop of Π.

Proof. From left to right: Assume that L is a GS-elementary loop of Π. If L is

a singleton, it is a (nontrivial) elementary loop according to our definition. If L is

not a singleton, we have that R−
Π(L

′) ∩ R+
Π(L) �= ∅ for any proper subset L′ of L

that is a nontrivial loop of Π. In other words, there is a rule (3) in Π such that

a1 ∈ L′, (7)

B ∩ L′ = ∅, (8)

and

B ∩ (L \ L′) �= ∅. (9)

We thus have that L′ is outbound in L for Π. Furthermore, for any trivial loop {a1}

of Π contained in L, there must be a rule (3) in Π such that B ∩ (L \ {a1}) �= ∅,

as L cannot be a loop of Π otherwise. Since {a1} is trivial, B ∩ {a1} = ∅, so that

{a1} is outbound in L for Π. By Proposition 3, it follows that L is a (nontrivial)

elementary loop of Π.

From right to left: Assume that L is a nontrivial elementary loop of Π. From the

definition of an elementary loop, it follows that any proper subset L′ of L that is a

nontrivial loop of Π is outbound in L for Π. That is, there is a rule (3) in Π such

that (7), (8), and (9) hold, so that L is a GS-elementary loop of Π.

For a nondisjunctive program Π and a set X of atoms, a loop L of ΠX is a

GS-elementary loop of ΠX iff L is a nontrivial elementary loop of ΠX . Thus an

active elementary loop of Π according to (Gebser and Schaub 2005) is a nontrivial

elementary loop of ΠX that is unfounded by Π w.r.t. X . Hence, any active elemen-

tary loop L of Π is an elementarily unfounded set for Π w.r.t. X , while the converse

does not hold in general if L is a singleton.

In fact, there are a few differences between Definition 1 and our definition of

an elementary loop. First, our definition of an elementary loop does not a priori

assume that its atoms form a loop. Rather, the fact that an elementary loop is a

loop follows from its definition in view of Proposition 1. Second, the two definitions

do not agree on trivial loops: a trivial loop is an elementary loop, but not a GS-

elementary loop. This originates from the difference between the definition of a loop

in (Lin and Zhao 2004) and its reformulation given in (Lee 2005). As shown in the

main theorem from (Lee 2005), identifying a trivial loop as a loop admits a simpler

reformulation of the Lin-Zhao theorem by allowing us to view completion formu-

las (Clark 1978) as a special case of loop formulas. Furthermore, the reformulated

definition of an elementary loop enables us to identify a close relationship between

maximal elementary loops (elementarily unfounded sets) and minimal nonempty

unfounded sets.

Importantly, trivial loops allow us to extend the notion of an elementary loop

to disjunctive programs without producing counterintuitive results. For instance,
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consider the following disjunctive program:

p ; q ← r

p ; r ← q

q ; r ← p .

(10)

The nontrivial loops of this program are {p, q}, {p, r}, {q, r}, and {p, q, r}, but

not the singletons {p}, {q}, and {r}. If we were to extend GS-elementary loops

to disjunctive programs, a natural extension would say that {p, q, r} is a GS-

elementary loop since {p, q}, {p, r}, and {q, r} are “outbound” in {p, q, r}. But

note that {p, q, r} is unfounded w.r.t. {p, q, r}; moreover, every singleton is also

unfounded w.r.t {p, q, r}. This is in contrast with Proposition 5, according to which

all nonempty proper subsets of an elementary loop should be externally supported.

The next section shows that such an anomaly does not arise with our definition of

an elementary loop that is extended to disjunctive programs.

3 Disjunctive Programs

After providing the relevant background on disjunctive programs, this section gen-

eralizes the notions of an elementary loop and an elementarily unfounded set to

disjunctive programs. We also provide the proofs of the generalizations of the state-

ments given in the previous section; such generalized results also apply to the class

of nondisjunctive programs as a fragment of disjunctive programs. Furthermore,

we show that, in contrast to nondisjunctive programs, recognizing an elementary

loop is intractable in the case of arbitrary disjunctive programs, but stays tractable

under a certain syntactic condition.

3.1 Background

A disjunctive rule is an expression of the form

a1; . . . ; ak ← ak+1, . . . , al, not al+1 , . . . ,not am , not not am+1 , . . . ,not not an
(11)

where n ≥ m ≥ l ≥ k ≥ 0 and a1, . . . , an are propositional atoms. A dis-

junctive program is a finite set of disjunctive rules. Note that any program with

nested expressions can be turned into an equivalent program whose rules are of the

form (11) (Lifschitz et al. 1999).

We will identify a disjunctive rule (11) with the propositional formula

ak+1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am ∧ ¬¬am+1 ∧ · · · ∧ ¬¬an → a1 ∨ · · · ∨ ak

and will often write (11) as

A ← B,F (12)

where A is a1, . . . , ak, B is ak+1, . . . , al, and F is

not al+1 , . . . ,not am , not not am+1 , . . . ,not not an .

We will sometimes identify A and B with their corresponding sets of atoms.
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The reduct ΠX of a disjunctive program Π w.r.t. a set X of atoms is obtained

from Π by deleting each rule (12) such that X �|= F , and replacing each remaining

rule (12) with A ← B. A set X of atoms is a stable model, also called an answer

set, of Π if X is minimal among the sets of atoms that satisfy ΠX .

The definition of a (positive) dependency graph is extended to a disjunctive

program Π in the straightforward way: the vertices of the graph are the atoms

occurring in Π, and its edges go from the elements of A to the elements of B for all

rules (12) of Π. With this extended definition of a dependency graph, the definition

of a loop for a nondisjunctive program is straightforwardly extended to a disjunctive

program.

For any set Y of atoms, the external support formula of Y for a disjunctive

program Π, denoted by ESΠ(Y ), is the disjunction of conjunctions

B ∧ F ∧
∧

a∈A\Y

¬a

for all rules (12) of Π such that A∩Y �= ∅ and B∩Y = ∅. When Π is a nondisjunctive

program, this definition reduces to the definition of ESΠ(Y ) for nondisjunctive

programs given earlier. As before, we say that Y is externally supported by Π w.r.t.

a set X of atoms if X |= ESΠ(Y ); Y is unfounded Π w.r.t. X if X �|= ESΠ(Y ).

The notion of LFΠ(Y ) and the term (conjunctive) loop formula similarly apply

to formulas (4) when Π is a disjunctive program.

As shown in (Lee 2005), Theorem 1 remains correct after replacing “nondisjunc-

tive program” in its statement with “disjunctive program.”

Theoremd 1 ((Lee 2005))

For any disjunctive program Π and any set X of atoms that occur in Π, if X is a

model of Π, then the following conditions are equivalent: 9

(a) X is a stable model of Π;

(b) X satisfies LFΠ(Y ) for all nonempty sets Y of atoms that occur in Π;

(b′) X contains no nonempty unfounded sets for Π w.r.t. X ;

(c) X satisfies LFΠ(Y ) for all loops Y of Π.

For instance, the loop formulas of the seven loops of the program in (10) are:

p → (r ∧ ¬q) ∨ (q ∧ ¬r)

q → (r ∧ ¬p) ∨ (p ∧ ¬r)

r → (q ∧ ¬p) ∨ (p ∧ ¬q)

p ∧ q → r

p ∧ r → q

q ∧ r → p

p ∧ q ∧ r → ⊥ .

(13)

∅ is the only model of (13) and it is the only stable model of (10) in accordance

with the equivalence between (a) and (c) in Theoremd 1.

9 Superscript d indicates that the statement is a generalization to disjunctive programs.
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3.2 Elementary Loops of Disjunctive Programs

In this section, we generalize the definition of an elementary loop to disjunctive

programs.

A loop of a disjunctive program can be defined without referring to a dependency

graph, as in Proposition 1.

Propositiond 1
For any disjunctive program Π and any nonempty set X of atoms that occur in Π,

X is a loop of Π iff, for every nonempty proper subset Y of X , there is a rule (12)

in Π such that A ∩ Y �= ∅ and B ∩ (X \ Y ) �= ∅.

Proof. From left to right: Assume that X is a loop of Π. If X is a singleton, it is

clear. If X is not a singleton, take any nonempty proper subset Y of X . Since both

Y and X \ Y are nonempty, there is a path from some atom in Y to some atom in

X \Y in the dependency graph of Π such that all vertices in the path belong to X .

This implies that there is an edge from an atom in Y to an atom in X \ Y , i.e.,

A ∩ Y �= ∅ and B ∩ (X \ Y ) �= ∅ for some rule (12) in Π.

From right to left: Assume that X is not a loop of Π. Then the subgraph of the

dependency graph of Π induced byX is not strongly connected. Consequently, there

is a nonempty proper subset Y of X such that no edge connects an atom in Y to

an atom in X \ Y . This implies that there is no rule (12) in Π such that A∩ Y �= ∅

and B ∩ (X \ Y ) �= ∅.

For any set X of atoms and any subset Y of X , we say that Y is outbound in X

for a disjunctive program Π if there is a rule (12) in Π such that

• A ∩ Y �= ∅,
• B ∩ (X \ Y ) �= ∅,
• A ∩ (X \ Y ) = ∅, and
• B ∩ Y = ∅.

As with nondisjunctive programs, for any nonempty set X of atoms that occur

in Π, we say that X is an elementary loop of Π if all nonempty proper subsets of X

are outbound in X for Π. Clearly, every singleton whose atom occurs in Π is an

elementary loop of Π, and every elementary loop of Π is a loop of Π. The definition

of an elementary loop of a disjunctive program is stronger than the alternative

characterization of a loop provided in Propositiond 1: it requires that the rule (12)

satisfy two additional conditions, A ∩ (X \ Y ) = ∅ and B ∩ Y = ∅.

To illustrate the definition of an elementary loop of a disjunctive program, con-

sider the loop {p, q, r} of the program in (10). The loop is not an elementary loop be-

cause, for instance, {p} is not outbound in {p, q, r}: although the first two rules (12)

in (10) are such that A∩{p} �= ∅, B∩{q, r} �= ∅, and B∩{p} = ∅, we also have that

A∩{q, r} �= ∅ for each of them. Similarly, {q} and {r} are not outbound in {p, q, r}.

On the other hand, the remaining loops of the program, {p}, {q}, {r}, {p, q}, {p, r},

and {q, r}, are elementary loops.

With the extended definitions given above, Propositions 2, 3, 4 and Theorem 1 (d)

remain correct after replacing “nondisjunctive program” in their statements with

“disjunctive program.” In the following, we present proofs for these generalizations.
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Propositiond 2

For any disjunctive programΠ and any setsX , Y , Z of atoms such that Z ⊆ Y ⊆ X ,

if Z is not outbound in Y for Π and X |= ESΠ(Z), then X |= ESΠ(Y ).

Proof. Assume that Z is not outbound in Y for Π and that X |= ESΠ(Z). From

the latter, it follows that there is a rule (12) in Π such that

A ∩ Z �= ∅ , (14)

B ∩ Z = ∅ , (15)

X |= B,F , (16)

and

X ∩ (A \ Z) = ∅ . (17)

From (14), since Z ⊆ Y ,

A ∩ Y �= ∅ . (18)

From (17), since Z ⊆ Y ⊆ X ,

X ∩ (A \ Y ) = ∅ (19)

and

Y ∩ (A \ Z) = ∅ ,

where the latter is equivalent to

A ∩ (Y \ Z) = ∅ . (20)

Since Z is not outbound in Y for Π, from (14), (15), and (20), it follows that

B ∩ (Y \ Z) = ∅ ,

which, in combination with (15), gives us that

B ∩ Y = ∅ . (21)

Finally, from (16), (18), (19), and (21), we conclude that X |= ESΠ(Y ).

Propositiond 3

For any disjunctive program Π and any nonempty set X of atoms that occur in Π,

X is an elementary loop of Π iff all proper subsets of X that are elementary loops

of Π are outbound in X for Π.

Proof. From left to right is clear.

From right to left: Assume that X is not an elementary loop of Π. Then there is

a nonempty proper subset Y of X that is not outbound in X for Π. If Y is an

elementary loop of Π, it is clear. Otherwise, there is a nonempty proper subset Z

of Y that is not outbound in Y for Π. For the sake of contradiction, assume that

Z is outbound in X for Π, i.e., that there is a rule (12) in Π such that

A ∩ Z �= ∅ , (22)
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B ∩ (X \ Z) �= ∅ , (23)

A ∩ (X \ Z) = ∅ , (24)

and

B ∩ Z = ∅ . (25)

From (22) and (24), since Z ⊆ Y ⊆ X ,

A ∩ Y �= ∅ , (26)

A ∩ (X \ Y ) = ∅ , (27)

and

A ∩ (Y \ Z) = ∅ . (28)

Since Z is not outbound in Y for Π, from (22), (25), and (28), it follows that

B ∩ (Y \ Z) = ∅ ,

which, in combination with (23) and (25), gives us that

B ∩ Y = ∅ (29)

and

B ∩ (X \ Y ) �= ∅ . (30)

However, (26), (27), (29), and (30) together contradict that Y is not outbound in X

for Π, from which we conclude that Z is not outbound in X for Π. We have thus

shown that every nonempty proper subset of X that is not outbound in X for Π

and not an elementary loop of Π contains in turn a nonempty proper subset that is

not outbound in X for Π. Since X is finite, there is some (not necessarily unique)

minimal nonempty proper subset of X that is not outbound in X for Π, and such

a subset must be an elementary loop of Π.

Propositiond 4

For any disjunctive program Π and any nonempty set Y of atoms that occur in Π,

there is an elementary loop Z of Π such that Z is a subset of Y and LFΠ(Z) entails

LFΠ(Y ).

Proof. If Y is an elementary loop of Π, it is clear. Otherwise, by Propositiond 3,

some proper subset Z of Y is an elementary loop of Π that is not outbound in Y

for Π. Take any set X of atoms such that X |= LFΠ(Z). If Y �⊆ X , then X �|=∧
a∈Y a and X |= LFΠ(Y ). If Y ⊆ X , X |=

∧
a∈Z a and X |= ESΠ(Z), and, by

Propositiond 2, we conclude that X |= ESΠ(Y ) and X |= LFΠ(Y ).

Theoremd 1 (d)

The following condition is equivalent to each of conditions (a)–(c) in Theoremd 1:

(d) X satisfies LFΠ(Y ) for all elementary loops Y of Π.
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Proof. We show the equivalence between (b) and (d). From (b) to (d) is clear,

and from (d) to (b) follows immediately from Propositiond 4.

For instance, for the program in (10), the loop formula of non-elementary loop

{p, q, r} (the last one in (13)) can be disregarded in view of Theoremd 1 (d).

3.3 Elementarily Unfounded Sets for Disjunctive Programs

Let Π be a disjunctive program. For any sets X , Y of atoms, by ΠX,Y we denote

the set of all rules (12) of Π such that X |= B,F and X ∩ (A \ Y ) = ∅. That is,

the program ΠX,Y contains all rules of Π that can provide supports for Y w.r.t. X .

If Y = X , we also denote ΠX,Y by ΠX . When Π is a nondisjunctive program,

this definition reduces to the definition of ΠX for nondisjunctive programs given

earlier. Furthermore, when Π is nondisjunctive and Y is not a singleton, then Y is

an elementary loop of ΠX,Y iff Y is an elementary loop of ΠX .

We extend the definition of an elementarily unfounded set to disjunctive programs

by replacing “ΠX” with “ΠX,Y ”: for a disjunctive program Π and a set X of atoms,

we say that a set Y of atoms that occur in Π is elementarily unfounded by Π w.r.t.X

if Y is

• an elementary loop of ΠX,Y that is unfounded by Π w.r.t. X or

• a singleton that is unfounded by Π w.r.t. X .

It is clear from the definition that every elementarily unfounded set for Π w.r.t. X

is an elementary loop of Π and that it is also unfounded by Π w.r.t. X .

For instance, let Π be the program (10). The program Π{p,q,r},{p,q} consists of

the first rule in (10), so that {p, q} is not an elementary loop of Π{p,q,r},{p,q}. On

the other hand, Π{p,q},{p,q} consists of the last two rules in (10), and {p, q} is an

elementary loop of Π{p,q},{p,q}. Since {p, q} is also unfounded by Π w.r.t. {p, q}, it

is an elementarily unfounded set for Π w.r.t. {p, q}.

Proposition 5, Corollary 1, and Theorem 2 remain correct after replacing “nondis-

junctive program” in their statements with “disjunctive program,” and “ΠX” with

“ΠX,Y .”

Propositiond 5

For any disjunctive program Π, any set X of atoms, and any elementary loop Y of

ΠX,Y , X satisfies ESΠ(Z) for all nonempty proper subsets Z of Y .

Proof. From the fact that Y is an elementary loop of ΠX,Y , it follows that any

nonempty proper subset Z of Y is outbound in Y for ΠX,Y . If Y is not a singleton,

this implies that Y is a subset of X and that, for each nonempty proper subset Z

of Y , there is a rule (12) in Π such that

A ∩ Z �= ∅ , (31)

A ∩ (Y \ Z) = ∅ , (32)

B ∩ Z = ∅ , (33)

X |= B,F , (34)
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and

X ∩ (A \ Y ) = ∅ . (35)

From (32) and (35), it follows that

X ∩ (A \ Z) = ∅ . (36)

Finally, from (31), (33), (34), and (36), we conclude that X |= ESΠ(Z).

Corollaryd 1

For any disjunctive programΠ, any setX of atoms, and any elementarily unfounded

set Y for Π w.r.t. X , X does not satisfy ESΠ(Y ), but satisfies ESΠ(Z) for all

nonempty proper subsets Z of Y .

Proof. From the definition of an elementarily unfounded set, X �|= ESΠ(Y ), and,

by Propositiond 5, X |= ESΠ(Z) for all nonempty proper subsets Z of Y .

Theoremd 2

For any disjunctive program Π and any sets X , Y of atoms, Y is an elementarily

unfounded set for Π w.r.t. X iff Y is minimal among the nonempty sets of atoms

occurring in Π that are unfounded by Π w.r.t. X .

Proof. From left to right follows immediately from Corollaryd 1.

From right to left: Assume that Y is minimal among the nonempty unfounded

sets for Π w.r.t. X whose atoms occur in Π. If Y is a singleton, it is elementarily

unfounded by Π w.r.t. X . Otherwise, if Y �⊆ X , there is an atom a ∈ (Y \X), and

one can check that (Y \{a}) is also unfounded by Π w.r.t. X , which contradicts that

Y is a minimal nonempty unfounded set for Π w.r.t. X . Hence, from the minimality

assumption on Y , it follows that Y is a subset of X . It also holds that X |= ESΠ(Z)

for every nonempty proper subset Z of Y , so that there is a rule (12) in Π such

that

A ∩ Z �= ∅ , (37)

B ∩ Z = ∅ , (38)

X |= B,F , (39)

and

X ∩ (A \ Z) = ∅ . (40)

From (40), since Z ⊆ Y ⊆ X ,

A ∩ (Y \ Z) = ∅ (41)

and

X ∩ (A \ Y ) = ∅ . (42)

Since Y is unfounded by Π w.r.t. X , from (37), (39), and (42), it follows that

B ∩ Y �= ∅ ,
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which, in combination with (38), gives us that

B ∩ (Y \ Z) �= ∅ . (43)

In view of (39) and (42), we have that the rule (12) is contained in ΠX,Y . From (37),

(38), (41), and (43), we further conclude that Z is outbound in Y for ΠX,Y . Conse-

quently, Y is an elementary loop of ΠX,Y and elementarily unfounded by Π w.r.t.X .

Theorem 1 (e) and (e′) can now be extended to disjunctive programs as follows.

Theoremd 1 (e′)

The following conditions are equivalent to each of conditions (a)–(c) in Theoremd 1:

(e) X satisfies LFΠ(Y ) for every set Y of atoms such that Y is

— maximal among all sets Z of atoms that are elementary loops of ΠX,Z

or

— a singleton whose atom occurs in Π;

(e′) X contains no elementarily unfounded sets for Π w.r.t. X .

Proof. We first show the equivalence between (b′) and (e′): from (b′) to (e′) is

clear, and from (e′) to (b′) follows immediately from Theoremd 2. Moreover, the

equivalence between (e′) and (e) holds in view of Propositiond 5, which tells us that

an elementarily unfounded set Y for Π w.r.t. X cannot be a proper subset of any

set Z of atoms that is an elementary loop of ΠX,Z .

3.4 Recognizing Elementary Loops of Disjunctive Programs

Although deciding whether a given set of atoms is an elementary loop of a nondis-

junctive program can be done efficiently, it turns out that the corresponding prob-

lem in the case of arbitrary disjunctive programs is intractable.

Theorem 4

For any disjunctive program Π and any set Y of atoms, deciding whether Y is an

elementary loop of Π is coNP-complete.

Proof. Containment in coNP is clear, since it is easy to check that a given non-

empty proper subset of Y is not outbound in Y for Π.

For coNP-hardness, we reduce the coNP-hard problem of deciding whether a finite

set X of atoms is “unfounded-free” for a disjunctive program Π (Leone et al. 1997),

i.e., X contains no nonempty unfounded sets for Π w.r.t. X . Using a new atom e

that does not occur in Π or X , we construct a program Π′ as follows: for every

rule (12) of ΠX , include a rule A ← e,B, F in Π′, and, for every a ∈ X ∪ {e},

include a rule e ← a in Π′. Given the rules of the latter type, it is clear that any

proper subset Z of Y = X ∪{e} that is not outbound in Y for Π′ cannot contain e.

For every rule (12) of Π′ such that A �= {e}, since e ∈ B, we then have that

B ∩ (Y \ Z) �= ∅ .
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Hence, if a nonempty proper subset Z of Y is not outbound in Y for Π′, for every

rule (12) of Π′ such that A �= {e}, at least one of the following conditions holds:

A ∩ Z = ∅ , (44)

A ∩ (Y \ Z) �= ∅ , (45)

or

B ∩ Z �= ∅ . (46)

Since e /∈ A, (45) implies that

A ∩ (X \ Z) �= ∅ . (47)

We have thus shown that (44), (46), or (47) holds for every rule (12) of Π′ such

that A �= {e}, and, similarly, for every rule (12) of ΠX . Furthermore, we have that

X �|= B,F (48)

for every rule (12) of Π \ΠX . Consequently, (44), (46), (47), or (48) holds for every

rule (12) of Π, which shows that Z is unfounded by Π w.r.t. X . Conversely, if a

nonempty subset Z of X is unfounded by Π w.r.t. X , the fact that (44), (46), or

(47) holds for every rule (12) of ΠX implies that every rule (12) of Π′ satisfies (44),

(45), or (46), so that Z is not outbound in Y for Π′. Consequently, we conclude

that X is unfounded-free for Π iff Y = X ∪ {e} is an elementary loop of Π′.

However, for the class of disjunctive programs called “Head-Cycle-Free” (Ben-Eliyahu and Dechter 1994),

deciding whether a set of atoms is an elementary loop is tractable. We say that a

disjunctive program Π is Head-Cycle-Free (HCF) if |A ∩ Y | ≤ 1 for every rule (12)

of Π and every loop Y of Π.

The definition of an elementary subgraph for a nondisjunctive program can be

extended to disjunctive programs by modifying the equation for EC i+1
Π as follows:

EC i+1
Π (X) = {(a, b) | there is a rule (12) in Π such that A ∩X = {a},

b ∈ B ∩X , and all atoms in B ∩X belong to the

same strongly connected component in (X,EC i
Π(X))} .

With this extended definition of an elementary subgraph, Theorem 3 remains cor-

rect after replacing “nondisjunctive program” in its statement with “HCF pro-

gram.”

In the next section, we introduce “Head-Elementary-loop-Free” programs, and

show that Theorem 3 can be further generalized to such programs.

4 Head-Elementary-Loop-Free Programs

In general, computing stable models of a disjunctive program is harder than com-

puting stable models of a nondisjunctive program (Eiter and Gottlob 1995). On the

other hand, HCF programs are “easy” disjunctive programs that can be turned into

equivalent nondisjunctive programs in polynomial time (Ben-Eliyahu and Dechter 1994).

This property plays an important role in the computation of stable models of dis-

junctive programs, and is used by answer set solvers claspd, cmodels, and dlv.
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By referring to elementary loops in place of loops in the definition of an HCF

program, we define a class of programs that is more general than HCF programs: we

say that a disjunctive program Π is Head-Elementary-loop-Free (HEF) if |A∩Y | ≤ 1

for every rule (12) of Π and every elementary loop Y of Π. Since every elementary

loop is also a loop, it is clear that every HCF program is an HEF program as

well. However, not all HEF programs are HCF. For example, consider the following

program Π2:

p ← r

q ← r

r ← p, q

p ; q ← .

This program has six loops: {p}, {q}, {r}, {p, r}, {q, r}, and {p, q, r}. Since the

head of the last rule contains two atoms from the loop {p, q, r}, Π2 is not HCF.

On the other hand, Π2 is HEF since {p, q, r} is not an elementary loop of Π2: its

subsets {p, r} and {q, r} are not outbound in {p, q, r} for Π2.

Let us write a rule (12) in the following form:

a1; . . . ; ak ← B,F . (49)

Gelfond et al. (1991) defined a mapping from a disjunctive program Π to a nondis-

junctive program Πsh , the shifted variant of Π, by replacing each rule (49) with

k > 1 in Π by k new rules:

ai ← B,F, not a1 , . . . ,not ai−1 , not ai+1 , . . . ,not ak . (50)

They showed that every stable model of Πsh is also a stable model of Π. Although

the converse does not hold in general, Ben-Eliyahu and Dechter (1994) showed that

the converse holds if Π is HCF. We below extend this result to HEF programs.

The following proposition compares the elementary loops of Π with the elemen-

tary loops of Πsh .

Proposition 7

For any disjunctive program Π, if X is an elementary loop of Π, then X is an

elementary loop of Πsh .

Proof. Assume that X is an elementary loop of Π. Then every nonempty proper

subset Y of X is outbound in X for Π, so that there is a rule (49) in Π such that

{a1, . . . , ak} ∩ Y �= ∅ , (51)

B ∩ (X \ Y ) �= ∅ , (52)

{a1, . . . , ak} ∩ (X \ Y ) = ∅ ,

and

B ∩ Y = ∅ . (53)

For some ai ∈ {a1, . . . , ak} ∩ Y , (51) implies that some rule (50) in Πsh satisfies

{ai} ∩ Y �= ∅
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and

{ai} ∩ (X \ Y ) = ∅ .

Together with (52) and (53), this means that Y is outbound in X for Πsh . Conse-

quently, X is an elementary loop of Πsh .

The converse of Proposition 7 does not hold even if Π is HEF. For example,

consider the following HEF program Π3:

p ; q ← r

r ← p

r ← q .

Set {p, q, r} is not an elementary loop of Π3 since, for instance, {p} is not outbound

in {p, q, r} for Π3. On the other hand, {p, q, r} is an elementary loop of (Π3)sh :

p ← r,not q

q ← r,not p

r ← p

r ← q .

(54)

However, the following proposition shows that there is a certain subset of Πsh

whose elementary loops are also elementary loops of Π.

Proposition 8

For any disjunctive program Π, any set X of atoms, and any subset Y of X , if Y

is an elementary loop of (Πsh )X , then Y is an elementary loop of Π.

Proof. Assume that Y is an elementary loop of (Πsh )X , and not an elementary

loop of Π for the sake of contradiction. Consider any rule (49) in Π, and any proper

subset Z of Y . Since Y is not an elementary loop of Π, at least one of the following

conditions holds:

{a1, . . . , ak} ∩ Z = ∅ ,

{a1, . . . , ak} ∩ (Y \ Z) �= ∅ ,

B ∩ Z �= ∅ , or

B ∩ (Y \ Z) = ∅ .

(55)

We will show that any rule (50) in (Πsh )X obtained from (49) by shifting satisfies

at least one of the following conditions:

{ai} ∩ Z = ∅ ,

{ai} ∩ (Y \ Z) �= ∅ ,

B ∩ Z �= ∅ , or

B ∩ (Y \ Z) = ∅ .

This contradicts the assumption that Y is an elementary loop of (Πsh )X .

Case 1: The first, the third, or the fourth condition of (55) holds. The claim trivially

follows.

Case 2: {a1, . . . , ak} ∩ (Y \ Z) �= ∅. Recall that

X |= B, F, not a1, . . . , not ai−1, not ai+1, not ak,
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by (Πsh )X construction. It follows that |{a1, . . . , ak} ∩X | ≤ 1. From the fact that

Y ⊆ X and Z ⊂ Y we conclude that |{a1, . . . , ak}∩Y | ≤ 1 and {a1, . . . , ak}∩Z = ∅,

so that {ai} ∩ Z = ∅.

For instance, for X = {p, q, r} and (Π3)sh , we have that [(Π3)sh ]X consists of the

last two rules in (54). Only the singletons {p}, {q}, and {r} are elementary loops

of [(Π3)sh ]X , and clearly they are elementary loops of Π3 as well.

We are now ready to show the equivalence between an HEF program and its

shifted variant.

Theorem 5

For any HEF program Π and any set X of atoms, X is a stable model of Π iff X

is a stable model of Πsh .

Proof. From left to right: Assume that X is a stable model of Π. Then X is a

model of Πsh such that all its atoms occur in Πsh and also in [Πsh ]X . Furthermore,

by Theoremd 1 (d), we have that X satisfies LFΠ(Y ) for all elementary loops Y

of Π. By Proposition 8, the elementary loops of Π include all elementary loops Y

of [Πsh ]X that are contained in X , and, since Π is HEF, it holds that ESΠsh
(Y ) and

ESΠ(Y ) as well as LFΠsh
(Y ) and LFΠ(Y ) are equivalent to each other. This implies

that X satisfies ESΠsh
(Y ) for all elementary loops Y of [Πsh ]X that are contained

in X , so that X contains no elementarily unfounded sets for Πsh w.r.t. X . By

Theoremd 1 (e′), we conclude that X is a stable model of Πsh .

From right to left: Assume that X is a stable model of Πsh . Then X is a model

of Π such that all its atoms occur in Π. Furthermore, by Theoremd 1 (d), we have

that X satisfies LFΠsh
(Y ) for all elementary loops Y of Πsh . By Proposition 7,

the elementary loops of Πsh include all elementary loops Y of Π, and, since Π is

HEF, it holds that ESΠ(Y ) and ESΠsh
(Y ) as well as LFΠ(Y ) and LFΠsh

(Y ) are

equivalent to each other. This implies that X satisfies LFΠ(Y ) for all elementary

loops Y of Π. By Theoremd 1 (d), we conclude that X is a stable model of Π.

For instance, one can check that both Π2 and (Π2)sh have {p} and {q} as their

stable models. It follows that HEF programs are not more expressive than nondis-

junctive programs, so that one can regard the use of disjunctive rules in such pro-

grams as a syntactic variant. Furthermore, the problem of deciding whether a model

is stable for an HEF program is tractable, just as the same problem for a nondisjunc-

tive program. (In the case of arbitrary disjunctive programs, it is coNP-complete

(Eiter and Gottlob 1995).) These properties were known for HCF programs, and

here we extended them to HEF programs.

In Section 3.4, we defined the notion of an elementary subgraph of a set X of

atoms for a disjunctive program Π. Theorem 3 still applies to HEF programs.

Theoremhef 3

For any HEF program Π and any nonempty set X of atoms that occur in Π, X is an

elementary loop of Π iff the elementary subgraph of X for Π is strongly connected.

Proof. From left to right: Assume that X is an elementary loop of Π, and, for

the sake of contradiction, that the elementary subgraph of X for Π is not strongly
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connected. Then there is a strongly connected component in (X,ECΠ(X)) whose

atoms Y are not reached from any atom in X \ Y . Clearly Y is a nonempty proper

subset of X , and so is X \ Y . Furthermore, for every rule (12) in Π, at least one of

the following conditions holds:

|A ∩X | > 1 , (56)

A ∩ (X \ Y ) = ∅ , (57)

B ∩ Y = ∅ , (58)

or

B ∩ (X \ Y ) �= ∅ . (59)

However, (56) contradicts the assumption that Π is HEF. Also the fact that at

least one of the conditions (57), (58), and (59) holds contradicts the assumption

that X \ Y is outbound in X for Π.

From right to left: Assume that the elementary subgraph of X for Π is strongly

connected. For every nonempty proper subset Y of X , there is a minimum inte-

ger i ≥ 0 such that EC i
Π(X) does not contain any edge from an atom in Y to an

atom in X \ Y , but EC i+1
Π (X) contains such an edge. Thus some rule (12) in Π

satisfies

|A ∩X | = 1 , (60)

A ∩ Y �= ∅ , (61)

B ∩ (X \ Y ) �= ∅ ,

and

B ∩ Y = ∅ .

From (60) and (61), since Y ⊆ X ,

A ∩ (X \ Y ) = ∅ .

This shows that Y is outbound in X for Π. We conclude that X is an elementary

loop of Π.

Although many properties of HCF programs still apply to HEF programs (e.g.,

equivalence between an HEF program and its shifted variant), the computational

complexities of recognizing them are different. While an HCF program can be rec-

ognized in polynomial time (by computing the strongly connected components of

its dependency graph), Fassetti and Palopoli (2010) showed that deciding whether

a disjunctive program is HEF is coNP-complete.10 Theorem 4 established a similar

complexity gap by showing that elementary loops are hard to verify in the case of

arbitrary disjunctive programs, while for loops it remains a question of reachability.

10 The problem was left open in (Gebser et al. 2007), one of our conference papers that this paper
extends.
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Such elevated complexities may appear daunting, but the semantic similarities be-

tween HEF and HCF programs still exhibit that the syntactic concept of reachabil-

ity merely gives a rough approximation of properties rendering disjunctive programs

more difficult than nondisjunctive ones. As noted in (Fassetti and Palopoli 2010),

identifying subclasses of (not necessarily HCF) disjunctive programs for which ver-

ifying the HEF property is tractable may be an interesting line of future research.

5 HEF Programs and Inherent Tightness

When we add more rules to a program, a stable model of the original program

remains to be a stable model of the extended program if it satisfies the new rules.

Proposition 9

For any disjunctive program Π and any model X of Π, X is a stable model of Π iff

there is a subset Π′ of Π such that X is a stable model of Π′.

Proof. From left to right is clear.

From right to left: Assume that X is not a stable model of Π. Then some proper

subset Y of X is a model of ΠX . For each subset Π′ of Π, we have that (Π′)X ⊆ ΠX ,

so that Y is a model of (Π′)X and X is not a stable model of Π′.

In view of Theoremd 1, Proposition 9 tells us that, provided that X is a model

of Π, in order to verify that X is a stable model of Π, it is sufficient to identify a

subset Π′ of Π such that X is a stable model of Π′. Of course, one can trivially take

Π itself as the subset Π′, but there are nontrivial subsets that deserve attention. In

fact, if Π is nondisjunctive, it is known that the subset Π′ can be further restricted

to a “tight” program (Fages 1994; Erdem and Lifschitz 2003)—the result known

as “inherently tight” (Lin and Zhao 2003) or “weakly tight” (You et al. 2003) pro-

gram. In the following, we simplify these notions and show that they can be ex-

tended to HEF programs.

Recall that a loop of Π is called trivial if it consists of a single atom such that the

dependency graph of Π does not contain an edge from the atom to itself. In other

words, a loop {a} of Π is trivial if there is no rule (12) in Π such that a ∈ A ∩B.

Definition 2 ((Lee 2005))

A disjunctive program Π is called tight if every loop of Π is trivial.

As defined previously (Apt et al. 1988; Baral and Gelfond 1994; Inoue and Sakama 1998;

Lee 2005), we call a set X of atoms supported by a disjunctive program Π if, for

every a ∈ X , there is a rule (12) in ΠX such that A ∩X = {a}. Note that Defini-

tion 2 and the notion of support also apply to nondisjunctive programs as a special

case.

The property of inherent tightness, introduced by Lin and Zhao (2003) for the

case of nondisjunctive programs, can now be reformulated and generalized as fol-

lows.
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Definition 3

A disjunctive program Π is called inherently tight on a set X of atoms if there is a

subset Π′ of Π such that Π′ is tight and X is supported by Π′.

In the case of nondisjunctive programs, this reformulation of inherent tightness

is similar to “well-supportedness” (Fages 1994). Furthermore, weak tightness, in-

troduced in (You et al. 2003), is closely related to the notion of inherent tightness.

For nondisjunctive programs, it is known that their stable models can be char-

acterized in terms of inherent tightness.

Proposition 10 ((Fages 1994; Lin and Zhao 2003; You et al. 2003))

For any nondisjunctive program Π and any model X of Π, X is a stable model of Π

iff Π is inherently tight on X .

One may wonder whether Proposition 10 can be extended to disjunctive programs

as well, given that Definition 3 readily applies to them. However, only one direction

of Proposition 10 holds in the case of arbitrary disjunctive programs.

Proposition 11

For any disjunctive program Π and any model X of Π, if Π is inherently tight on X ,

then X is a stable model of Π.

Proof. Assume that Π is inherently tight onX . Then there is a subset Π′ of Π such

that Π′ is tight andX is supported by Π′. By Proposition 2 from (Lee and Lifschitz 2003),

X is a stable model of Π′, and, by Proposition 9, X is a stable model of Π.

To see that the converse of Proposition 11 does not hold, consider Π as follows:

p ← q

q ← p

p ; q ← .

Set {p, q} is a stable model of Π. On the other hand, since any tight subset Π′ of Π

must exclude the first or the second rule, it follows that {p, q} is not supported

by Π′. But this means that Π is not inherently tight on {p, q}. It is also worthwhile

to note that {p, q} is an elementary loop of Π, so that Π is not HEF (and not HCF).

Indeed, the following theorem tells us that Proposition 10 can be extended to HEF

programs.

Theorem 6

For any HEF program Π and any model X of Π, X is a stable model of Π iff Π is

inherently tight on X .

Proof. From left to right:Assume thatX is a stable model of Π. By Propositiond 3

(and the fact that every atom of X occurs in ΠX), any nonempty subset Y of X

contains some elementary loop Z of ΠX that is not outbound in Y for ΠX .11 That

is, every rule (12) of ΠX satisfies at least one of the following conditions:

A ∩ Z = ∅ ,

11 If Y is an elementary loop of ΠX , take Z = Y .
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B ∩ (Y \ Z) = ∅ , (62)

A ∩ (Y \ Z) �= ∅ , (63)

or

B ∩ Z �= ∅ .

From (63), since Y ⊆ X ,

A ∩ (X \ Z) �= ∅ .

On the other hand, since X is a stable model of Π and Z is a nonempty subset of

X , by Theoremd 1 (b), there is a rule (12) in ΠX such that

A ∩ Z �= ∅ , (64)

A ∩ (X \ Z) = ∅ , (65)

and

B ∩ Z = ∅ , (66)

so that (62) must hold, which, in combination with (66), gives us that

B ∩ Y = ∅ . (67)

Furthermore, since ΠX ⊆ Π, we have that Z is an elementary loop of Π. Given that

Π is HEF, from (64) and (65), we conclude that

A ∩X = {a} (68)

for some a ∈ Z, where a ∈ Y also holds because Z ⊆ Y . We have thus shown that,

for any nonempty subset Y of X , there is a rule (12) in ΠX such that (67) and (68)

for a ∈ Y hold. Starting from X0 = ∅ and Π0 = ∅, when, for 1 ≤ i ≤ |X |, we let

• Y = (X \X i−1),

• Πi is obtained from Πi−1 by adding some rule (12) in ΠX such that (67) and

(68) for a ∈ Y hold, and

• X i = X i−1 ∪ {a},

then X is supported by Π′ = Π|X|. Furthermore, since a rule (12) in (Πi \ Πi−1)

satisfies A ∩ X i−1 = ∅ and B ⊆ X i−1 for every 1 ≤ i ≤ |X |, Π′ is tight by

construction, which shows that Π is inherently tight on X .

From right to left follows immediately from Proposition 11.

Since every HCF program is HEF, Theorem 6 applies also to HCF programs.

We demonstrated that, by turning to the notion of an elementary loop in place

of a loop, we obtain generalizations of results known for loops, such as Theorem 5.

This brings our attention to the following question. As a tight program can be

characterized in terms of loops, can the notion of a tight program be generalized by

referring to elementary loops instead? To answer it, let us first modify Definition 2

in the following way.
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Definition 4

A disjunctive program Π is called e-tight if every elementary loop of Π is trivial.

Since every elementary loop is a loop, it is clear that a tight program is e-tight

as well. But is the class of e-tight programs more general than the class of tight

programs? One reason why this is an interesting question to consider is because, if

so, it would lead to a generalization of Fages’ theorem (Fages 1994), which would

yield a more general class of programs for which the stable model semantics coin-

cides with the completion semantics. However, it turns out that e-tight programs

are not more general than tight programs.

Proposition 12

For any disjunctive program Π, Π is e-tight iff Π is tight.

Proof. From left to right: Assume that Π is not tight. Then there is a minimal

nontrivial loop X of Π, and the subgraph of the dependency graph of Π induced

by X yields a simple directed cycle. That is, for any nonempty proper subset Y

of X , there is a rule (12) in Π such that A∩X = {a}, B∩X = {b} for atoms a ∈ Y ,

b ∈ X \ Y . This shows that Y is outbound in X for Π, so that X is a nontrivial

elementary loop of Π.

From right to left is clear.

This result also tells us that the notion of an inherently tight program does not

become more general by referring to elementary loops, i.e., by replacing the part

“Π′ is tight” in the statement of Definition 3 with “Π′ is e-tight.”

6 HEF Programs and Stability Checking

For a disjunctive program, the problem of deciding whether a given model is stable

is coNP-complete (Eiter and Gottlob 1995). On the other hand, in view of The-

orem 5, the same problem is tractable for HEF programs. In order to check the

stability of a model in polynomial time, Leone et al. (1997) presented an opera-

tional framework, which, for HCF programs, allows for deciding whether a model

is stable. Given a disjunctive program Π and sets X , Y of atoms, they defined a

sequence R0
Π,X(Y ), R1

Π,X(Y ), . . . , which converges to a limit Rω
Π,X(Y ), in the fol-

lowing way:

• R0
Π,X(Y ) = Y and

• Ri+1
Π,X(Y ) is obtained by removing every atom a from Ri

Π,X(Y ) such that some

rule (12) in ΠX satisfies A ∩ (X ∪ {a}) = {a} and B ∩Ri
Π,X(Y ) = ∅.12

The disjunctive rules considered in (Leone et al. 1997) do not admit double nega-

tions in rule bodies, but its (dis)use merely affects conditions like X |= B,F (or

X �|= B,F ) determining ΠX , while it is inconsequential otherwise. Hence, the follow-

ing results remain valid for disjunctive programs whose rules are of the form (12).

12 If Y is a subset of X, the condition “A∩ (X ∪{a}) = {a}” can be replaced with “A∩X = {a}”
without altering Rω

Π,X
(Y ).
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Proposition 13 ((Leone et al. 1997, Lemma 6.4))

For any disjunctive program Π and any sets X , Y of atoms that occur in Π, all

subsets of Y that are unfounded by Π w.r.t. X are contained in Rω
Π,X(Y ).

Proposition 14 ((Leone et al. 1997, Proposition 6.5))

For any disjunctive programΠ and any setX of atoms that occur in Π, ifRω
Π,X(X) = ∅,

then X contains no nonempty unfounded sets for Π w.r.t. X .

Proposition 15 ((Leone et al. 1997, Theorem 6.9))

For any HCF program Π and any set X of atoms that occur in Π, X contains no

nonempty unfounded sets for Π w.r.t. X iff Rω
Π,X(X) = ∅.

For a model X of Π, in view of Theoremd 1 (b′), Proposition 14 tells us that X

is a stable model of Π if Rω
Π,X(X) = ∅. As stated in Proposition 15, the converse

also holds if Π is HCF. We below extend this result to HEF programs.

Proposition 16

For any HEF program Π, any set X of atoms, and any subset Y of X whose atoms

occur in Π, if Rω
Π,X(Y ) �= ∅, then Rω

Π,X(Y ) contains an elementary loop Z of Π

that is unfounded by Π w.r.t. X .

Proof. Assume that Rω
Π,X(Y ) �= ∅. Then, for every rule (12) of ΠX , at least one

of the following conditions holds:

|A ∩X | > 1 , (69)

A ∩Rω
Π,X(Y ) = ∅ , (70)

or

B ∩Rω
Π,X(Y ) �= ∅ . (71)

By Propositiond 3, Rω
Π,X(Y ) contains some elementary loop Z of Π that is not

outbound in Rω
Π,X(Y ) for Π.13 For the sake of contradiction, assume that Z is not

unfounded by Π w.r.t. X . Then there is a rule (12) in ΠX such that

A ∩ Z �= ∅ , (72)

A ∩ (X \ Z) = ∅ , (73)

and

B ∩ Z = ∅ . (74)

From (73), since Rω
Π,X(Y ) ⊆ X ,

A ∩ (Rω
Π,X(Y ) \ Z) = ∅ ,

which, in combination with (72), (74), and the fact that Z is not outbound in

Rω
Π,X(Y ) for Π, gives us that

B ∩ (Rω
Π,X(Y ) \ Z) = ∅ . (75)

13 If Rω
Π,X

(Y ) is an elementary loop of Π, take Z = Rω
Π,X

(Y ).
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From (74) and (75), we conclude that (71) does not hold. Furthermore, since

Z ⊆ Rω
Π,X(Y ), (72) implies that (70) does not hold. Hence, (69) must hold, which,

in combination with (73), gives us that

|A ∩ Z| > 1 .

But since Z is an elementary loop of Π, this contradicts that Π is HEF.

We are now ready to generalize Proposition 15 to HEF programs.

Theorem 7

For any HEF program Π and any set X of atoms that occur in Π, X contains no

nonempty unfounded sets for Π w.r.t. X iff Rω
Π,X(X) = ∅.

Proof. From left to right follows immediately from Proposition 16.

From right to left follows immediately from Proposition 14.

Regarding the models of HEF programs, we derive the following corollary.

Corollary 2

For any HEF program Π and any set X of atoms that occur in Π, X is a stable

model of Π iff X is a model of Π such that Rω
Π,X(X) = ∅.

Proof. Both directions follow immediately from Theoremd 1 (b′) and Theorem 7.

For instance, reconsider Π2 from Section 4, which is HEF, but not HCF. Hence,

Corollary 2 applies, but Proposition 15 does not apply. Indeed, sinceRω
Π2,X

(X) = X

for (non-stable) model X = {p, q, r} of Π2, Corollary 2 allows us to conclude that

X is not a stable model of Π2. On the other hand, for model {p} of Π2, we have

that Rω
Π2,{p}

({p}) = ∅, which implies that {p} is a stable model of Π2.

In Section 3.3, we defined the notion of an elementarily unfounded set and showed

that it coincides with a minimal nonempty unfounded set. Thus stability checking

can be cast into the problem of ensuring the absence of elementarily unfounded sets.

Since every elementarily unfounded set is a loop, it is clearly contained in a maximal

loop, which allows us to modularize the consideration of (elementarily) unfounded

sets. The idea of using maximal loops for partitioning a program and confining

stability checking to subprograms was already exploited by Leone et al. (1997) and

Koch et al. (2003). In fact, for a disjunctive program Π and a set X of atoms, Leone

et al. (1997) showed how stability can be checked separately for maximal loops of Π,

and Koch et al. (2003) developed this idea further by considering maximal loops

of the smaller program ΠX,Rω
Π,X

(X). We below describe a notion called “bounding

loops,” which go beyond such maximal loops.

For a disjunctive program Π and a set X of atoms, we say that a subset Y of X is

a bounding loop of Π w.r.t. X if Y is maximal among all subsets Z of X such that

Z is a loop of ΠX,Z and Rω
Π,X(Z) = Z. Note that there are two crucial differences

between bounding loops and elementarily unfounded sets. First, a bounding loop Y

of Π w.r.t. X is not necessarily an elementary loop of ΠX,Y . Next, it does not

need to be unfounded by Π w.r.t. X . To see this, observe that X = {p, q, r} is a
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bounding loop of Π2 w.r.t. X that is not (elementarily) unfounded by Π2 w.r.t. X .

Furthermore, one can check that {p, r} and {q, r} are (elementarily) unfounded

by Π2 w.r.t. X , and thus Propositiond 5 tells us that X is not an elementary loop

of (Π2)X,X .

The following two propositions describe properties of bounding loops that are

similar to those of maximal loops, as used in (Leone et al. 1997; Koch et al. 2003).

Proposition 17

For any disjunctive program Π and any set X of atoms, all bounding loops of Π

w.r.t. X are mutually disjoint.

Proof. Let Y1, Y2 be subsets of X such that Y1 is a loop of ΠX,Y1
, Y2 is a loop

of ΠX,Y2
, Rω

Π,X(Y1) = Y1, and Rω
Π,X(Y2) = Y2. If Y1 ∩ Y2 �= ∅, the fact that

ΠX,Y1
∪ ΠX,Y2

⊆ ΠX,Y1∪Y2
implies that Y1 ∪ Y2 is a loop of ΠX,Y1∪Y2

. Further-

more, since Rω
Π,X(Y1) = Y1 and Rω

Π,X(Y2) = Y2, for any rule (12) of ΠX such that

A ∩ (Y1 ∪ Y2) �= ∅ and B ∩ (Y1 ∪ Y2) = ∅, we have that |A ∩ X | > 1, from which

we conclude that Rω
Π,X(Y1 ∪ Y2) = Y1 ∪ Y2. Since bounding loops of Π w.r.t. X are

maximal among all subsets Z of X such that Z is a loop of ΠX,Z and Rω
Π,X(Z) = Z,

this shows that they must be mutually disjoint.

Proposition 18

For any disjunctive program Π and any set X of atoms that occur in Π, every

elementarily unfounded set for Π w.r.t. X is a singleton or contained in some

bounding loop of Π w.r.t. X .

Proof. Assume that Y is an elementarily unfounded set for Π w.r.t. X that is not

a singleton. From the definition of an elementarily unfounded set, it follows that

Y is a loop of ΠX,Y and a subset of X . Since Y is also unfounded by Π w.r.t. X ,

by Proposition 13, we have that Rω
Π,X(Y ) = Y . This shows that Y is contained in

some maximal subset Z of X such that Z is a loop of ΠX,Z and Rω
Π,X(Z) = Z.

Proposition 17 and Proposition 18 tell us that checking the absence of elemen-

tarily unfounded sets can be accomplished separately for bounding loops.

Proposition 19

For any disjunctive program Π and any model X of Π, X is a stable model of Π iff

• X is supported by Π and

• no bounding loop of Π w.r.t. X contains a nonempty unfounded set for Π

w.r.t X .

Proof. From left to right follows immediately from Theoremd 1 (b′) (and the fact

that every atom of X occurs in Π).

From right to left: Assume that X is not a stable model of Π but supported by Π.

Then, by Theoremd 1 (e′), X contains some elementarily unfounded set Y for Π

w.r.t. X . If Y is not a singleton, by Proposition 18, Y is contained in some bound-

ing loop of Π w.r.t. X . Otherwise, if Y is a singleton, the assumption that X is

supported by Π implies that there is a rule (12) in ΠX,Y such that A ∩X = Y , so
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that Y is a loop of ΠX,Y . Since Y is unfounded by Π w.r.t. X , by Proposition 13,

we also have that Rω
Π,X(Y ) = Y . This shows that Y is contained in some maximal

subset Z of X such that Z is a loop of ΠX,Z and Rω
Π,X(Z) = Z.

As it is easy to check that X is supported by Π, Proposition 19 tells us that the

investigation of bounding loops constitutes the hard part of stability checking. But

this is not due to the hardness of identifying them. In fact, the following method

can be used to compute all bounding loops Z of Π w.r.t. X in polynomial time:

1. Let Y = X .

2. Let Z = Rω
Π,X(Y ). (Note that Z = Rω

Π,X(Z).)

3. If Z is a loop of ΠX,Z , then mark Z as a bounding loop of Π w.r.t. X .

Otherwise, proceed with Step 2 for every maximal loop Y of ΠX,Z that is

contained in Z.

The soundness of this approach is straightforward, given that operator R is mono-

tone, i.e., Rω
Π,X(Z) ⊆ Rω

Π,X(Y ) if Z ⊆ Y (used in Step 2), and likewise that

ΠX,Y ⊆ ΠX,Z if Y ⊆ Z (used in Step 3).

For illustration, consider the following program Π4:

p ← r s ← p p ; q ← u

q ← r s ← t s ; t ← q

r ← p, q t ← s, u r ; u ← t u ; v ← .

For X = {p, q, r, s, t, u}, it holds that (Π4)X,X = Π4 and also that X is a loop

of Π4. However, Y = Rω
Π4,X

(X) = {p, q, r, s, t} �= X , so that X is not a bounding

loop of Π4 w.r.t. X . On the other hand, Y is not a loop of (Π4)X,Y , which does

not include the last two rules where u occurs in the head. Rather, Z = {p, q, r} and

Z ′ = {s, t} are the maximal loops of (Π4)X,Y that are contained in Y . In view of

the rules in the second column, Rω
Π4,X

(Z ′) = ∅, which shows that no subset of Z ′

is a bounding loop of Π4 w.r.t. X . For Z = {p, q, r}, we obtain Rω
Π4,X

(Z) = Z, and

Z is also a loop of (Π4)X,Z (due to the rules in the first column). That is, Z is the

single bounding loop of Π4 w.r.t. X .

Let us compare this outcome with the ones of previous methods for modularizing

stability checking. Since the approach described in (Leone et al. 1997) considers

maximal loops of the original program and X = {p, q, r, s, t, u} is a (maximal) loop

of Π4, it cannot be used to decompose X , and the only applicable simplification is

to remove u by means of R, that is, Y = Rω
Π4,X

(X) = {p, q, r, s, t}. The approach in

(Koch et al. 2003) considers the maximal loops of ΠX,Rω
Π,X

(X), which, for (Π4)X,Y ,

gives Z = {p, q, r} and Z ′ = {s, t}. As described in (Koch et al. 2003), since the

subprograms (Π4)X,Z and (Π4)X,Z′ are not HCF, they are not simplified any fur-

ther and used to separately check for a nonempty unfounded subset of Z or Z ′,

respectively. Unlike this, the notion of a bounding loop allowed us to eliminate all

subsets of Z ′ as potential nonempty unfounded sets.

Turning back to HEF programs, from Proposition 16, we derive the following

proposition for a subprogramΠX,Y associated with a bounding loop Y of Π w.r.t.X .

Proposition 20
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For any disjunctive program Π, any set X of atoms, and any bounding loop Y

of Π w.r.t. X , if ΠX,Y is HEF, then Y contains a nonempty unfounded set for Π

w.r.t. X .

Proof. Assume that ΠX,Y is HEF. From the definition of a bounding loop, it fol-

lows that all atoms of Y occur in ΠX,Y and that Y = Rω
Π,X(Y ) = Rω

(ΠX,Y ),X(Y ) ⊆ X .

By Proposition 16, we conclude that Rω
(ΠX,Y ),X(Y ) contains an elementary loop Z

of ΠX,Y that is unfounded by ΠX,Y w.r.t. X . From the definition of ΠX,Y and since

Z is contained in Y , we conclude that Z is also unfounded by Π w.r.t. X .

Proposition 20 tells us that the existence of a bounding loop Y of Π w.r.t. X

whose associated subprogram ΠX,Y is HEF is already sufficient to conclude that X

is not a stable model of Π. Reconsidering the bounding loop Z = {p, q, r} of Π4

w.r.t. X = {p, q, r, s, t, u}, we have that (Π4)X,Z , consisting of the rules in the first

column along with the disjunctive rule containing p and q in the head, is HEF

(neither {p, q} nor {p, q, r} is an elementary loop of (Π4)X,Z). Thus X is not a

stable model of Π4. Indeed, Z contains two (elementarily) unfounded sets for Π4

w.r.t. X : {p, r} and {q, r}.

7 Conclusion

The notion of an elementary loop and its properties provide useful insights into

the concept of a loop and the relationship between nondisjunctive programs and

disjunctive programs. By turning to the notion of an elementary loop in place of a

loop, we could strengthen the theorem by Lin and Zhao (2004), its generalization

to disjunctive programs (Lee and Lifschitz 2003), and the main theorem (for pro-

grams in canonical form) from (Lee 2005). The semantic (e.g., Theoremd 2) and

complexity-theoretic (e.g., Theorem 4) properties of elementary loops indicate their

close relationship to unfounded sets. Compared with loops, elementary loops pro-

vide a deeper understanding of the internal structure of unfounded sets. In fact, we

have shown that loop formulas of non-elementary loops are unnecessary for check-

ing the stability of a model. It is an interesting open question whether this result

can be used to improve computation performed by answer set solvers that calculate

loop formulas, such as assat, claspd, and cmodels.

A method to identify an elementarily unfounded set for an HEF program was

presented in (Gebser et al. 2007).14 An orthogonal approach is implemented in

claspd: it greedily adds atoms a to an unfounded set Y if Y ∪{a} stays unfounded

and has a shorter loop formula than Y . However, the potential of unfounded set

“optimization” has not been studied in-depth so far, and the theoretical foundations

laid here may be useful for future investigations in this direction. Regarding nondis-

junctive programs, elementary loops can be distinct from loops of programs called

“binary” (Janhunen 2006). Moreover, modularity aspects of disjunctive stable mod-

els (Janhunen et al. 2009), which are closely related to loop formulas (Lemma 5.4

from (Janhunen et al. 2009)), can be refined by referring to elementary loops in

14 It is omitted in this paper for brevity.
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place of loops. Lifting elementary loops to first-order programs, as already done for

loops (Chen et al. 2006; Lee and Meng 2008), may also be a direction to explore.

The notion of an HEF program is a strict generalization of the notion of an

HCF program. On the one hand, nice properties of HCF programs still apply to

HEF programs. In particular, their inherent tightness on stable models grants the

soundness of shifting head atoms into the body as well as the possibility of per-

forming stability checks in polynomial time. This however implies that a disjunc-

tive program encoding an instance of a ΣP
2 -hard problem is unlikely to be HEF.

On the other hand, recognizing elementary loops and verifying the HEF property

are both intractable in the case of arbitrary disjunctive programs, but tractable

for nondisjunctive and HCF programs. This parallels the complexity of stability

checking (Eiter and Gottlob 1995), and it also tells us that the inherent complex-

ities of computational tasks dealing with elementary loops tightly correlate to the

fragment of disjunctive programs under consideration. As the latter does not apply

to recognizing loops or verifying the HCF property, the notion of an HEF program

more precisely renders what makes arbitrary disjunctive programs more difficult

than nondisjunctive programs. Whether this admits (syntactic) characterizations

of yet unknown subclasses of disjunctive programs for which verifying the HEF

property is tractable is an interesting open question.
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