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Abstract—Supervised object detection methods provide subpar performance 
when applied to Foreign Object Debris (FOD) detection because FOD could be 
arbitrary objects according to the Federal Aviation Administration (FAA) 
specification. Current supervised object detection algorithms require datasets 
that contain annotated examples of every to-be-detected object. While a large and 
expensive dataset could be developed to include common FOD examples, it is 
infeasible to collect all possible FOD examples in the dataset representation 
because of the open- ended nature of FOD. Limitations of the dataset could cause 
FOD detection systems driven by those supervised algorithms to miss certain 
FOD, which can become dangerous to airport operations. To this end, this paper 
presents a self-supervised FOD localization by learning to predict the runway 
images, which avoids the enumeration of FOD annotation examples. The 
localization method utilizes the Vision Transformer (ViT) to improve localization 
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performance. The experiments show that the method successfully detects 
arbitrary FOD in real-world runway situations. The paper also provides an 
extension to the localization result to perform classification; a feature that can be 
useful to downstream tasks. To train the localization, this paper also presents a 
simple and realistic dataset creation framework that only collects clean runway 
images. The training and testing data for this method are collected at a local 
airport using unmanned aircraft systems (UAS). Additionally, the developed 
dataset is provided for public use and further studies. 
 
Index Terms—Foreign Object Debris Detection, Self-supervised Learning, Vision 
Transformer Application, Computer Vision, Deep Learning 
 
I. INTRODUCTION 

The Federal Aviation Administration (FAA) defines ”Any object, live or not, 

located in an inappropriate location in the airport environment that has the 

capacity to injure airport or air carrier personnel and damage aircraft” as Foreign 

Object Debris (FOD) [1]. FOD is responsible for billions of dollars in damages to 

aircraft each year [2]. Additionally, accidents caused by FOD can lead to injury or 

death. A robust, automatic, and affordable method for FOD detection is crucial for 

the safety of flight operations at airports, especially given the size and complexity of 

airports will keep increasing. 

 
Fig. 1. The overview of the proposed FOD detection. 

 

Current FOD detection is primarily performed manually (i.e., FOD walks). 



 

Automated FOD detection methods can help reduce the negative impact of manual 

FOD detection on airport operations, and better address human error. Most existing 

automated detection systems rely on radar-based technologies, however, those 

methods have not been widely adopted due to their high cost. For example, 

Boston Logan International Airport adopted one of those radar-based detection 

systems (i.e., FODetect) in 2013 [2] for a total estimated cost was $1.71 million 

[2], which only included the installation of a single runway. More economical 

automated FOD detection techniques could be beneficial to large-scale prevention 

of costly aircraft safety events as more airports would be able to afford them. In 

addition, new detection techniques should be scalable to different airport 

environments and locations. Given the relatively low hardware cost to implement 

computer vision and deep learning-based methods (i.e., a camera at minimum) and 

the growing capabilities of Unmanned Aircraft Systems (UAS) technology, the 

integration of computer vision and UAS technology is expected to be advantageous 

over many existing FOD detection methods in airport operations. A novel FOD 

detection method based on this integrative approach is developed and introduced in 

this paper. 

There was a variety of computer vision-based FOD detection strategies 

proposed in previous studies, which will be discussed in more detail in section II. 

One idea is to use supervised object detection algorithms such as YOLO and SSD 

[3], [4]. Supervised detection methods are impractical for FOD detection because 

they can only detect predefined classes due to their dependence on a dataset with 

predefined classes and samples while FOD is a broad datatype. Another idea is to 

store a database of original runway and taxiway images and use direct image 

processing techniques to see if the images have changed. This requires excessive 

image collection that is specific to airports, and may not be robust to subtle changes 

in airport environments. A method that is capable of detecting previously unseen 

categories of objects and is robust to subtle changes in airport environments is more 

desirable and practical for FOD detection. 

Recently, as an extension to the promising transformer [5] in natural language 

processing, the Vision Transformer (ViT) [6] has been developed in the area of deep 



 

learning and computer vision. Many breakthroughs [7]–[9] have been enabled by 

the learning capacity of the ViT. However, applying ViT in the design of the learning 

systems for FOD detection remains open. Hence, we explore the potential of ViT in 

the proposed method. 

This paper provides a novel computer vision and deep learning-based FOD 

detection solution that is developed considering the limitations of existing methods 

and the practical demand of airport operators. The proposed strategy provides a 

FOD detection method that is economical to implement, not airport-environment-

specific, and adaptive to previously unseen FOD. This self-supervised method 

adopts a runway image prediction/reconstruction mechanism to localize previously 

unseen objects and does not require human annotations. Intuitively, the method is 

trained on a dataset of clean images, and anomalous regions provide the 

segmentation result at pre- diction time. This intuition is further explained in section 

III. The process is summarized in figure 1 and is presented in more detail in figure 

2. 

The self-supervised localization process for FOD detection is the primary 

focus of this paper. In addition, we also extend this framework into an object 

detection method by cropping the segmented regions of the images, and feeding 

these cropped objects through a standard, pre-existing classification model. The 

inclusion of a supervised image classification component is a beneficial extension 

as the actual localization of FOD performed by the self-supervised portion of this 

network is a critical process. This is because airport operators may only be 

concerned with the actual discovery of arbitrary FOD objects and not necessarily 

the classification of these objects. The classification extension may facilitate 

downstream tasks, such as automated image collection for new FOD datasets 

(objects with a low classification score may be saved as new objects for future 

training data), filtering mislocalizations, automated removal of FOD (automatic 

removal may require object specific information such as average weight data 

associated with the object), and automated FOD logging/reporting system. The 

classification extension is also summarized in figure 2. 

Another beneficial extension of the proposed self-supervised localization 



 

method is its data creation framework, which supports self-supervised FOD 

detection and performance evaluation for FOD localization. The framework allows 

the dataset to be extended efficiently, which is beneficial to downstream tasks. 

In summary, the primary advantages of this work can be summarized as 

the following three contributions: (1) an extensible data collection framework is 

developed to support self-supervised FOD localization, (2) a self-supervised ViT- 

based FOD localization method is proposed, which is not dependent on annotated 

data, is not airport-specific, and is more economical than existing radar-based 

systems; and (3) an extension of the FOD localization to perform classification, 

which shows high accuracy of the proposed scheme. The rest of this paper is 

organized as the follows. We discuss related works in section II. The dataset 

creation process and the FOD detection method is presented in more detail in 

section III. Experiment results are provided in section IV, and are followed by a 

conclusion and discussion of future work in section V. 

 

II. RELATED WORK 
As we summarize our advantages as the dataset creation framework and the 

FOD detection method, we focus on the review of related work in these two 

categories. Section II-A briefly reviews related datasets and section II-B revisits 

FOD detection methods in the state-of-the-art. 

A. Related FOD Datasets 

A few FOD datasets were developed and published by previous studies, 

such as the dataset FOD-A [10]. However, this dataset is designed for the tasks of 

object detection or classification. All images contain FOD samples with bounding 

box annotation. As such, FOD-A is not directly usable for the localization method 

provided by this paper. The localization method requires a separated 

training/validation set which contains FOD-free images of runways, and a testing set 

which contains images that include FOD randomly distributed around the image. 

However, FOD-A is used for the classification extension provided in this paper. 

B. Existing FOD Detection Methods 

Some examples of published FOD detection methods have attempted to use 



 

general object detection architectures (e.g. YOLO [11], SSD [12]), however, 

supervised object detection appears to be impractical for the FOD detection task 

[4], [10]. Any object that is improperly located in critical air- port locations can 

be considered as FOD. It is not feasible to develop an image dataset that 

completely represents all possible types of FOD because of the possible broad 

range of FOD, which may prevent the common object detection methods from 

generalizing. Detection methods that cannot generalize could be unreliable for 

airport operations. There- fore, we conclude that supervised localization methods 

are not suitable. However, as long as the localization method can be generalizable, 

the classification can remain supervised. This is because the detection of FOD is 

the fundamental demand, while the classification extension is beneficial. 

 

 
Fig. 2. Details of the proposed method: the localization, the network architectures, and the 

classification. 



 

Another method collects all clean runway images of an airport and stores 

them in an image database, then samples a new runway image at detection time, 

queries the image database for the corresponding image using GPS coordinates, 

aligns the two images, and then subtracts the two images to check for differences 

[13]. Areas of significant difference are a potential FOD detection. This type of 

method may not be robust to subtle changes in the airport environment. In addition, 

it requires the collection of images of all applicable airfield surfaces and such 

extensive image dataset may not be practical to collect and maintain for multiple 

airport implementations. Finally, it relies on the accuracy of GPS technology to find 

corresponding images, which may be error-prone. Inaccurate GPS estimates can 

cause detection failure if the wrong FOD- free image is used for comparison. 

Overall, this method could be fragile and may not easily scale to different airports. 

As discussed in more detail in section III-B, a new method is proposed to solve 

those key limitations that existing methods have. Specifically, this proposed method 

does not require the airport images to be stored for detection. The images are only 

required during training. In addition, the proposed localization method can 

generalize to previously unseen objects and is airport-independent. 

 

III. THE PROPOSED METHOD 
This section describes the details of the proposed method. Section III-A 

discusses the data collection framework, Section III-B describes the FOD 

localization method, and Section III-C explains the classification extension. 

A. Data Collection Framework 

The data is collected as videos from a local airport using UAS to reflect our 

goal of detecting FOD automatically from the aerial perspective. We collect the 

videos at 30 feet, 60 feet, and 140 feet from the runway surface, providing ground 

sample distances of 0.1 inch/pixel, 0.2 inch/pixel, and 0.46 inch/pixel respectively. 

After data collection, we found that the 60 feet and 140 feet videos lose too much 

detail, so 30 feet videos are used in the dataset. The frame rate of videos is 

reduced to minimize duplicate frames, and the frames are separated to provide an 

image dataset. The 3840×2160 resolution frames were resized to the nearest 



 

multiple of 448 × 448 and then split into an 8 by 4 grid of 448×448 patches. This 

reduces the size of input images while retaining the detail of the collected data. The 

training dataset contains only clean images of runways and taxiways. The ”clean” 

images do not contain FOD objects and therefore do not require annotation. The 

testing dataset contains videos of runways and taxiways where FOD objects were 

randomly distributed across the pavement. The testing dataset has bounding box 

annotation for FOD objects to support performance evaluation. Some examples of 

the training and testing data are shown in figure 3. 
Fig. 3. Some examples of our collected data. First row: examples from the training set; Second row: 

examples from the testing set which have bounding boxes. 

 

Using the described data creation framework, we are able to collect 81, 185 

images for training efficiently. Processing the testing data results in 447 testing 

patches. Each of these 447 patches are annotated with bounding boxes for 

evaluation purposes. Within each 448 × 448 patch with FOD, the FOD object is 

manually annotated with a bounding box using the Computer Vision Annotation 

Tool (CVAT) [14]. The annotations are then exported from CVAT and converted into 

a CSV file. These annotations are provided with the dataset. 

B. FOD Localization 



 

The process of the method is as follows (see figure 2 for a visual 

representation): the 3840x2160 resolution images, a resolution which is commonly 

considered to be high, are split into patches to preserve the detail of the images 

while reducing the computational burden. The proposed method provides FOD 

localization in the patches using a reconstruction technique. The reconstructed 

patches are used to propose patch-specific segmentation maps that label the 

background and the anomaly. As needed, the patch-specific segmentation maps 

can be combined to provide a full image segmentation or to display the FOD 

localizations on the entire image. Anomalous areas are cropped from the patch-

specific segmentation map (the actual cropping is done on the original patch, the 

segmentation map provides the location), and normalized before classification. 

In more detail: The reconstruction component of our method uses an 

autoencoder [15] with the architecture shown in figure 2. We organized the 

autoencoder structure into what we call learning blocks to facilitate experimentation 

with ViT layers. A learning block consists of the four layers presented in figure 2. 

The first layer within the block can be substituted with either a convolutional layer 

or a ViT layer [6]. The ViT layer is an adaptation of the ViT classifier with the 

classification head removed. Most layers of the autoencoder are learning blocks, 

with the exception of the final layer, as depicted in figure 2. We consider the latent 

layer a learning block to simplify the definition, even though it contains only the 

convolutional or ViT layer. The locations of each learning block, as shown in the 

same figure, are labeled as an outer block, an inner block, a latent block, an 

encoder block, and/or a decoder block. Each learning block is assumed to be used 

in its default configuration, where the first layer is convolutional. The learning blocks 

with ViT layers are mentioned explicitly with the location where the ViT learning 

block occurred in the autoencoder. For example, a latent ViT autoencoder implies 

the learning block in the latent location has a ViT layer, and the rest of the learning 

blocks are convolutional. 

To train the autoencoder for FOD localization, we minimize the following 

mean squared error (MSE) loss: 

ℒ𝑙𝑙𝑙𝑙𝑙𝑙 = 1
N
∑(Z � - Z)² ,           (1) 



 

where Z is a clean image and 𝑍𝑍� is its model reconstruction. The clean images 

contain a runway/taxiway background and do not contain FOD, as discussed in 

section III-A. Intuitively, the autoencoder learns to reconstruct the clean images, 

and fails to reconstruct portions of the images that contain new objects, as long 

as the autoencoder structure is chosen care- fully. This selection process is 

detailed in section IV. 

We employ this trained autoencoder to detect FOD as follows: First, the 

collected images have a high resolution as discussed previously. Utilizing high-

resolution images is beneficial to preserving the detail of very small FOD. We found 

that directly resizing the high-resolution images prior to localization effectively 

deleted the presence of objects by modifying the image in a way similar to zooming 

out. To address that, we take the 3840x2160 resolution images and split them into 

patches with a width N and a height M . This provides sub-images, or patches, of 

size N × M . Instead of zooming out as the direct resize does, the patching 

effectively zooms into the patch location which improves small-object detection, an 

important characteristic for FOD detection. This benefit is observed empirically. 

After the patching, the next step is the reconstruction. We reconstruct the 

patch P into patch P l by inputting P into the trained autoencoder. Then, the 

difference matrix D is calculated as the absolute difference between P l and P : 

D = |P ‘ − P |. (2) 

D can also be calculated using the structural similarity calculation, which provides 

slightly different results. We chose the absolute difference method empirically. 

Values in D that are close to 0 mark areas of the images are similar, and therefore 

not anomalous. Values in D that are closer to the maximum pixel value (maximum 

pixel value is usually 1 or 255 depending on scaling) mark areas that are 

anomalous. This is because areas that remain similar after reconstruction will have 

similar pixel values, while areas with large reconstruction error will have a large 

difference between the pixel values. Then, we threshold D to produce segmentation 

map S using a threshold value given by Otsu’s method. An example of the 

localization process is given in figure 2. 

C. FOD Classification 



 

To convert the segmentation localization S into the bound- ing box 

localization R, which is used for classification and evaluation, we calculate the 

extreme points on the segmentation map. The extreme points of the segmentation 

map are the segmented point the furthest left, the segmented point the furthest 

right, the segmented point closest to the top of the segmentation map, and the 

segmented point closest to the bottom of the segmentation map. From here, the 

four coordinates of a bounding box are computed directly from the extreme points 

to produce the bounding box localization 

R. An example of producing a bounding box from the extreme points is provided in 

figure 4. 

We then crop P using R to produce the cropped localization C. From here, 

the method uses a mainstream supervised classification architecture, which is 

chosen empirically. We crop all the images from the FOD-A dataset [10] at the 

bounding boxes to create classification scenarios similar to the localization result. 

The cropped version of FOD-A is used to train the classification model minimizing 

the following categorical cross-entropy loss: 

ℒ𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑐𝑐 = -∑ 𝒴𝒴𝑖𝑖 ∙ log𝑛𝑛-1
𝑖𝑖=0 𝒴𝒴� i      (3) 

where n is the number of classes, 𝓨𝓨i is the classification label, and 𝒴𝒴� i is a 

classification output from the model. Once the classification model is trained, we 

define C as classified using the classifier. The classification enables downstream 

tasks. For example, if the classification of C results in a low prediction score below 

some threshold, C can be labeled as unknown and saved for later manual labeling 

as it is likely not an image contained in the classification dataset. Otherwise, if the 

prediction score is above the chosen threshold, C is classified accordingly. 

 
Fig. 4. An example bounding box computed from the extreme points. 

 



 

IV. EVALUATION 
This section presents the experimental analysis of the proposed scheme. 

The evaluation method is presented in Section IV-A, which is followed by a 

discussion of the localization experiments in Section IV-B. Then, the results of the 

classification experiments are given in Section IV-C. These subsections are 

followed by a comparison with previous related work in Section IV-D. 

A. Evaluation Method 

The metric used to evaluate the localization results is the detection rate. 

Since the evaluation data is annotated as bounding boxes, and we also include a 

method to crop the result for optional classification, we use Intersection over Union 

(IoU) to determine to accuracy of a single localization. If the IOU of a proposal and 

the ground truth are above a set threshold, the localization is considered correct. 

Therefore, detection rate is defined as the number of correctly localized images, 

divided by the total number of images. 

B. Localization 

The strength of the autoencoder must be tuned carefully. We define ”weak” 

and ”strong” autoencoders to simplify the discussion of results. If the autoencoder is 

strong, it does not provide enough reconstruction error to segment the image. A 

strong autoencoder does not provide useful localizations because the 

reconstructions are too similar to the original image. Likewise, we define an 

autoencoder to be weak if there is too much reconstruction error for image 

segmentation. The weak autoencoder provides a reconstruction that is too 

dissimilar from the original image to provide an interesting localization. This means 

that a very low reconstruction error does not necessarily correspond to a 

quantifiable localization result in final testing. An ablation study format, using the 

detection rate metric for comparison, is used to determine a high performing 

autoencoder architecture. We experiment with different autoencoder depths and ViT 

locations. The effects of including skip connections, such as with a U-Net 

architecture, are also tested. 

The depth, or the number of learning blocks in the encoder and decoder is 

the first parameter we experiment with. A larger depth reduces the size of the latent 



 

space. We first start with a depth of two, which is the autoencoder with two learning 

blocks, each in the encoder and decoder. The autoencoder with a depth of two 

was too strong, and did not provide final segmentation maps using the method. We 

omit these results from table I for this reason. Next, a depth of three is used. This 

autoencoder reconstructed images well, therefore this depth was used in the final 

experiments to compare between models further in table I. We also tried a depth of 

four, but this resulted in an extremely small latent space and was therefore too 

weak. The autoencoder with a depth of four is also ommited from the table, as it did 

not provide interesting localization results. In these experiments, the patch size was 

448 × 448. A larger patch size may increase the required depth, and a smaller patch 

size may decrease the required depth. 

With the depth of the model determined and fixed to three, we next 

experiment with the impact of ViT layers at various locations of the model. First, a 

baseline model consisting of only convolutional layers is trained. This model 

performs well for localizing FOD as shown by the detection rate result in table I. 

Next, the effect of including a ViT layer at the latent block is tested. This caused an 

overly weak autoencoder that did not provide a quantifiable detection rate. The next 

model is the Outer ViT model. This model also localized FOD well, as shown by the 

detection rate in table I. 

Finally, we tried using a convolutional architecture with skip connections, 

similar to U-Net [16], as an additional baseline. The inclusion of skip connections 

resulted in a overly strong autoencoder, which can be determined by the skip-

connection architecture reconstruction MSE and lack of localization results as given 

in table I. 

Fig. 5. Threshold v.s. Detection Rate. 



 

An IoU result above 0.3 is considered a confident localization when considering 

human error in dataset labeling, therefore 0.3 is the threshold used in the 

evaluation. The plot of threshold vs detection rate values for our method is given in 

figure 5, which shows the increase in detection rate for the outer ViT architecture 

as the chosen threshold value is reduced. The largest threshold with the most 

substantial increase in detection rate, this value being 0.3, is chosen as the 

threshold for comparison. And as shown in table I, the highest performing 

architecture is the Outer ViT autoencoder, which will be used for final comparison 

with related methods. 

TABLE I 
FOD DETECTION RATE FOR IOU > 0.3  
Model Detection Rate % 
Entirely Convolutional 75.. 
Latent ViT None-Weak 
Outer ViT 82.7 
Skip Connections None-Strong 
 

C. Classification 

As mentioned in section II, the FOD-A dataset provides a dataset of common 

FOD objects. The data is cropped to FOD- A’s bounding boxes prior to training and 

validation to provide scenarios that are similar to the localization results. 

TABLE II 
CLASSIFIER COMPARISON 
Model Val Accuracy (FOD-A)% 
ResMet50V2 99.91 
MobileNetV2 99.91 
DenseNet 169 99.94 
 

The classifiers are trained with the cropped FOD-A dataset and utilized for 

classification. Accuracy results between classifiers are similar, with the highest 

validation result from DenseNet169 as shown in table II. Classification failed on a 

few cases where either the debris was too similar in color to the runway, the shadow 

of the debris seemed to be erroneously counted as part of the debris, or the object 

in the validation data was too dissimilar from the training data. Classification could 



 

likely be improved further with expansions to the FOD- A dataset to include and 

account for variables such as shadows at varying degrees as well as different styles 

of the same class of debris. 

TABLE III 
COMPARISON WITH IMAGE BASED FOD DETECTION 

Method Detection Rate% Supervised Environment specific 
Ours 82.7 No No 
FOD-A SSD [10] 79.6 Yes No 
FOD-A YOLO [10] 66.7 Yes No 
Image Lookup [13] N/A No Yes 
 

D. Comparative Study 

We have studied the proposed method by comparing it against some state-

of-the-art and related methods. As shown in table III, our method provides a 

stronger detection rate while being the only method that is not supervised and is 

not environment-specific. For an environment-specific method, the data has to be 

recollected for each airport implementation. Since our method is not supervised and 

is not environment- specific, it can accurately (supported by the top detection rate) 

detect FOD objects not included in training data, and can also generalize to new 

airports/environments. With respect to the image lookup method, our approach is 

not comparable because the former could only detect white or black objects, 

while our method can reasonably detect any non-pavement colored object. Besides 

the quantitative summary, we present a few detection examples in figure 6, where 

we can observe that our proposed method shows better detection. 

Fig. 6. A few visual comparison examples. 



 

V. CONCLUSION 
Although there are existing methods to detect FOD using technologies such 

as radar [2], these approaches can be extremely expensive. Therefore, we provide 

a computer vision- based solution for FOD detection, and the dataset creation 

framework that can support this method. Computer vision can be significantly 

cheaper than the radar-based solutions, as the main requirements are a camera 

and some development time. There are also other image-based FOD detection 

methods, but they have weaknesses that may reduce their impact. The approach 

proposed in this paper solves these primary issues, such as reducing the data 

requirements and providing a method that can generalize to new objects. 

The localization method in this paper may generalize to datatypes where the 

background-scenarios are known in advance. One research path following this 

paper could explore this generalization. Additionally, this paper discusses a learning 

block, a construct where a convolutional layer and ViT layer are easily 

interchangeable. This organizational construct streamlines experiments comparing 

the performance impact of interchanging convolutional and ViT layers in models. 

Additional work could explore scenarios where the ViT learning layers outperform 

the convolutional learning layers. Our team is also considering engineering 

solutions outside the computer vision domain, such as the addition of controlled 

floodlights in the UAS to further improve the original data under non- optimal 

lighting conditions. 

 

VI. RESOURCES 
The link to the dataset hosted on GitHub: https://github.com/FOD-

UNOmaha/FODAnomalyData 
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