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Abstract

The brain-as-computer metaphor has anchored the professed computational nature
of mind, wresting it  down from the intangible logic of  Platonic philosophy to a
material basis for empirical science. However, as with many long-lasting metaphors
in science, the computer metaphor has been explored and stretched long enough to
reveal  its  boundaries.  These  boundaries  highlight widening  gaps  in  our
understanding  of  the  brain’s  role  in  an  organism’s  goal-directed,  intelligent
behaviors and thoughts. In search of a more appropriate metaphor that reflects the
potentially  noncomputable  functions  of  mind  and  brain,  eight author  groups
answer  the  following  questions:  (1)  What  do  we  understand  by  the  computer
metaphor of the brain and cognition? (2) What are some of the limitations of this
computer  metaphor?  (3)  What  metaphor  should  replace  the  computational
metaphor?  (4)  What  findings  support  alternative  metaphors?  Despite  agreeing
about  feeling  the  strain  of  the  strictures  of  computer  metaphors,  the  authors
suggest an exciting diversity of possible metaphoric options for future research into
the mind and brain.

Keywords: behavioral  neuroscience;  cascade dynamics;  cognitive neuroscience;
complexity;  dissipative system; dynamical  system; ecological psychology; fractal;
perception and action; representation; resonance



Glossary

Knitting together the mind, brain, and behavior with Turing’s cascade
instability

Avalanches: A  series  of  bursts  of  activity  [in  neural  networks]  that  can  be
described by a power law in terms of size distribution.

Cascade: A  physical  process  characterized  by  a  blending  of  information  or
structure built at multiple scales. For instance, when events spread from one scale
to another, e.g., cellular to genetic, or cellular to whole-tissue, and then to organ-
and to whole-organism scale, what we have is a cascade of effects.

Intermittency: An  uneven  distribution  of  events  across  time  or  space,
characterized  by  the  unpredictable,  sudden  appearance  or  disappearance  of
stability—or by the unpredictable, sudden transitions among stable states.

Multifractality: A generalization  of  a  fractal  system  in  which  one  fractal
dimension is not enough to describe its dynamics; instead, a continuous spectrum
of exponents (the so-called singularity spectrum) is needed.

Power law: A power law is a functional relationship between two quantities in
which  a  change  in  one  quantity  causes  a  corresponding  change  in  the  other
quantity,  regardless  of  their  original  sizes:  one quantity  changes  as  a  power  of
another.

The brain is a control system

Control system: A physical system that regulates the state of its input variables
by providing appropriate output commands.

Dorsal stream: A visual pathway in the primate brain from the occipital lobe and
pulvinar to the parietal lobe, in which neurons are sensitive to spatial information
and involved in movement control.

Hypothalamus: A  brain  region  that  regulates  the  autonomic  nervous  system,
body temperature, hunger, thirst, rest, and other bodily functions.

Telencephalon: A  region  of  the  forebrain  that  includes  the  cerebral  cortex,
cerebral nuclei, hippocampus, and many other structures implicated in advanced
primate behavior.

Ventral stream: A visual pathway in the primate brain from the occipital lobe to
the temporal lobe, in which neurons are sensitive to information about the identity
of objects in the world.

Virtual  machine:  The  simulation  of  a  computer  system  implemented  using
software running on a different physical computer system.

Dissipative structures as an alternative to the machine metaphor of the
mind and brain



Dissipative  Structure: Self-organized  forms  (morphological  or  dynamical)
derived from non-equilibrium conditions.

Dynamical stability: A time-invariant system state (e.g., fixed point, limit cycle)
maintained by irreversible dissipative processes. If the system is perturbed, it will
relax back to the same state. In some systems, multiple dynamics may be possible,
in which case large perturbations may drive the system to converge on a different
state.

Far-from-equilibrium: Systems are  sustained out  of  equilibrium if  there  are
fluxes of energy and matter driven by an imbalance of the distribution of energy
within the system (e.g.,  a thermal gradient), called a thermodynamic force. Far-
from-equilibrium refers  to  the  regimes where  the magnitude of  thermodynamic
forces  on  the  system  is  sufficiently  large  to  drive  the  emergence  of  dissipative
structures or turbulent dynamics and in which force-flux relations are nonlinear.
The near-equilibrium regime is one in which linear equations describe force-flux
relations.

Fractionability: A system is fractionable if it  can be decomposed into discrete
parts, and those parts have isolable functions.

Self-organization: The emergence of novel ordered forms (e.g., morphological or
dynamical) due to processes within a system’s boundaries, not owing to prescribed
instructions from another agent.

Complexity: Understanding brains and minds on their own terms

Complexity science: The interdisciplinary study of complex systems, which, in
general,  are  phenomena  composed  of  many  interacting  parts  that  give  rise  to
irreducible order at particular spatial and temporal scales.

Emergence: When a scale of activity or organization is more than the sum of its
parts.  A concept  that  refers  to  an  ordinary feature  of  nature,  has  an enormous
literature across disciplines, and little agreement on its exact meaning.

Fractal: Activities or structures that are self-similar; also referred to as scale-free
or scale-invariant. Self-similar patterns are the repetition of whole or part of an
entity or activity at various spatial or temporal scales. Perfect self-similarity means
the  global  structure  is  maintained  at  every  scale  of  observation  (e.g.,  Koch
snowflake,  Mandelbrot  set,  and  Sierpinski  triangle).  Statistical  self-similarity
means  only  particular  features  are  repeated  at  different  scales  and  to  certain
degrees (e.g., bronchial tubes, coastlines, and tree branches).

Nonlinearity: Disproportional  or  nonadditive  relationships  among  variables,
particularly  exponential  and  multiplicative  interactions.  Systems  constituted  by
nonlinearly  interacting  variables  quickly  become computationally  challenging  to
analyze, are no more predictable than statistical probability, and can give rise to
phase transitions.



Self-organization: Patterns of activity or structural organization without direct
intervention  or  instruction  from  a  central  controller,  outside  source,  or
preprogramming. Typically results from simple rules or processes, is spontaneous,
and reduces degrees of freedom.

Universality: Recurring patterns of activity and structural organization in nature
by  way  of  vastly  different  substrates  and  contexts.  Universality  classes are
mathematical models of widespread classes of systems exhibiting qualities largely
independently of the dynamical details.

Radical  embodied  computation:  Emergence  of  meaning  through  the
reproduction of similarity by analogy

Adaptive behavior: Any interaction with the internal or external environment of
a system that appears to be (partially) coordinated by a unique history of previously
experienced  interactions  and/or  by  semantic  information  about  the  internal  or
external environment of the system.

Embodied computation: The processes responsible for maintaining or evolving
the complexity of the internal structure of physical systems that are alive. Radical
Embodied Computation posits that the massive redundancy of reality is sufficient
for the adaptive coordination of behavior by evolved agents.

Information:  A  measurable  quantity  that  resolves  uncertainty  about  the
configuration of an information source.

Physical  information:  A  physical  system  can  represent  an  amount  of
information which is  associated with the degrees of  freedom it  has available to
manifest  its  current  state  and  behavior.  When  changes  in  the  internal  state
configuration of a system concern changes to the available degrees of freedom, this
changes the physical  information represented by the system. Therefore,  when a
system self-organizes from one stable state into another, this can be described as
information processing or natural computation.

Self-replication: One  of  the  hallmarks  of  complexity  is  the  (approximate)
reproduction of dynamic patterns, often across different spatial or temporal scales.
In the context of living systems, self-replication continuously occurs at the scale of
periodic neuronal oscillations, reproduction of complex molecules, reproduction of
cells, all the way up to the scale of the approximate replication of the individual
organism through sexual reproduction. The emergence of self-replicating systems
has  been  suggested  to  be  an  unavoidable  consequence  of  a  universe  in  which
energy, matter, and information have to be optimally dissipated as entropy.

Semantic  information:  If  physical  information  sources  are  systematically
associated  through  their  internal  configuration,  the  mutual  information  they
represent can be described as meaningful, or, semantic information. Generally, the
redundancies  between  information  sources  are  exposed  or  translated  by  an
analogy,  a  code,  which  itself  can  be  a  physical  information  source.  The  code
together  with  the  information  sources  constitute  the  physical  embodiment  of



meaning.  Adaptive  behavior  can  be  redefined  as  translating  the  semantic
information represented by the redundancies between the configuration of the body
and the structure of the environment. 

Tunnel vision, tunnel action, tunnel mind: Just get out

Biogenic approach: A methodological proposal formulated by Pamela Lyon: The
cognitive  sciences  can  better  start  from  general  biological  principles,  such  as
continuity,  control,  interaction,  and  normativity,  among  others.  A  biogenic
approach is contrasted with an anthropogenic approach that starts with humans as
the central exemplar and works from the human case to other organisms.

Brain-body  dualism:  Given  the  notion  of  a  mind-brain,  the  brain  becomes
conceptually dissociated from the body with which it is physically fully intertwined
and  a  functional  unit.  The  mind-brain  amounts  to  a  conceptual  chimera  that
combines  its  biological  constitution  and  evolution  with  mind-based  concepts
centered on reason, rationality, and logic. A new form of dualism that cuts straight
through the body, unclear and messy.

Conceptual problems: Solving conceptual problems is as important to scientific
progress as solving empirical  ones,  said Laudan in his  classic  “Progress  and its
problems.” Such conceptual problems usually relate to how empirical findings are
interpreted and what might consist of possible solutions. However, the problems
can  also  become  intertwined  with  extra-scientific  beliefs—e.g.,  coming  from
metaphysics, logic, ethics, and theology—that in this way can impact our scientific
conceptions of a set of phenomena.

Mind-brain: The brain is treated as a physical instantiation of the mind. Mental
properties and characteristics are subsequently used to provide a global view of the
brain’s  functionality,  which  strongly  influences  the  agenda  of  cognitive
neuroscience.

Skin brain thesis:  A proposal that the origin of nervous systems was (initially)
driven  by  the  way  it  enabled  multicellular  contraction-based  motility  for  early
animals. Horizontal neural transmission is considered central to coordinating the
spread-out activity of many separate contractile cells.

Vertical and horizontal neural transmission: Vertical transmission refers to
neural activity traveling from sensors to effectors, potentially via a central nervous
system. Horizontal transmission refers to neural activity (such as provided by a
nerve  net)  that  travels  across  an  effector  surface  or  an  array  of  effectors  to
coordinate such macroscopic effectors.

Resonances in the brain

Ecological  psychology: Theory  of  perception  and  action  first  developed  by
James J. Gibson and Eleanor J. Gibson. Ecological psychology proposes ideas like
direct perception, perception-action loops, and affordances. It stands in complete
contrast to information-processing theories of perception and action.



Ecological  resonance: The  process  by  which  brain  dynamics  become
constrained by the (ecological) perceptual information that is available at, and is
already constraining, the organism-environment scale.

Informational invariant: Main elements of perceptual information within the
ecological psychology. When organism moves around in an environment, most of
the  structural  patterns  of  the  energy  arrays  available  at  its  sensory  receptors
change. However, some of those patterns remain unchanged or invariant. These
invariant patterns specify permanent properties of the environment the organism is
within and, therefore, constitute perceptual information.

Resonance: As a physical phenomenon, resonance is described as the increase of
the amplitude in the oscillation of a system when another system influences it at a
frequency equal or close to its natural frequency.

Tau: A  variable  of  perceptual  information  (i.e.,  an  informational  invariant)
described in the ecological literature. It is defined as the inverse of the relative rate
of  closure  of  a  given  gap.  Such  a  gap  can  be  defined  in  different  dimensions:
geometrical gap, energy gap, etc. The units of tau are seconds.

The brain as a fractal antenna

Affordances: The  opportunities  for  behavior  that  result  from  the  fit  between
animal and the environment.

Animal-environment  system: The  symmetrical  and  reciprocal  relationship
between animals and the environment constitutes the fundamental unit of analysis
in the Ecological approach to perception and action.

Degrees of freedom problem: The fact that in performing any given movement
of the body requires coordinating a seemingly overwhelming number of individual
components Formal system: an abstract and idealized system in which symbols are
manipulated and combined according to rules.

Ecological  approach  to  perception  and  action: An  approach  to
understanding  the  everyday  performance  of  goal-directed  behavior  in  which
relationships between animal and environment lawfully structure energy patterns
such that they are informative about those relations to the animal.

Everyday behavior problem: The concern that a description of perception as
resulting in mental experience is ultimately challenged to explain how such mental
experience  could  lead  to  a  process  resulting  in  the  successful  performance  of
everyday behaviors.

Fractal  antenna: The  fact  that  performing  any  given  movement  of  the  body
requires  coordinating  a  seemingly  overwhelming  number  of  individual
components.

Formal  system: an  abstract  and  idealized  system  in  which  symbols  are
manipulated and combined according to rules.



Grounding problem: The concern over how symbols acquire meaning or are
related  to  what  they  symbolize,  especially  in  the  context  of  computational
approaches to cognition.

Turing machine: A model of computation in which a machine reads and writes
symbols in sequence along with an infinite according to a finite set of rules.



1. Introduction—Madhur Mangalam1 and Damian G. Kelty-Stephen2

Viewing and modeling the brain as a computer has become second nature—but it
was not always this way. In 1958, John von Neumann released the influential book
The Computer and the Brain. In this ambitious attempt, he brought together what
was known about the machine-like qualities of the brain and what such machines
that are not brains might one day accomplish. Since then, the computer metaphor
has been used to explain the computational powers of the mind through its origins
in a computational brain. This move reflects a physicalist attempt to view the mind
as a computer by putting hierarchically organized computational powers onto the
most likely supporting anatomical organ. As a result, the computational mind has
been anchored by the  brain-as-computer  metaphor,  which has  wrested  it  down
from the abstract ideals of Platonic philosophy to a material testbed for empirical
science.  Undoubtedly,  the  computer  metaphor  has  been  a  valuable  and  fruitful
metatheoretical framework for understanding the mind and behavior. However, as
with many long-lasting metaphors  in  science,  the computer metaphor  has  been
explored  and  stretched  long  enough  to  reveal  its  boundaries.  A  systematic
reinterpretation  of  “computation”  in  the  context  of  mind  and  brain  entails  the
development of  new  metaphors  that  describe  the  sometimes  noncomputable
processes are perhaps the only ways to rescue the scientific study of the mind and
behavior from the shortcomings of the computer metaphor.

The current work is a collection of candidate metaphors to describe the mind
and brain, and that could potentially replace the computer metaphor. So far, these
metaphors have been developed and expanded on the outskirts of psychology and
neuroscience, and while they have quite a long way to go in displacing the computer
metaphor, psychologists and neuroscientists are continually learning more about
them and their usefulness in explaining behavior and cognition. Moreover, these
metaphors either generate or evaluate novel theoretical foundations for describing
the structures and processes that support perception, action, and cognition in ways
that the computer metaphor does not.

1.1. The computer metaphor of the mind and brain

The invention of the telegraph in the early 20th century, followed by the telephone,
influenced initial  conceptions of  the brain,  but  soon it  became evident  that  the
numerous “switches” in the nervous system do not function as they do in these
technologies  (Cobb, 2020). Biological discoveries quickly matched or outstripped
these technological paradigms (e.g., the canonical Hodgkin-Huxley model; Hodgkin
and Huxley, 1952). As a result, other metaphors were soon required to explain what
the  brain  does  and how  it  accomplishes  it.  Since  von  Neumann published  The
Computer  and  the  Brain (Von  Neumann,  1958),  the  computer  metaphor  has
dominated  our  theories  about  what  the  brain  is  (a  computer),  what  it  does
(information  processing),  and  how  it  accomplishes  it  (neural  encoding).  Three

1 Correspondence: m.mangalam@northeastern.edu (M. Mangalam).
2 Correspondence: keltystd@newpaltz.edu (D. G. Kellty-Stephen).
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coincidental developments in the mid-twentieth century accelerated the adoption of
the  computer  metaphor.  First,  Behaviorism,  the  then-dominant  metatheoretical
perspective  in psychology, failed to explain how people understand and develop
language (Chomsky, 1959),  creating an immediate need for a new metatheoretical
model  for  psychology.  Second,  the  development  of  Communication  Theory
(Shannon,  1948) provided  a  method  for  measuring  the  amount  of  information
flowing  through  a  system.  Third,  the  invention  of  digital  computers  offered
psychologists a metaphor for psychological constructs and a concrete approach to
investigating  brain  functioning.  Ulric  Neisser,  one  of  the  founders  of  cognitive
psychology, went so far as to claim that the “task of … trying to understand human
cognition is analogous to that of … trying to discover how a computer has been
programmed” (Neisser, 1967, p. 6) Neisser justified this approach by claiming that
a  computer  program  is  a  “recipe  for  selecting,  storing,  recovering,  combining,
outputting and generally manipulating [information]” (Neisser, 1967, p. 8).

The ongoing proposal has been that a digital computer that is as “intelligent”
as the human brain can be built if we can just decipher the algorithms used by the
brain,  code  them,  and  put  them into  action  (Wood,  2019).  This  overarching
computational  view has  remained the dominant metaphor  among contemporary
psychologists and  neuroscientists (Arbib,  1975;  Boden,  1988;  Churchland  and
Sejnowski, 1994; Pinker, 1997a; Wolpert and Ghahramani, 2000),  and, of course,
among researchers in artificial intelligence as well  (Cox and Dean, 2014; Floreano
and Mattiussi, 2008; Hassabis et al., 2017). Computationalism is so broadly applied
to  the  study  of  the  mind  and  brain  that  the  fields  of  computer  science  and
neuroscience have become almost indistinguishable (Lillicrap et al., 2020; Lindsay,
2021; Marblestone et al., 2016; Mollon et al., 2022; Richards et al., 2019; Saxe et
al., 2021).

Computers  operate  on  symbolic  representations,  they  store and  retrieve
representations, process them, and have physical memories with physical addresses
of  these  representations,  guided by algorithms that  depend on specific  physical
structures. Humans can certainly use symbolic representations and sometimes they
use  algorithms  to  do  it  (e.g.,  while  using  an  actual  computer,  paper,  or  other
recording device). Still, attempts to explain human intelligence by referring to an
anatomical organ as an entity that “computes” is likely a case of circular reasoning.
Aside  from the presumption that  these  symbolic  functions  can be  explained by
situating them in particular anatomical tissue, the computer metaphor has grown
into a delimiter of the questions we can ask and the proper answers that can be
given. For instance, the underlying assumption has been that brain function can be
inferred  by  perturbing  particular  brain  components  and  seeing  impacts  on
functioning of the total system (Jonas and Kording, 2017). Such a research program
may  be  insightful  and  uncover  evidence  about  the  brain’s  workings.  Yet, no
empirical evidence  can  ever have the power to correct what could be an unduly
constrictive assumption: the idea that function is best understood as the output of
components (i.e., distinct and separate enough to be deleted or perturbed) will only



ever be able to motivate the discovery of  new evidence of  distinct,  independent
component activity (Van Orden et al., 2001). This assumption leaves unconsidered
the possibility that the brain function or computational ability does not rest on the
independent  contributions  of  distinct  and  separable  components.  Hence,  the
computer  metaphor  risks  foreclosing  on  any  interest  in  the  interactivity  and
flexibility of the brain, which may have implications for the adaptability of behavior
and function.

There is nothing specifically negative about using a metaphor as a scientific
or pedagogical device. Metaphors are useful for successful science, especially when
attempting to  understand the unknown in terms of something  known. There is a
long  history  of  metaphors  in  the  brain  sciences  (Cobb,  2020;  Smith,  1993).  A
strength in this history has been the willingness to engage with new metaphors
when old  ones  have  shown to  be  untenable.  A  remarkable  idiosyncrasy  of  this
history has been the tendency to base each new metaphor on the newest machine
technology. René Descartes considered the brain to be a hydraulic pump propelling
the spirits of the nervous system through the body (Smith, 1999), the psychoanalyst
Sigmund  Freud  envisioned  the  brain  as  a  steam  engine  (Bock  von  Wülfingen,
2013), and the neuroscientist Karl Pribram discussed the brain as a holographic
storage  device  (Pribram,  1982).  These  metaphors  afforded  a  cutting  edge
theoretical  lens  through  which  to  plan  new  experiments  and  reinterpret
experimental findings. However, metaphors can be harmful when they pose limits
upon  what  and  how  we  can  think.  Consequently,  even  our  seemingly  most
fundamental  ideas  can  come  to  be  challenged,  such  as  the  usefulness  of
understanding  brains  and  nervous  systems  in  terms  of  neuronal  networks
representing  the  outside  world (e.g.,  Anderson,  2014;  Chemero,  2009).  The
increasing dissatisfaction in the scientific community with understanding the mind
and  brain  via  contemporary  dominant  technology  might  encourage  healthy
skepticism about our current pattern of metaphorizing the brain.

What  our  history  of  metaphor  tells  us  is,  first,  that  the  psychology  and
neuroscience  communities see  the  brain  as  the  central  component  in  highly
intelligent systems and, second, that none of the  current metaphors of the mind
and brain  are  likely  to  outlast  the  next  technological  innovation.  An  important
question here is: shall we continue to appeal to technological fads as the source of
our next metaphor for the brain, or should the pattern be broken to consider other
options? Proponents of the computer metaphor might argue that “no one believes”
in  strong  computational  functionalism—that  is,  no  one  believes  that  all  mental
states and events reflect computational states of the brain. Instead, they believe in
weak  computational  functionalism,  which  holds  that  the  brain’s  computational
organization is reflected by the mind, which is realized by neural network structure
and functions (Putnam, 1988).

At  this  point,  at  least  some  of  the  computer  metaphor’s  proponents  are
prepared to rein in the scope of the metaphor. Richards and Lillicrap (2022) have
recently argued that the brain-computer metaphor debate is “useless”—a matter of



semantics  because  brains  are  either  computers  or  not,  depending  on  one’s
definitions. Reducing the computer metaphor to mere semantics raises questions
about  how  it  ought  to  be  taken  seriously  in  scientific  investigations  and
explanations. If  we and  you adhere to different definitions of “computer,” then it
becomes unclear what the scientific use of a computer metaphor is.  Alan  Turing
(1936) famously provided proof of the possibility of developing universal machines
capable of computing all  computable procedures. To define a computer in other
terms would raise challenging questions about whose “computer” applies to what
target of inquiry.  Turing was the beginning of this inquiry not the end.

Meanwhile, a minority of psychologists and neuroscientists are ready to let
the computer metaphor go and to dispense with even the semantic  form of the
metaphor. Researchers in this group have sometimes asserted that the mind and
brain defy lawful explanation given the understanding of physical laws at present,
requiring  new,  yet-to-be-discovered  laws  and  principles  to  comprehend  them
(Chalmers,  1996).  Such  alternatives  are  typically  not  based  on  empirical  data,
contradicting the physicalist working hypotheses, nor  do they propose a different
metaphor  that  might  guide  us  toward  the  new  laws.  But  without  a  different
metaphor and a systematic,  valid organization of  exceptions or violations of the
dominant metaphor, these disavowals of computer metaphors leave it unclear what
to do.  Short of waiting for the new laws to fall from the nearest apple tree,  it is
difficult to know what to do in the meantime.

1.2. In search for an alternative to the computer metaphor of the mind
and brain

We believe that the tide may be turning. Hungry for a metaphor that generalizes
beyond  word  interpretation,  scientists  are  bringing  evidence  to  bear  on  the
questions  of  what  to  do  besides  or  beyond  the  computer  metaphor.  While  the
computer remains a crowning technological achievement, many scientists are ready
to try out new metaphors. Our format for this article is intended to provide the
reader with an overview of the limitations of the computer metaphor and several
candidate metaphors that are ready to replace it.  Eight author groups respond to
the following four questions and point to future directions for research prompted
by these metaphors.

Question 1: What do we understand by the computer metaphor of the mind and
brain?

Question 2: What are some of the limitations of this computer metaphor?

Question 3: What metaphor should replace the computational metaphor?

Question 4: What empirical findings support this alternative metaphor?

The resulting contributions represent a range of contemporary responses from the
primary disciplines in behavior and brain sciences,  including complexity science
(De  Bari,  Dixon,  Favela,  Hasselman,  Kelty-Stephen,  Mangalam),  experimental
psychology (De Bari, Dixon, Favela, Kelty-Stephen, Mangalam, Thomas, Wagman),



movement science (Kelty-Stephen, Mangalam), neuroscience (Cisek, Mangalam),
philosophy  of  cognitive  sciences  (Favela,  Keijzer,  Raja),  and  statistical  physics
(Dixon, Kelty-Stephen, Mangalam). While we see a consensus that pushes against
the strictures of computer metaphors across these sciences, we also see a variety
that  suggests  an  exciting  diversity  of  possible  metaphoric  options.  Conversely,
showcasing this diversity in a single avenue might provoke the behavior and brain
sciences  towards  uncovering  those  fundamental  facts  about  the  brain  that  the
computer metaphor keeps beyond our grasp.

2.  Knitting  together  the  mind,  brain,  and  behavior  with  Turing’s
cascade instability—Damian G. Kelty-Stephen3 and Madhur Mangalam4

We see the computer metaphor as a holdover from premodern scientific traditions
hoping to anchor the mind’s computational ability in a material anatomical part.
Despite  having  prompted  decades  of  valuable  empirical  insights,  the  computer
metaphor  has  likely  outgrown  its  usefulness.  Brains  are  context-sensitive  and
capable  of  adapting  to  novelty,  eschewing  the  locality  of  meaning  necessary  to
computation. Rather than proposing a new metaphor for  the mind and brain, we
think  that  Turing’s  old  idea  of  cascading  instability  is  a  metaphor  worth
reconsidering.  It  recommends  a  power-law-driven  geometrical  framework  that
might knit together the mind, brain, and behavior in context.

2.1. What do we understand by the computer metaphor of the mind and
brain?

The computer metaphor of the  mind and brain  has evolved historically from the
rationalist tradition that the mind’s uniqueness  lies in  its capacity to use logical
inference (Fodor,  1981).  Because  physicalist science  has  aimed  for  centuries  to
localize various physiological functions in independent anatomic structures (e.g.,
Harvey identified that the heart is the anatomical structure responsible for blood
circulation; Ribatti, 2009), a long-standing, relentless goal has been to sort out the
proper anatomical anchoring for the logical processes. A fundamental obstacle in
achieving  this  goal  has  been  the  abstract  quality  of  logical  thought.  Platonic
traditions have left the Western world with the impression of thought as somehow
removed from the tangible details—even overshadowing the Aristotelian tradition
that even mind is material.  However, the prevailing tradition has been, in effect,
that whatever material substrate can support the logical reasoning must itself carry
some logical structure to it, thanks to our scientific culture that reasons from the
principle of similarity, i.e., similar effects should arise from similar causes (Hume,
2020).

3 Correspondence: keltystd@newpaltz.edu (D. G. Kellty-Stephen).
4 Correspondence: m.mangalam@northeastern.edu (M. Mangalam).
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 The computational aspect of the mind thus led psychological sciences to seek
a computational aspect of organic tissues.  The brain has long topped the list  of
anatomical  supports  for  the  mind.  Before  the  advent  of  neuroimaging,  ancient
cultures could see plain deficits in mental functioning following injuries to the head
and,  specifically,  the  brain.  Then  again,  the  brain  did  not  always  appear  as  a
computer.  For  all  his  insights  in  discerning  a  difference  between  efferent  and
afferent nerves, even  the Greek physician and surgeon Claudius  Galen promoted
the retrospectively laughable idea that the brain was more of a stomach to digest
incoming stimuli (Galen, 2019).  This perspective ignored the then-laughable idea
that the cortical surface was essential to cognition and emphasized the ventricles
filled with cerebrospinal  fluid.  Holdovers of  this now-strange idea survived well
into  premodern  science,  even  populating  some  pages  of  Leonardo  Da  Vinci’s
otherwise visionary notebooks (Gross, 1999).

 The computer may not have entered the explicit discourse until the modern
age of stored-program computing. Notwithstanding, the computer metaphor began
to  take  root  centuries  before  scholars  like  Descartes  legitimized  the  mind-body
dualism as an acceptable premise from which to investigate subjective experiences
(Fodor, 1981). Descartes did not have an IBM PC on his desk, but he did grow up in
a culture that had become fascinated with early-stage robots, i.e., automata that
artful  engineers  gave  a  biological  and  sometimes  humanoid  form—Descartes’s
referred to automata in his writing, and the culture was so full of imagination about
automata that myths grew about Descartes potentially having crafted automata of
his own and perhaps even in the image of his daughter (Kang, 2017).  Descartes
would have held out for the mind to be something other than mechanical-biological
tissue, but he viewed the operation of the mind as sufficiently elegant and rational
to organize and manipulate the logical operation of machines. So, without calling
the brain a computer, Descartes sowed the seed of expectation that the brain and its
structures should have a logical operation that made them ready instruments for
the mental process to play upon.

Computer  technology caught  up to  the Cartesian dream in the early  20th
century with Alan Turing’s (Fig. 1) intriguing discourse on mechanical intelligence
(Hodges,  1983;  Turing,  1950a).  Turing leaned heavily  into  creative  speculations
about how to build minds or intelligence with computing technology, and these
speculations always seemed to stop short of the conclusion that the human mind or
the brain was explicitly and exclusively a computer (Sprevak, 2017).  Turing was
always keen to point out that, just because the computer-like rules were not in plain
evidence,  it  was  always  possible  that  the rules  could  later  become evident  with
further investigation. However, he found neurobiology tedious and irrelevant to the
arguments he was developing about computation and the role of the logical process
relative to physical  supports  (Hodges,  1983).  Turing’s later work in morphology
clarifies a long-brewing suspicion that the physical supports could be of at least
comparable  importance  as  the  logical  process (Kelso,  1995;  Turing,  1952).
Specifically, Turing never saw the grounds to lock the brain up into a computer



metaphor—for him, there was always the opportunity that nonlinear and perhaps
random  cascading  processes  through  the  physical  embodiment  was  crucial  for
generating the computational powers. In short, Turing saw that the illogical physics
of  biological  form  might  have  been  the  unwitting  engineer  of  the  sometimes
computational human mind.

Fig. 1. Alan Turing (1912– 1954). Copyright © The Royal Society.

The crucial step towards the computer metaphor was McCulloch and Pitts’s
recognition of Turing-style computability as a good match for the brain—the binary
language of 0s and 1s made neat analogy with the binary of neural dynamics: all-or-
nothing  action  potentials  (McCulloch  and Pitts,  1943).  The  computer  metaphor
suggested physicalism a neat anatomical support, leading the behavioral and brain
sciences  to  generally  foreclose  on  Turing’s curiosity  about  whether  illogical,
unstable  cascades  might sometimes  produce computation.  Instead,  the  modern
computer metaphor has drawn from Turing’s earlier work using Bayesian statistics
to hack coded messages with predictive logic.  The branching neurons coevolved
together in networks spanning cortical layers across the brain now appear to us as a
hierarchical  Bayesian  network  of  logic  (de  Lange  et  al.,  2018).  Indeed,  some
modern-day neuroscientists are prepared to design/inform psychiatric diagnoses
and  interventions  based  on  how  psychopathology  might  result  from  creaking,
collapsing Bayesian hierarchies (Petzschner et al., 2021, 2017).

The computer metaphor is so predominant that one might easily never know
anyone  thought  any  different.  We  also  do  not  think  it  has  been  such  a  bad
metaphor. One of us has confessed in print to having loved the Cartesian promise of
mental  clockwork  impressed  upon  neural  clockwork (Kelty-Stephen  and  Dixon,



2013). However, we see a couple of crucial signs of how the computer metaphor is
not living up to its promise. For instance, there is a long history of comparative
biology that cannot quite settle the question of brain size. This research often starts
from the premise that humans have the greatest command of mental computational
power, and for decades it has been stuck on the persistent, daunting question of
why many animals with bigger brains than we have cannot manage our feats of
logical  reasoning  (Stout,  2018).  The  research  then  spins  its  wheel  a  bit  with
qualifications and attempts to revisit the question from different angles,  e.g.,  by
disentangling global size from specific parts’ size, disentangling different ways to
consider proportional or relative size metrics. None of these attempts to find the
better, clearer meaning of what a more “intelligent” brain entails  are bad, but the
discourse  quickly  becomes  slippery  and  hard  to  keep  transparent.  The  only
potentially  clear  thread in  the discourse  is  a  persistent  desire  to  show  that  the
human  brain  is  best  suited  to  our  vaunted  intellectual  powers  (Barton  and
Montgomery, 2019).

Furthermore,  no  matter  the  undisputed  elegance  of  hierarchical  Bayesian
networks (Berezutskaya et al., 2020; Daube et al., 2019), these models fail to yield
the full  diversity  of  the higher  cognitive  functions  centrally  symptomatic  to  the
computational capacities we seek to explain.  Yes,  we are thinking specifically of
language,  that  exceptional  case of  rule-based manipulation of  arbitrary symbols
that distinguishes human intelligence from other comers. Chomsky (1980) could
make  the  compelling  case  that  language  is  a  computational  behavior  without
claiming  to  name  any  specific  brain  or  genetic  structure  with  the  requisite
computational hardware. Indeed,  it was  the computational structure of language
that  gave Chomsky the certainty that this only-computational portrayal requires
innate knowledge (Bickhard, 2001; Fodor, 1983, 1975; Pinker, 1997b). We authors
do not  agree  that  language must  be  innate,  but  we agree  that  anything  strictly
computational must be; the arbitrariness of the symbol and the rule does not admit
any learning. If computation is in fact about the local operation of rules directly on
symbols with local meanings (Fodor, 2000a; Pattee, 1977, 2013), then no amount of
experience will  be sufficient to steer the linguistic behavior towards its typically
developing human form in as short a time. This point is as true for language as it is
for protein folding, and in their own department, organic chemists grappled the
same issue that many amino acids engaged only in local interactions would never
randomly  discover  functional  protein  forms  (Levinthal,  1969).  In  any  event,
shuttling localized meaning from one part to another of a linguistic interaction is all
that Bayesian networks  can accomplish. The computational commitment of local
meaning  to  individual  symbols  is  simply  not  enough  to  explain  the  dynamic,
context-sensitive interplay of factors (i.e., motoric, acoustic, neural, social, cultural)
spreading from one scale to another (e.g., from single-neuron to brain region to
social group, from last week’s gossip to tomorrow’s exam) in language behaviors
(Fusaroli et al., 2014; Olmstead et al., 2021; Skipper et al., 2017).



For all we know about the brain, the evolution of language remains a mystery
(Hauser et al., 2014),  and the computer metaphor may foreclose any new insights
by enforcing the need for fixity of local meaning and arbitrary symbols. Stored-
program  computers  have  no  apparent  natural  heritage  except  wholesale  innate
installation and wiring.  We can build  the arbitrary symbols in,  but  that  is  only
because we organisms can do computation—to say we can only do that because we
have computers in our head just begs the question. Computers must have come
from somewhere and arisen at some point in the past, but their symbols and rules
are arbitrary—not by accident but by design. To say the brain is entirely a computer
does not just commit all meaning to local tokens and local interactions  but also
seals off the chance for new structures. It is further to assume that the brain is also
arbitrary  and  thus  disconnected  from  any  natural  law  in  the  evolutionary  past
before computers.  Organisms might build modern computers because they have
computing brains, but where would the “computer” brains have come from? It is
hard to address this question if computers are always arbitrary. If computers have
truly arbitrary structures, no natural law could guarantee their emergence. Then
again, if our brain has evolved according to natural principles (e.g., of selection),
they could not be arbitrary and are thus unlike every other computer we humans
have designed.

For all that the computer metaphor of the brain and cognition affords us, it
reflects an aspiration to find an organic, material home for an idealized notion of
what the mind is doing—the mind is ultimately more flexible than just a computing
process. It carries more profound imprints of illogical, unstable cascades, and the
brain  is  no  different.  Computation  is  a  thing  that  minds  can  do,  a  thing  that
organisms poised at abacuses or drawing geometrical proofs with pencil and paper
can do  as well. However, without even denying that the brain must support that
organism  in  computation,  we  see  the  computer  metaphor  as  a  reasonable
approximation that leaves out the flexibility to depart from logical validity. The 0s
and 1s  that  McCulloch and Pitts  (1943) used to  portray  action potentials  are  a
coarse-graining of a neuron’s nonlinear dynamical properties. The brain is a fluidic
nonlinear dynamical system that engages in drastic transitions at the crossings of
activity  thresholds,  and  that  adapts  its  local  exchanges  from neuron  to  neuron
sensitively to the bodily, task, and environmental contexts. Not only do we authors
fail to see a computer in the brain, but we also fail to see the computer metaphor
doing  adequate  justice  to  the  illogical,  unstable  cascades  that  brains  engage  in
bringing to the support of the mind.

What are some of the limitations of the computer metaphor?

The  fundamental  limitation of  the  computer  metaphor  follows from the  central
requirement of computation that meaning must be locally encoded into the symbols
shuttling meaning from input to output. This limitation is not an accident. Instead,
it is the sheer  genius of the computer metaphor. Computation is good at what it
does  precisely  because  arbitrary  symbols  can  carry  meaning  from  premise  to
conclusion  in  a  way  that  is  perfectly  readable  or  transferable  by  any  system



equipped with the same symbols and rules. 1 + 1 = 2 no matter whether it is raining
outside or where the program is enacted. We are aware of connectionist attempts to
drop below the symbolic level and allow individual tokens to carry only part of the
meaning,  but we share Fodor and Pylyshyn’s (1988) impatience with this strategy
because it presumes to make computation no longer computation. Specifically, if
the  proposed  sub-meaning  of  subsymbols  is  somehow  not  also  local  to  the
subsymbol, then it is no longer a computer but a fluid system that needs constant
supervision  to  ensure  that  the  nodes  are  somehow  not  locally free  to  absorb
meaningless stimulation and somehow they do something reliable.

However,  with  meaning localized to  the symbol  to  be operated upon,  the
limitations  accrue as the inability  of  the computer to  discover  new symbols (or
subsymbols),  to  correctly  identify  new (or  any)  proper  features  of  the  world  to
which the symbols (or subsymbols) refer, or to adaptively sense the vast (i.e., non-
local)  contextual  frames  that  might  change  the  local  meanings  of  the  symbols.
These are the symbol grounding problem (Harnad, 2007; Searle, 1982, 1980), the
problem of projectable predicates or abduction (Goodman, 1983; Misak, 1992), and
the frame problem (Dennett, 2006; Fodor, 2000a), respectively—all of which have
been discussed in such, to our minds, harrowing detail that we resist detailing them
here. The upshot of all of these issues is that, as Fodor (1983, 1975) suggested and
as Pinker  (1997) readily agreed, the computer metaphor for the mind and so the
brain requires  immense amounts  of  innate knowledge.  Additionally,  this  innate
knowledge supports an array of special-purpose computational modules that are
encapsulated  and  so  impenetrable  to  learning  or  experience.  So,  in  effect,  the
computer metaphor guarantees that the brain should fare very poorly with novelty
or context-sensitive awareness.

 Of course, the plain fact is that the brain is quite good at dealing with novelty
and context-sensitive awareness (Ghazizadeh et al., 2020; Hunter and Daw, 2021).
The context-sensitivity of the brain is so good that bees with much smaller brains
than  us  can  solve  spatial-reasoning  problems  like  the  traveling-salesperson
problem (Lihoreau et al., 2010). The traveling salesperson problem is centrally the
problem  of  efficiency:  finding  the  shortest,  least  costly  path  through  multiple
locations  without  visiting  the  same  location  twice.  Specifically,  for  computing
terms, the traveling-salesperson problem is called “NP-complete,” meaning that it
requires processing time from the computer that explodes exponentially with the
number of locations the salesperson must visit.  The computing time grows so fast
with the number of  locations because computers lacking background knowledge
about  the  spatial  layout  have to  sift  through all  possible  orderings  of  locations
before identifying the shortest path. Thus, the only way computers can efficiently
solve  this  problem  is  with  built-in  background  knowledge.  The  beneficent
programmer can give their computer algorithmic hints as to which sequences to try
first, and the programmer aims to optimize the algorithm to  need minimal hints.
Meanwhile,  modern computation attempts to  optimize the traveling-salesperson
problem are currently invoking optimization procedures that mimic the activity of



bees and ants (Gao, 2020).  So, small-brained animals are  helping the  computers
solve  cumbersome  problems—the  traveling  salesman  problem  being  just  one
example.

Indeed, the computer metaphor may have inverted the facts: the computer is
slowly  trying  to  be  more  like  a  brain.  What  makes  it  curious  is  that  if  it  is  a
computer,  the  brain  is  very  leaky,  noisy.  The  brain  is  full  of  delays  thanks  to
synapses and contextual pressures on neural transmission (Sabatini and Regehr,
1996;  Xu  et  al.,  2012).  So,  for  all  of  the  challenge  of  limiting  the  immense
computing time to get the traveling-salesperson types of jobs done, computers are
processing  electrical  relays  at  speeds  far  beyond  the  brain’s  capacity  to  spread
electricity (Luo,  2020).  So,  the  slow  system  performs  much  better  than  the
computer with no synapses and has to do more work even if  it  can work much
faster. Curiously, the computer engineers are gearing up to build computers that
have synapses (Choi et al., 2020; van de Burgt et al., 2017; Wei et al., 2021), which
would allow all the flexibility that we biological systems with neurons enjoy, but
then the computers will in effect sacrifice speed—for tasks that are already done
more efficiently by biological systems.

Of  course,  it  is  not  news  that  the  brain  is  unlike  any  other  computer  in
evidence. Daniel Dennett even said as much in an Edge.org conversation almost ten
years  ago  (https://www.edge.org/conversation/daniel_c_dennett-the-normal-
well-tempered-mind; see also Levin and Dennett, https://aeon.co/essays/how-to-
understand-cells-tissues-and-organisms-as-agents-with-agendas).  However,  we
think that a metaphor is in a resemblance that will suggest new research directions.
The metaphor is  always a  more accessible  thing we understand better  than the
system we wish to understand, and we gaze at the metaphor’s internal mechanism
precisely  because  we  expect  a  similar  form  in  the  less-accessible,  lesser-known
system (Klein, 2021).  We can entirely understand Turing’s  (1950) and McCulloch
and Pitts’s (1943) points when coining the explicit computer metaphor, and we find
the intervening decades of evidence  very  informative. But much of that evidence
pointed  away  from  the  computer  metaphor.  Now,  we  are  ready  to  look  for  a
metaphor with a slightly firmer resemblance now that we know much more than
the all-or-nothing dichotomy of action potentials.

What metaphor should replace the computer metaphor?

We do prefer another metaphor rather than no metaphor. We do not think that “the
data” ever speak for  themselves.  This  point  applies  as much to computers as it
applies to how we use metaphors, computer metaphors or otherwise. The data are
all  the computers know. The computers are  not  the ones  interpreting the data,
however. Meaning requires an interpreter to organize the data into an interpretable
form.  This  organization  requires  contextualizing  continuous  variation  (e.g.,  the
data; or any flow) by applying constraints (e.g., units and geometrical frameworks).
Constraints are necessary for meaning to ever arise from the dynamics of any kind,
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and  this  necessity  follows  meaning-making  down  to  the  simplest  stages  of
biological uses of information like protein folding (Pattee, 2013).

Metaphors do not, we expect, ever go out of style for building a meaningful
scientific  explanation.  Indeed, we might  suggest  that,  for  real  and metaphorical
computers alike, the computer is most beneficial in its capacity for supporting our
metaphor  building.  In  a  sense,  we  use  computers  or  computation  as  metaphor
machines: symbols and their rule-based operations are the models we use to distill
a  set  of  events  to  “bare-bones”—consistently  reducing  somehow  to  get  a  more
efficient  grasp  on  control  or  communication,  ensuring  what  George  E.P.  Box
famously reminded us, that “all models are wrong, but some models are useful.” Of
course, what we can grasp and wield physically does not need a model (e.g., we can
pick  up  a  book  no matter  whether  we  understand  the  text  inside),  and simply
hefting a computer does not mean we know how to use the models. We just find it
regrettable how persistently  scientists  have  hewn to the computer  metaphor,  in
effect using their office computers to make models of a “computer” that is going to,
as a brain, to do much less but then again much more than what a computer can do.
This point demands some emphasis: the computer metaphor is a reduction like all
models before it, but the persistence of the computer metaphor depends on a faith
that the metaphorical computer for the mind/brain might do things that computers
cannot do. The computer metaphor is thus an overstatement of what a computer is
and not the more-valuable reduction of the events we expect.

Not  every  model  is  a  computer.  Hence,  metaphors  capable  of  generating
scientifically valid hypotheses about theory are not limited to logical machines like
computers. Indeed, biological and artificial sciences alike have a yawning portfolio
of models that are not logical but somewhat tangible, living, and embodied (Bravo
et  al.,  2021;  Matthews and Vosshall,  2020; Michael  et  al.,  2021;  Nielsen,  2019;
Vergara et al., 2017). Much like the computer metaphor, these wilder models carry
our  best  predictions  forward into  the  future.  Notwithstanding,  unlike  computer
metaphors, they have a  nuanced  texture, a set of tissues, and material capacities
that can gain traction in the world outside the silicon microprocessor and bring new
variables and new relationships to our attention.

The  alternative  metaphor  need  not  be  new  either—we prefer  an  old  one.
Indeed, Turing also gave us the other metaphor: the cascade. In both strains of his
work, when pondering intelligent computers (Turing, 1950a) or when pondering
biological morphogenesis (Dawes, 2016; Turing, 1952),  Turing was focused on the
same  metaphor,  just  phrased  in  different  ways. Turing (1950) opined  that  the
creativity of the mind could be compared to the critical amplification of a nuclear
fission pile (Figs. 2, 3, and 4). Turing (1952) opined that the large-scale creativity
of bodily forms could be modeled as the random collisions of organic molecules
under boundary conditions set  by genetics.  The two opinions are  effectively  the
same:  they  both  acknowledge  that  minds  and  bodies  alike  follow  from  the
percolations of small-scale fluctuations giving rise to coherent forms at a large scale
and then to large-scale patterns doubling back to rein in the small-scale dynamics.



A hierarchical configuration of events nesting at multiple scales achieves adaptive,
context-sensitive  behavior  through  a  balance  of  noise  and  order.  Dynamical
fluctuations  collide  with  constraints  at  multiple  scales,  pitching  the  hierarchy
intermittently from one globally stable mode to another. In a sense, this description
is just a tweak on the hierarchical Bayesian logic network some see in the brain
currently (Colombo and Seriès, 2012; Friston, 2012; Kersten et al., 2004; Knill and
Pouget,  2004;  Körding  and  Wolpert,  2004).  The  significant  difference  is  that,
whereas its purely logical form makes the whole Bayesian network one single and
very  ornate  constraint,  the  cascade  is  fluid  at  all  scales,  leaving  dynamics  to
interleave  nonlinearly  with  the  constraints  across  each  of  those  scales.  The
interactions across scales offer a nonlinearity that pervades the system rather than
depending on any nonlinear parametrization at individual levels of the hierarchy
(Lovejoy and Schertzer, 2018).

Fig.  2. Hexagonal  planforms  for  patterns.  (A)  The original  sketch  by
Turing. Reproduced from AMT/C/27/19a. Copyright © W.R. Owens. (B)
Reproduced sketches from Pellew and Southwell (1940). The pairs of blue
thick solid lines have been added to relate the two figures.



Fig. 3. Turing’s cascade instability can lead to complex patterns observed
in the nature. (A) Illustrative generic patterns of an activator–inhibitor
scheme. From Ball (2015), courtesy of Jacques Boissonade and Patrick De
Kepper, University of Bordeaux, France. (B) Naturally-observed “rosette”
spots  of  a  jaguar  and  its  analog  produced  by  two  coupled  activator–
inhibitor processes. From Liu et al. (2006), © American Physical Society.
(C)  Naturally-observed  patterns  on  seashells  and  their  analogues
produced  by  theoretical  activator–inhibitor  systems.  From  Meinhardt
(2009),  courtesy  of  Hans  Meinhardt,  MPI  for  Developmental  Biology,
Tübingen, Germany.



Fig. 4. Multiplicative cascade process. (A) Schematic of a multiplicative
cascade process at increasingly fine binary timescales, driven by a general
pdf,  P(x), starting with the whole time interval at  T0 and increasing the
number  of  intervals  by  an  integer  power  of  two  until  the  number  of
intervals at time scale Tk is 2k. The activity time series at the bottom of the
graph is believed to be formed by a multiplicative cascade, with P(x) being
a  Gaussian  density  with  mean  μ and  variance  σ2.  (B)  A  binomial
multiplicative cascade as a mathematical concept of how proportions of
events  can  distribute  themselves  across  progressively  smaller  sample
sizes. The bottom-most curve shows the 216-samples series representing
the cascade after 16 generations. Each value reflects the multiplication of
different  sequences  of  the  proportions  0.25  and  0.75.  The  leftmost
samples reflect the successive multiplications of predominantly smaller
proportions,  and  the  rightmost  samples  reflect  the  successive
multiplications  of  predominantly  larger  proportions.  Each  curve  is
normalized by its maximum value and displaced by 1 unit in the vertical
for clarity.

What empirical findings support your preferred alternative metaphor?

The  evidence  supporting  the  cascade  metaphor  is  already  in:  brains  exhibit
cascade-like forms most evidently seen as “neuronal avalanches” (Beggs and Plenz,
2003; Dalla Porta and Copelli,  2019; Hahn et  al.,  2010; Jannesari  et  al.,  2020;
Klaus et al., 2011; Mariani et al., 2021; Miller et al., 2019; Pazzini et al., 2021; Plenz
and Thiagarajan, 2007; Shew et al., 2011; Wu et al., 2019). Neuronal avalanches
epitomize  the  cascade metaphor  and the  capacity  of  cascading processes  across
multiple scales to generate fluid and flexible structures that keep adapting to ever-
changing circumstances (Mariani et al., 2021; Miller et al., 2019). Indeed, they may
reflect essential resources in counteracting prediction errors that might otherwise
accrue in a leaky computer-like relay of stimulation from sensors to actuators (Kaur
et al., 2018). It may not be necessary to predict exactly or always correctly if the
brain instead has the resources to weave vast contextual information together with
small-scale stimulation (Van Orden et al., 2012).



This cascade metaphor offers researchers eager to sort out the relationship
between brain, body, and context is the unifying framework of fractal and, more
generally, multifractal geometry. A characteristic feature of cascades—avalanche or
not, in the brain or not—is power-law scaling  (Lovejoy and Schertzer, 2018). The
pervading  of  cross-scale  interactions,  very  big  to  very  small,  entails  a  scale-
invariant structure.  Whether or not it  looks “self-similar,”  the cascade is always
spreading a similar abstract form across all of its scales. The cascade may roll this
way or that, but the action of the cascade may be understood through the evolution
and change of power-law distribution functions (Kelty-Stephen et al., 2020). Here
is, in fact, the reduction that the cascade metaphor enacts: the cascade metaphor
offers to reduce various physiological and neural dynamics into a set of power-laws
whose change can signal the response to or growth of constraints at various scales
(Furmanek  et  al.,  2020;  Kelty-Stephen  et  al.,  2020;  Mangalam  et  al.,  2021;
Mangalam and Kelty-Stephen, 2021; Wallot and Van Orden, 2012). Helpfully for
this purpose, power-law behavior can break down, even at specific scales, and it can
also manifest in different forms for different sized effects.

As we build our theories to encompass not just brains but also bodies and
contexts, we can find bodies and contexts themselves rich in cascades. The power-
law form can become a formal common currency to express how brain, body, and
context might behave similarly. There is already a tradition of calling the power-law
behavior  of  cascades  “universal,”  suggesting  that  under  the  critical  dynamics
entailed  by power-laws may hold  similarly  across  various  systems composed of
radically  different  materials  (Lovejoy  and  Schertzer,  2018).  Also,  power-law
behavior can spread across neighboring systems, and so we might begin to see how
the cascade behavior spreads among brain, body, and context. For now, empirical
research has examined various dyadic relationships between pairs of these; in all
cases,  the  power-law  behavior  of  one  cascade  is  contagious  and  can  spread  to
another cascade (Carver et al., 2017; Gutiérrez and Cabrera, 2015; Kelty-Stephen,
2017; Mangalam et al., 2020a, 2020b).

The exact circumstances for this contagion are still to be determined, but this
mechanism affords a geometrical framework that allows us to consider how brain,
body, and context may all coordinate in a way that is always slower than but often
more adaptive than a computer. Furthermore,  this metaphor may also pay all the
same dues that the computer metaphor did in predicting the human, “brainful”
responses: indeed, estimating the power-law behavior in the brain has been shown
to predict the human cognitive response (Kardan et al., 2020a, 2020b). Less central
to brain sciences, it is also important to note that the power-law behavior of bodily
movement is predictive of the human  perceptual responses  (Kelty-Stephen et al.,
2021; Mangalam et al., 2020b, 2020a). Of course, it is always possible that the two
classes  of  predictive  relationships  are  just  coincidental.  Notwithstanding,  the
progress  and  falsifiability  of  theoretically  driven  research  outside  the  computer
metaphor are by no means as ethereal or opaque as critics can sometimes protest
(Wagenmakers  et  al.,  2012).  We  can  develop  research  beyond  the  computer



metaphor through a cascade metaphor that we can elaborate (or fail to elaborate)
within a clear geometrical framework of power-law relationships.  But any success
or failure must have no bearing on our search for an alternative to the computer
metaphor.

The time is finally ripe for addressing the cascades that Turing knew about
and had already begun to enlist for building the eventually intelligent computer.
The  computer  metaphor  has  been  of  immense  value  and  generated  incredible
decades of empirical research, but it is past the time when we had the available
mathematical operations for addressing what Turing saw but could not put into
numbers.  Thus,  there  is  no  newfangled  wisdom,  just  old  wisdom  with  the
mathematics that fit, and the policy of ignoring the constraints on the computer
metaphor  for  the  brain  thrives  only  on  the  grounds  that  similar  appearances
require  similar  causes,  i.e.,  as  between  a  computing  mind  and  a  computing
machine. However, Hume told us years before perceptual science that appearances
can be deceiving. Thus, it is high time for us to pursue the strange possibility that a
fluid  cascade  might  generate  a  computation.  Granular,  symbolic  detail  may
certainly  compose  the  mosaic  of  a  rule-driven  computation,  but  the  details
themselves  may  emerge  from  a  fluid  substrate,  crystallizing  out  of  continuity
(Bernstein,  1967).  In  any  event,  the  physicalist  hopes  to  anchor  human
computational ability may need to look no further than the cascade.

3. The brain is a control system—Paul Cisek5

All variations of the computer metaphor are based on the premise that the principal
function of the brain is to process information and, thus, that brain functions can
be subdivided into information processing functions. However, neurophysiological
data  strongly  argues  against  such  subdivisions,  rejecting  classical  concepts  of
computational modules. Instead, I suggest the brain be viewed from the perspective
of the process that produced it—evolution. This leads to the proposal, made many
times  over  the  last  hundred  years,  that  the  brain  is  a  control  system.  I  briefly
discuss evolutionary and neurobiological  data that  supports  this  view and leads
toward a  functional  architecture  for  the  brain  consisting  of  parallel  and nested
sensorimotor control loops. I suggest that this architecture is more compatible with
the process of brain evolution and comparative data across diverse species, that it
better explains a wide range of neurophysiological findings, and that it provides a
better conceptual taxonomy for understanding behavior.

3.1. What do we understand by the computer metaphor of the mind and
brain?

Much of  the  debate  about  the  computer  metaphor  results  from the fact  that  it
means  different  things  to  different  people.  e.g.,  some  use  it  as  a  literal

5 Correspondence: paul.cisek@umontreal.ca (P. Cisek).
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interpretation of the algorithm that the brain uses to implement higher thought,
but others use it in a more general sense by describing the brain as a system that
processes information. Consequently, some versions of the metaphor are met with
criticisms that simply do not apply to other versions, leading to fruitless debates.
Here,  I  will  describe  some of  the  ways  the  computer  metaphor  has  been used,
starting  with  the  most  specific  version  and  gradually  removing  some  of  its
assumptions to  yield  a  version that  is  more  general.  However,  I  will  ultimately
argue that even this more general version of the computer metaphor misses the big
picture of what the brain and behavior are really about.

The  most  specific  version  of  the  computer  metaphor  was  espoused  by
classical  cognitive  psychology  in  the  middle  of  the  20th  Century,  which  was
strongly influenced by research in artificial intelligence. In that view, the metaphor
was taken quite literally, and explanations of mental functions were expressed as
computer programs with if-then rules,  working memory buffers,  explicit  storage
and  retrieval  of  symbolic  beliefs,  et  cetera.  Of  course,  everyone  agreed  that
biological  mechanisms  did  not  resemble  such  operations,  but  this  was  seen  as
irrelevant  to  the  task  of  explaining  mental  life.  This  reasoning  was  justified  by
another metaphor, that of a  virtual machine, where the hardware of biological
tissues was seen as implementing the software of mental functions (Block, 1995). A
similar  ideas  was  expressed  by  Marr’s  (1982) famous  distinctions  between  the
computational,  algorithmic,  and  implementational  levels  of  explanation.  This
proposed independence of software from hardware was tenaciously defended via
strong  and  persuasive  mathematical  arguments.  However,  it  should  be
acknowledged that at least part of the attraction was that it excused its proponents
from having to know anything about neuroscience, which at the time was still in its
infancy.  Thus,  psychological  theory  proceeded  largely  without  the  burden  of
biological constraints.

Nevertheless, despite the prevalence of an explicit attitude that the mental is
independent from the biological,  proposals of functional architectures that more
closely  resembled neural  architectures  were  favored over  those  that  did not.  In
particular,  one  could  relax  the  assumption  that  cognition  is  like  a  symbolic
computer program and instead think of it in more general terms of mathematical
computations like Boolean logic or linear algebra. This led to network explanations
such  as  those  of  McCulloch  and Pitts  (1943) and  Rosenblatt  (1958),  which
demonstrated that artificial systems can learn to discriminate patterns given a set
of  examples.  The ability of  such systems to learn was so impressive that it  was
heralded in the media as the start of an AI revolution. That revolution has waxed
and waned through several cycles of hype and disappointment, but even the most
staunch skeptics must agree that today’s AI systems such as multilayer networks
are quite impressive at what they do.

But what is it that they do? They take an input pattern and produce an output
pattern,  effectively  implementing  a  mapping  that  is  learned  through  a  training
phase  involving  example  input-output  pairings.  Often  the  mapping  process  is



strictly feed-forward, such as in classic three-layer backpropagation networks, and
sometimes  it  includes  feedback  (recurrent)  connections.  But  regardless  of  the
algorithm under the hood, the computational task that these systems perform is
defined as transforming an input pattern into an output pattern–that is, what we
can call  “information processing.”  Here,  “information”  is  usually  defined in  the
Shannon and Weaver (1949) sense of the deviation of a pattern from randomness,
and “processing” in the Turing (1936) sense of manipulating symbols or patterns.
In  other  words,  we  can  back  away  from  the  specific  version  of  the  computer
metaphor that seeks to express mental operations in terms of computer programs
and allow our explanations to instead take the form of neural networks.

Consequently, we can have a computational metaphor that is less literal but
still  operates  within  the  broader  metaphor  of  information  processing,  whereby
mental functions are seen as processes that transform inputs into outputs. These
could range from the kinds of mechanisms one might imagine happen at the retina,
transforming a pattern of photons into a pattern of action potentials in the optic
tract, to more complex mechanisms that integrate sensory evidence into beliefs and
knowledge. They can even extend to behavior as a whole: where sensation is like
input, muscle contraction is like output, and the interesting stuff in-between is like
computation.  Notably,  the  stage  for  this  proposal  was  already  set  long  ago  by
philosophers  such  as  George  Berkeley  (1685–1753),  centuries  before  electrical
computers were available as an existence proof that purely physical systems can
implement sophisticated behavior.

Why is the “information processing” metaphor so attractive? I think there are
many reasons  (Cisek,  1999).  For one,  it  offers a purely physical  explanation for
mental  life,  exorcising  the  pitfalls  of  dualism.  It  also  provides  a  mathematical
language for  describing the phenomena of  psychology,  thus elevating a  hitherto
“soft”  science  into  something on par  with  physics.  Finally,  it  suggests  a  way of
bridging biological and psychological phenomena at various levels: allowing one to
start with a largely conceptual bridge at the start of a research program and then
progressively fill in the details as knowledge of physiological mechanisms grows.
Because its arrival solved so many of the problems facing psychology at the time, to
many  the  computer  metaphor  became  seen  as  necessary  to  progress  and  its
critiques as attempts to undermine science (Still and Costall, 1991).

Another reason the computer metaphor was so valuable is that it outlined a
research strategy for subdividing behavior and brain mechanisms. Importantly, if
we define some behavioral task as an input-output mapping, then as long as we can
measure the input and output, we can infer the intervening computation through
various methods such as the “system identification” techniques of engineering. If
that  inference  proves  challenging  for  some  difficult  problem,  information
processing offers a strategy for subdividing that problem into smaller, presumably
more manageable ones. In particular, if one suggests a hypothesis on how the large
problem is  composed of  two steps  that  involve  constructing  some intermediate
representation,  then  one  has  turned  the  large  input-output  problem  into  two



smaller problems, one that produces the intermediate representation as its output
and a second that  then uses it  as  its  input.  Most  importantly,  one now has  an
explicit  and  testable  prediction of  what  kinds  of  intermediate  representations
should be found in the brain through neural recording, functional imaging, or some
other empirical technique.

e.g.,  it  seems impossible  to explain all  behavior with a  single mechanistic
theory that captures everything from perceptual phenomena to emotional states
and the details of motor control. However, we can apply a strategy of “functional
decomposition”  to  subdivide  behavior  into  “perceptual”  mechanisms,  which  use
sensory  information  to  build  an  internal  representation  of  the  external  world,
“cognitive”  mechanisms,  which  use  that  representation  to  build  knowledge  and
make  decisions,  and  “action”  mechanisms,  which  implement  decisions  through
muscular commands (Fig.  5). Each of these is still a daunting problem, but they
too  can  be  subdivided  into  subproblems.  e.g.,  visual  perception  could  involve
distinct mechanisms to separate figure from ground, detect specific behaviorally
relevant  features,  bind  them  into  labeled  objects,  and  other  specialized
computational modules. Likewise, cognition could include distinct mechanisms for
memory storage and retrieval, logical inference processes, and decision-making.

Fig. 5. Sketch of the standard conceptual taxonomy in cognitive science /
psychology. Reproduced with permission from Cisek (2019).

In summary, the computational metaphor can be formulated at many levels.
At the highest and most general level, it is often tacitly assumed that “information
processing” is just what the brain does. e.g., Decharms and Zador (2000) write that
“The principle function of the central nervous system is to represent and transform
information and thereby mediate appropriate decisions and behaviors”  (p.  613).
The  basic  assumption  that  the  brain’s  job  is  to  process  representations  now
pervades neuroscience, as evidenced in the introduction of the major textbook in
the field: “The task for the years ahead is to produce a study of mental processes,
grounded firmly in empirical neural science, yet still fully concerned with problems
of how neural representations and states of  mind are generated”  (Kandel et al.,
2013, p. 4). Indeed, many have taken the attitude that it is a waste of time to argue



whether the brain is doing computation and better to just get on with the task at
hand—determining what that computation is and how it is implemented. So if that
is true, then why do people continue to write articles such as this one?

3.2. What are some of the limitations of the computer metaphor?

One challenge to even the most general variants of the computer metaphor comes
from  the  growing  body  of  knowledge  in  neuroscience.  While  it  is  possible  to
“decode” some relevant behavioral variable from some neural activity pattern in the
brain, that activity is so strongly influenced by other variables (including aspects of
behavioral context) that the decoding only works in completely unnatural situations
and only if one already knows all other relevant variables  (Brette, 2019). In other
words, the finding that some neural activity covaries with some variable we have
defined to describe the external world is trivial—this has to happen in any system
that is dynamically coupled with the world. But it does not imply that the functional
role of that neural activity is to encode information about that variable in the same
way  we  have  defined  it.  Your  heart  rate  covaries  with  running  speed,  but  the
functional role of the heart is not to encode speed.

Furthermore, the distribution of neural activity across brain circuits does not
respect the classical theoretical categories of computational functions (Figure 5).
e.g.,  while  introductory  textbooks  often  describe  certain  parts  of  the  brain  as
“sensory”, or “cognitive”, or “attention” regions, in almost all cases further research
shows these  descriptions  to  be  superficial  (Anderson,  2014;  Cisek  and Kalaska,
2010; Lindquist and Barrett, 2012). e.g., neural responses to visual stimuli can be
found in putatively “motor” regions such as premotor and motor cortex in as little
as 50 milliseconds, much earlier than in parts of  the brain implicated in visual
recognition (Ledberg et al., 2007; Schmolesky et al., 1998). And yet, during natural
behavior the entire cerebral cortex is dominated by motor-related activity (Musall
et al., 2019). The visual system famously diverges into a dorsal stream sensitive
to spatial locations and a ventral stream sensitive to object identity (Ungerleider
and Mishkin,  1982) but  there’s  no  place  where  it  all  comes together  to  yield  a
unified internal model of the visual world. Variables related to decisions are found
almost everywhere researchers have looked for them, including not only the frontal
lobe  areas  traditionally  associated  with  cognition  (Padoa-Schioppa,  2011;
Rushworth et  al.,  2012),  but  also the parietal  cortex  (Platt  and Glimcher,  1999;
Roitman and Shadlen,  2002),  frontal  eye fields  (Schall,  2004),  premotor cortex
(Pastor-Bernier  and Cisek,  2011),  basal  ganglia  (Arimura et  al.,  2013;  Ding and
Gold,  2010),  and  even  the  primary  motor  cortex  (Thura  and  Cisek,  2014) and
superior colliculus (Basso and May, 2017), two structures just a few synapses away
from muscles.  Neural  activity  putatively  related  to  attention  has  been  observed
throughout the cortical and subcortical circuits implicated in sensory and motor
processes,  raising  doubt  on  whether  attention  is  even  a  coherent  concept
(Anderson,  2011;  Hommel  et  al.,  2019).  In general,  analyses  of  brain activation
patterns  in  terms  of  cognitive  concepts  such  as  working  memory,  semantic
judgements, or response inhibition, regularly show a high degree of overlap and



distribution (Anderson, 2014). In short, the categories of concepts we inherit from
psychology simply do not fit the brain  (Buzsáki, 2019; Cisek and Kalaska, 2010;
Lindquist and Barrett, 2012).

Given  that  the  assumption  of  the  virtual  machine  led  concepts  such  as
attention, decision-making, working memory, etc., to be deliberately developed in
isolation from neurobiological data, it should not be surprising that they do not fit
with that data. Furthermore, these concepts were developed almost exclusively to
explain higher human thought, which is clearly not the totality of brain function.
Even if such a virtual machine metaphor did apply to explaining human thought,
why would we expect its concepts to apply to animal groups from which our lineage
diverged millions of years before humans existed? Expecting that concepts useful
for  explaining  human thinking  should  be  the  appropriate  pieces  for  explaining
animal  brains  is  tantamount  to  a  kind  of  bizarre  “inverted  phylogeny,”  as  if
evolutionary innovations can trickle backwards through time. Obviously, that idea
needs to be thoroughly abandoned.

But  then what  is left?  On the  one  hand,  one  could  retain  the  strategy of
explaining human thought by reference to the computer metaphor and concepts
such  as  working  memory,  encoding  and  decoding  of  memories,  and  serial
processing of perception-cognition-action, but restrict it just to the human brain.
After  all,  the  human  brain  is  capable  of  amazing  feats  of  learning,  with  each
generation adapting to entirely novel domains of interaction, from the written word
to  smartphones.  One  could  therefore  take  the  position  that  the  computational
organization of  the  human brain  is  entirely  a  product  of  learning,  a  “software”
solution that has little to do with the underlying biological “hardware.” However,
taking that attitude would imply abandoning data from nonhuman animal studies
and  discarding  all  of  the  insights  it  offers.  It  would  also  imply  ignoring  the
similarities  between the apparent  functional  organization of  human and animal
brains,  and retreating one’s thinking to just  the places where they differ.  Zador
(2019) makes  a  strong  case  for  why  this  would  be  a  serious  mistake.  If  the
functional organization of the brain was entirely a product of learning, then why,
given  their  dramatically  different  lifestyles,  should  human  brains  and  monkey
brains exhibit such similar activation patterns when they perform similar tasks?

All of these questions lead to a larger one: What if the basic metaphor of the
brain as a computer, whether like an explicit symbolic program or a mapping that
transforms inputs to outputs, is simply wrong? What would be the alternative?

3.3. What metaphor should replace the computer metaphor?

A  car  is  a  physical  system  that  processes  energy.  In  the  case  of  an  internal
combustion  engine,  the  source  energy  is  chemical  and  it  is  turned  into  kinetic
energy via a series of small controlled explosions that drive a piston attached to the
drive shaft. In the case of an electric motor, the source energy is electrical, and it is
turned into kinetic energy using magnetic fields. Regardless of the type of motor,
the  kinetic  energy  from  the  drive  shaft  undergoes  a  series  of  coordinate



transformations that turn rotation into translation of the vehicle. Would anyone
argue that this description is false? Cars do, in fact, process energy.

However, does energy processing provide a description of cars that leads one
to a good understanding of cars? Without going beyond the metaphor of energy
processing, how would one explain such things as windshield wipers? How would
one understand the difference between cars and other systems that also process
energy, such as chloroplasts or nuclear power plants? To understand cars, it is not
enough to merely keep repeating the fact that they process energy, but to go beyond
that to observe that the purpose of cars is to transport people from place to place. In
other words,  just  because a metaphorical  description may not be false does not
imply that  it  is  useful  as  the foundation for  understanding.  Cars  do,  of  course,
process energy, but that is just a means toward a larger purpose–to move people
from place to place.

Likewise,  brains  do  indeed  process  information,  but  that  is  just  a  means
toward a larger purpose—to control behavior (Ashby, 1952; Cisek, 1999; Maturana
and  Varela,  1980;  Powers,  1973).  In  other  words,  brains  are  not  simply  input-
output devices, like computers, which take sensory input and produce the proper
motor  output.  Instead,  they  are  more  correctly  described  as  control  systems
whose task is to produce motor output that results in the proper input.

Importantly,  in  the  first  case  (input-to-output)  the  notion  of  what  is  the
proper  output  is  ill-posed.  Usually,  what  is  considered  “proper”  is  up  to  the
designer of the system–e.g., for a machine vision system the proper output is the
correct labeling of objects in the image, based on the rules implicit in the training
set. Consequently, the purpose is external to the system, imposed by the goals of
the programmer. In contrast, for a behavioral control system the notion of what is
the  proper  input  is  trivial.  Input  that  specifies  being  in  a  state  that  leads  to
continued functioning (e.g. fed, warm, and safe) is desirable, whereas input that
signals a state of disfunction (e.g. proximity to a predator) is undesirable. The task
of behavior is to produce actions that change the input toward one that specifies a
desirable state.

Adaptive behavioral  control  is  possible  only  because  certain  contingencies
between output and input are inherent in the environment. e.g., consuming certain
kinds of items improves one’s nutrient state. Orienting away from a predator and
then  running  tends  to  succeed  in  escaping  it.  Because  these  output-input
contingencies are consistent and discoverable, they can be exploited to meet the
organism’s  needs by establishing  the  complementary  input-output  policy,  either
through evolution or learning. Thus, the task of behavioral control is not simply to
respond to the environment, or to build knowledge about it, but to complement the
dynamics inherent  in  the environment in  such a  way that  the whole organism-
environment  system  tends  to  move  toward  desirable  states  and  away  from
undesirable ones. This is by no means a novel proposal. The idea that the brain is a
control  system  has  been  repeatedly  introduced  and  re-introduced  for  over  a



hundred  years  of  philosophy,  from  John  Dewey  in  the  19 th Century  to  George
Herbert Mead, Maurice Merleau-Ponty, and Andy Clark since then. It was a central
tenet of models proposed by engineers like Norbert Wiener, W. Ross Ashby, and
Rodney Brooks, psychologists like Jean Piaget, James Gibson, and William Powers,
and  neuroscientists  like  Valentino  Braitenberg,  Karl  Friston,  and  Lisa  Feldman
Barrett.  In  particular,  Friston  and  Barrett  both  emphasize  the  importance  of
predictive control, whereby the system does not simply wait for events to perturb it
away from desirable states, but continuously anticipates and acts pre-emptively to
prevent such perturbations whenever possible (Friston, 2010; Katsumi et al., 2021).

Of course, one could say that a control system is just a special  case of an
input-output system, one in which the input depends on the output. Indeed that is
true. It’s a special case, and therefore it offers a more precise and useful description
of what a brain is doing. It presents a smaller search space of potential theories,
better constraining both scientific and engineering research goals. Just like energy
processing  is  an  incomplete  and  underspecified  description  of  what  cars  do,
mapping inputs to outputs is an incomplete and underspecified description of the
function of brains. We can do better.

To summarize,  I  began this  article  by  starting  with the  explicit  computer
metaphor for the brain and stepped back from some of its assumptions toward the
more general idea of the brain as an input-output system. But then, that description
is  too  general  and  not  sufficiently  constraining  to  guide  further  research.
Consequently,  we need to  add a bit  more  precision—what  kind of  input-output
system? The answer, as has been proposed for many decades, is that the brain is a
control system. Its overall role is to maintain the organism in a desirable state and
away  from  undesirable  states,  and  it  accomplishes  that  role  by  establishing
sensorimotor  control  policies  that  complement  the  motor-sensory  contingencies
inherent in the world. I don’t think that anyone would disagree with this claim, or
find it controversial. Much more controversial is my second claim: that accepting
the first claim changes everything.

3.4.  What  empirical  findings  support  your  preferred  alternative
metaphor?

One of the first implications of taking control systems as a metaphor for the brain is
that it leads to a different way of breaking down the large problem of behavior into
smaller  sub-problems.  To  characterize  a  control  system,  one must  consider  the
entire causal loop from input to output and around again, without breaking it down
into hypothetical serial stages. Given the complexity of the nervous system, with all
the  sophistication of  mechanisms along  the  way,  from sensors  to  muscles,  this
might  seem  like  a  huge  and  unwise  mistake.  And  indeed,  in  many  cases,  the
problem is daunting. However, in many cases explaining behavior as a whole is
actually much simpler than explaining any of its putative serial stages.

Consider  the  example  of  the  “outfielder  problem:”  How  does  a  baseball
outfielder catch a fly ball? One approach to the problem is to break it down into



subproblems. First,  the sensory information must be used to detect the ball and
calculate its trajectory through space. This requires combining the retinal position
of the ball with information about the position of the eye in the head and the head
on the body, as well as with depth cues such as vergence, to calculate the position of
the ball with respect to the body. Next, that position must be sampled for a period
of time to determine the ball’s trajectory. Next, the trajectory must be extrapolated
into the future using knowledge of the parabolic flight of objects moving in gravity,
as well as estimates of wind direction and speed, to predict where the ball will land.
Finally, a motor plan needs to be produced and executed to bring the player to that
location.  All  of  these  steps  are  subject  to  noise  and  uncertainty,  but  these  can
presumably be dealt with using Bayesian signal integration or other sophisticated
techniques.  Such  an  approach  is  plausible,  but  it  requires  highly  accurate
measurement  of  multiple  variables  that  are  difficult  to  estimate in  a  real-world
scenario. However, there exists a much simpler alternative strategy. The alternative
is to keep your eye on the ball and move forward if your gaze angle (head+eye)
shifts downward, move backward if  your gaze angle shifts upward, all  the while
matching the ball’s lateral position. As long as you keep your eye on the ball and
move to keep your gaze steady, then the ball will fall into a glove brought in front of
your face. In fact, that’s the strategy used by real players, as shown through studies
that perturb vision with virtual reality (Fink et al., 2009). In summary, solving the
whole control problem is far easier than solving any of the putative subproblems
into which one might be tempted to subdivide it.

There is  another good reason to expect  that the mechanisms of  biological
control do not break down into a series of computational stages, and that comes
from  evolution.  Contrary  to  how  it’s  sometimes  treated  in  popular  science,
evolution is not nature’s method for finding solutions to problems posed by the
world.  It’s  not  like  engineering,  where  one  first  defines  a  problem  and  then
proposes and tests candidate solutions. Evolution does not even identify problems
to be solved. Instead, it merely produces variations of an ancestral organism and
then, through natural selection, favors those that happen to accomplish something
that used to be a problem. Furthermore, in order for a variation to even enter the
arena of natural selection, it must first be possible as a modification of the ancestral
system.  This  is  a  massive  source  of  constraints  that  makes  most  variations
completely  unavailable.  The  reason  is  that  the  genome  does  not  describe  a
“blueprint”  of  the  body  or  “connectome”  of  the  brain,  but  instead  specifies  a
“recipe”  for  producing  the  brain  and  body  through  a  long  and  convoluted
developmental  process.  Like  any  recipe,  that  process  consists  of  a  sequence  of
stages, each of which relies on previous stages and sets up conditions for later ones.
Consequently, no mutation, no matter how advantageous, can produce a whole new
“module,” complete with input and output connections and a full developmental
program,  which  implements  some  optimal  solution  to  some  externally  defined
problem. Instead, evolution can only elongate or shorten developmental sequences,
duplicate systems and then differentially specialize them, and gradually shift tissue



growth,  cell  migration,  and  axonal  projection  patterns.  All  of  this  dramatically
limits the viable organisms that can enter into natural selection, and limits how far
two  species  can  diverge  away  from  their  common  ancestor.  Finally,  natural
selection has no way of evaluating the efficiency of any individual parts of these
systems, but only the survival of the entire organism. In short, evolution does not
identify  computational  subproblems and can neither  produce nor  evaluate  their
potential solutions. As Hendriks-Jansen  (1996) put it, “functional decomposition
and natural selection do not mix.”

So what  is  the  result?  Must  we  give  up on the  idea  of  subdividing  brain
functions into subproblems and instead try to solve all of behavior all at once? That
seems unrealistic, and indeed it is not necessary. A subdivision of neural systems is
still  possible, but it need not be guided by definitions of putative computational
problems that we invent or inherit from psychological traditions. Instead, it can be
guided  by  considering  the  process  that  built  the  brain–again,  by  considering
evolution.  The  very  same  developmental  constraints  that  so  strongly  limit  the
possibilities for arbitrary modifications to the brain’s functional architecture also
make that architecture easier to infer. In particular, if we know the phylogenetic
relationships between different species of animals and compare what is similar and
what is different in their brains, then we can make plausible hypotheses on the
evolutionary stages along a given lineage of interest, and reconstruct the sequence
of how control systems elongated, differentiated, and specialized along that lineage.
I have referred to this approach as “phylogenetic refinement” (Cisek, 2019), but it is
really nothing more than an application of the comparative method of biology to
theoretical neuroscience.

Following an evolutionary approach, one begins with considering the basic
functions  of  all  living  things,  metabolism  and  replication,  of  which  the  former
involves closed-loop control  (Cannon, 1939). Control within the organism is what
we call “physiology,” while control that extends through the environment is what
we call “behavior” (Ashby, 1952; Cisek, 1999; Maturana and Varela, 1980; Powers,
1973). Because behavior in a world of growing complexity is an endlessly expanding
challenge, the history of evolution of mobile animals is a history of extending that
control  further  and  further  into  the  world.  Guided  by  the  growing  body  of
comparative data on neural evolution, I have recently proposed how that history of
control  unfolded  along  the  lineage  from  the  earliest  multicellular  animals  to
primates (Cisek, 2022, 2019), drawing upon similar approaches followed by others
(Feinberg and Mallatt, 2016; LeDoux, 2020; Murray et al., 2017; Passingham and
Wise, 2012; Striedter and Northcutt, 2019).

To summarize, early nervous systems included a high-level controller using
hormonal signaling, which in our lineage evolved into the hypothalamus, and a low-
level controller using synaptic transmission, which evolved into the midbrain and
spinal  cord  (Arendt  et  al.,  2016).  As  our  ancestors  became more  mobile,  these
systems differentiated further, with the hypothalamus sprouting a telencephalon
responsible  for  foraging  control,  while  the  midbrain  controlled  the  details  of



visually guided approach and avoidance (Saitoh et al., 2007). With the expanding
behavioral repertoire of land animals, sensorimotor control gradually shifted to the
telencephalon, in particular the “pallium,” which gives rise to the cerebral cortex,
hippocampus, and many other key structures (Puelles et al., 2013). When mammals
retreated into nocturnality during the age of dinosaurs, they regressed midbrain
visuomotor control but enhanced cortical olfaction, audition, and somatosensation,
and then upon returning to diurnal life as primates re-enlarged their visual systems
but now primarily in the cerebral cortex (Kaas et al., 2022). Throughout this long
sequence, however, the basic organization was not one of serial processing stages
but parallel and nested control loops, competing against each other for execution
through  increasingly  complex  modulation  and  mutual  inhibition  (Cisek,  2022).
Even the primate brain, I would argue, can be understood as such (Cisek, 2007).

One result of following such an evolutionary approach is that it leads to a
conceptual  taxonomy of  functions  (Fig.  6)  that  differs  in  many ways  from the
classical conceptual taxonomy of psychology. Its elements are not mental faculties
such as attention or decision-making, but a hierarchy of control problems. I would
claim  that  this  taxonomy  fits  much  more  naturally  with  the  growing  body  of
neuroscientific data, mapping to specific circuits and regions as noted in  Fig. 6.
e.g., the divergence of the visual system described above makes perfect sense if the
dorsal  stream  is  actually  involved  in  guiding  movements  (Goodale  and  Milner,
1992), specifying multiple potential actions (Cisek and Kalaska, 2005; McPeek and
Keller,  2002),  while  the  ventral  stream  collects  information  for  biasing  a
competition  between  those  potential  actions  (Cisek,  2007;  Cisek  and  Kalaska,
2010).  This  also  explains  the  widespread  influence  of  “decision-variables”
(Hernández et al., 2010; Pastor-Bernier and Cisek, 2011; Platt and Glimcher, 1999;
Roitman and Shadlen, 2002;  Romo et  al.,  2002;  Thura et  al.,  2016;  Thura and
Cisek, 2014), and “attentional” effects (Boynton, 2005; Hommel et al., 2019; Treue,
2001), as well as the parallel processing observed during even the simplest tasks
(Ledberg et al., 2007). A more thorough discussion of relevant neuroscientific data
is beyond the scope of the present paper, but I refer the reader to several reviews
(Anderson, 2014; Cisek and Kalaska, 2010; Lindquist and Barrett, 2012). In short,
if we back off the assumption that the brain must be understood in terms of a series
of explicitly defined input-output problems and instead see it as a set of interacting
control loops, then all that confusing data begins to make a lot more sense.



Fig.  6. An alternative conceptual taxonomy based on evolution.  Here,
each  functional  category  is  proposed  to  be  a  specialization  of  the  one
above it,  and to correspond to a biological structure that emerged as a
specialization within an ancestral structure. Reproduced with permission
from Cisek (2019). AIP: anterior intraparietal area; CMA: cingulate motor
area; FEF: frontal eye fields; LIP: lateral intraparietal area; PMd: dorsal
premotor  cortex;  PMv:  ventral  premotor  cortex;  SMA:  supplemental
motor area; VIP: ventral intraparietal area.

In summary, in trying to explain the brain we are not obliged to do so in
terms of the computer metaphor, input-output mappings, or general “processing”
of  “information.”  These  concepts  are  not  false  per  se,  but  they  distract  us  into
fruitless and irrelevant attempts to “decode” the brain or reverse engineer putative
functional units that only exist in our imagination. Instead, we can look at the brain
in an alternative way–as a control system. The concept of a control system is the
basic  metaphor  in  all  other  domains  of  biological  science,  from  physiology  to
animal behavior, and it provides a more natural framework for interpreting neural
data.  In  short,  the  computer  metaphor  was  useful  many  decades  ago  to  help
psychology get away from dualism, but now it is time to move on.



4. Dissipative structures as an alternative to the machine metaphor of
the mind and brain—Benjamin De Bari6 and James Dixon7

The computer metaphor derives from two parallel  histories of  thought,  the first
questioning the operation and activity of minds and brains and the second aiming
at finding a minimal model of the mind and brain. These histories informed  two
separate  hypotheses  of  mind,  epistemic  constructivism,  and  the  mechanistic
hypothesis;  we  focus  on  the  latter.  First,  we  briefly  review  how  the  brain  has
historically been discussed with machine metaphors and identify five tenets that
define a machine. We review findings in neuroscience that motivate that the brain
demonstrates  exceptions to these  tenets  and thus ought  not  to  be considered a
machine.  We  offer  that  an  alternative  classification  may  be  found  in  far-from-
equilibrium self-organizing systems known as dissipative structures. We review the
properties of these systems and suggest that the brain is more like a dissipative
structure  than  a  machine.  If  brains  do  not  fit  the  mechanistic  hypothesis
underwriting the computer metaphor, then the cognitive sciences may need to seek
alternative metaphors based on the assumption that minds and brains are  some
other kind of natural systems, namely dissipative structures.

The brain being indeed a machine, we must not hope to find its artifice
through other ways than those which are used to find the artifice  of
other machines. It thus remains to do what we would do for any other
machine; I mean to dismantle it piece by piece and to consider what
these can do separately and together.

— Nicolaus Steno (Bresadola, 2015)

4.1. What do we understand by the computer metaphor of the mind and
brain?

While the technology of computational machines is a relatively recent development
in human history, the computational metaphor of the mind has roots dating back to
antiquity.  Two parallel  histories  of  thought  have precipitated our contemporary
perspectives, each corresponding to a broad question about the mind and brain.
The first question concerns the operation of minds and brains; what sorts of things
do they do? What kinds of processes support intelligent action, guaranteeing stable
knowledge, certainty, and understanding in the face of inconstant and imperfect
experience? The second question concerns the proper classification of mind and
brain  as  natural  systems;  what  kind  of  thing is  a  mind  or  brain?  The  modern
computer metaphor provides answers to both of these questions. Let us briefly tour
some landmark ideas in the history of cognitive science that have paved the way.

At least as far back as antiquity, thinkers were engaged with the problem of
making epistemic contact: how can an organism (primarily a human) know about

6 Correspondence: .benjamin.de_bari@uconn.edu (B. De Bari).
7 Correspondence: james.dixon@uconn.edu (J. Dixon).
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things in the world, and how can the organism use that knowledge? It was taken to
be the case that our immediate contact with the world is impoverished relative to
the true state of  affairs in the world.  Plato conceived of this limitation with his
“Allegory of the Cave,” which likened the mind to a person chained within a cave,
facing the back wall, locked away from the world. Events, beings, and objects in the
world cast shadows on the cave wall, and these shadows are the only contact with
reality that the mind has. Thus, when an organism contacts the world, it  is  only
sensitive  to  shadows cast  by  objects  and  events,  insufficient  information  to
meaningfully guide behavior. If an organism is to survive and operate effectively in
the  world,  and  if  the  immediate  source  of  information  is  insufficient  to  guide
behavior, then the organism must  add something to that stimulation (Lombardo,
2017). This assumption about the fundamental inferential function of perception-
action-cognition (PAC)  is the basis of the  information processing perspective on
the mind.

A  variety  of  theories  of  how  the  PAC  system  adds  to  the  impoverished
stimulation  have  been  proposed,  from  Plato’s  recollection  of  ideal  forms  to
Malebranche’s divine intervention, to the Gestaltists’  nativist organizational laws
(Turvey,  2018).  But  perhaps  the  most  dominant  approach  originated  with
Helmholtz’s  theory  of  unconscious  inferences  (Pastore,  1971).  To  produce
meaningful knowledge of the world, one must extrapolate from the limited sensory
information,  making  inferences  (specifically  rational,  logical,  computable  ones)
about the true properties of the world: given a particular sense datum, what thing-
in-the-world is likely to have produced that sensory information? But for such a
process to be effective, there must be constraints on the type of inferences we make;
rules for linking sensory stimulation to perceptual states related to things-in-the-
world.  Here  we  can  see  a  direct  connection  to  computational  processes:
Information in one form (sense-data—symbols) are processed by a system of rules
(inferential processes—logic operations) and transformed into a new system-state
(perception—encoded information) that represents the thing-in-the-world. Herein
we refer to this enterprise of understanding the mind as a system for enriching
stimulation and building a model of the world as epistemic constructivism.

This  inference-machine  metaphor  has  been extended into  a  more  general
computational approach to the mind; it has propagated into nearly every aspect of
contemporary psychology. The received wisdom is that the mind is in the business
of manufacturing representations of the world, building the world inside the brain
and that transformations of these representations comprise cognition. Moreover,
the process of representation making and transforming is manifest in an implicit
ratiocination,  a  process  of  applying  logical  rules  and  encoding  relationships  to
transform  sensation  to  perception,  ambiguous  information  to  knowledge,
physiological states into emotions, and so forth. Or as Hobbes famously offered, “by
ratiocination I mean computation”  (Hobbes, 1656, as cited in Haugeland, 1985).
Cognitive  science  has  built  on  Turing’s  insights  that  such  algorithmic
transformations  of  symbols  can  be  mechanically  implemented,  facilitating  the



perspective of mind as a computing machine  (Turing, 1950b). As computational
technology  has  developed,  so  too  has  the  theory  of  this  process,  from  Physical
Symbol  Systems and  mental  scripts  to  connectionist  networks,  to  Bayesian
inferences. Nevertheless, the underlying architecture of the argument has remained
largely unchanged: the mind and brain are a special-purpose system for generating
and manipulating internal representations of the world that can be used to guide
behavior.

The discussion above  centers  on what  the  mind does  or  how it  operates.
However,  the  computer  metaphor  is  best  understood with  reference  to  another
implicit hypothesis about what a mind is; that is, to what class of natural systems
does the mind belong?  The prevailing answer has been that a mind, by virtue of
being a product of biological processes (i.e., the brain), is a special kind of machine.
In the history of cognitive science, Rene Descartes provides a common entry point
for  discussing  mechanical  theories  of  biology;  he  famously  carved  up  human
psychology into the animate incorporeal soul and the inanimate material body. The
human body, he offered, was fundamentally mechanical in nature. This perspective
was likely influenced in part  by the then contemporary inventions of  automata,
clockwork-style  machines  with  intricate  mechanical  components  that  mimicked
living  systems  (Leiber,  1991).  Later,  in  the  19th century  when  the  brain  was
increasingly  understood  to  participate  critically  in  PAC  processes,  it  too  was
conceived of with machine-metaphors. e.g., when the electrochemical transduction
of neurons was being investigated, analogies were drawn to the telegraph networks
of  the  time  (Lenoir,  1994).  In  the  20th century,  when  the  dynamic  nature  of
interneural communication and connection was identified, analogies were drawn to
the switchboards in telephone networks (Bergson, 1950; Kirkland, 2002).

Oddly enough,  however,  the identification of  neural  processes with digital
computational ones did not arise in quite the same order; rather, conceptions (if
impoverished  ones)  of  the  activity  of  neurons  informed  the  design  of  digital
computers.  A  famous  development  in  the  history  of  cognitive  science  was
McCollough and Pitts’  formulation of  a model of  the brain where neurons were
arrays  of  signal  transduction  systems  that  performed  formal  logical  operations
dependent  on  how  they  were  connected  (McCulloch  and  Pitts,  1943).  The  pair
derived  this  model  from  their  understanding  of  the  organization  of  nervous
systems. The model then went on to revolutionize computational theory, inspiring
von  Neumann and  thus  the  digital  computing  legacy  we  have  inherited  (Cobb,
2020). Neuroscientists at the time of McCullough and Pitts’ writing however noted
that  the  model  of  nervous  activity  they  schematized  was  in  fact  substantially
different from how the nervous system is actually organized (Cobb, 2020; Piccinini,
2004). Subsequent attempts to identify logic gates in nervous tissue have had some
success, while also demonstrating that their operation is different from McCullough
and Pitts’ formulations (Dobosiewicz et al., 2019). Nevertheless, the impoverished
model of neural organization and activity was incorporated into cognitive science



and the notion that  the brain is  a  complex logical  computing machine remains
foundational in current conceptions of the brain.

These historical developments naturally led to the supposition that the mind
and brain are best understood as kinds of  machines.  This idea,  the mechanistic
hypothesis, and the hypothesis of epistemic constructivism, jointly underwrite the
computer metaphor: The mind and brain are complex machines whose operation
consists  of  encoding  and  transforming  system-states  that  function  as
representations. A wealth of discussion has been devoted to questioning the latter
hypothesis,  primarily  derived  from  the  philosophy  of  American  Pragmatism
stemming  from  William  James’s  work  (Chemero,  2009),  and  several  camps  of
thought have been established in opposition. These include Ecological Psychology,
as  formulated by James Gibson and elaborated on by Turvey,  Shaw,  and many
others (Gibson, 1979; Shaw et al., 1982; Turvey, 2018); Interactivism, as developed
by Bickhard  (Bickhard, 2009); Haken’s Synergetics  (Haken, 1981); the dynamical
systems stance  such as that  posed by van Gelder  (van Gelder,  1998);  and even
approaches to robotics such as Brooks’s incremental  intelligence  (Brooks,  1991).
Critical  distinctions  notwithstanding,  all  these  theories  are  alternatives  to  the
epistemic  constructivist  perspective  on  the  mental  operation.  Because  such
responses have been so thoroughly discussed elsewhere, we do not aim to evaluate
this assumption of the computer metaphor and turn our attention instead to the
mechanistic hypothesis.

In  short,  the  discussion  revolves  around  whether  organisms  and,
consequently, brains and minds are best described as machines or as systems of a
different  kind.  Borrowing ideas from Robert  Rosen  (Rosen,  1991),  we offer  two
possible  perspectives  on  natural  systems;  organisms are  either  special  kinds  of
machines  or  they are  ontologically  distinct  (Fig.  7).  While  Rosen’s  insights
motivate this latter perspective, it leaves organisms oddly disconnected from the
rest of the physical world in terms of scientific theory. In previous work (Chung et
al.,  2022;  De  Bari  et  al.,  2020;  Kondepudi  et  al.,  2017),  we  have  expanded on
Rosen’s  proposition  by  identifying  a  broader  class  of  natural  systems  that
encompasses  organisms  and  their  subsystems  (e.g.,  the  mind  and  brain),  but
excludes  machines.  This  class,  called  dissipative  structures,  has  quite  different
properties from the class of systems to which machines belong, called equilibrium
structures. In the subsequent section, we outline the criteria necessary to consider a
system as a machine and evaluate whether brains fit those criteria.



Fig.  7. Two  perspectives  on  the  ontology  of  natural  systems  and
machines.  Left: Organisms,  and  consequently  brains  and  minds,  are
special kinds of machines.  Right: Machines and organisms are distinct
classes of physical  systems, and consequently,  brain and mind are not
machines. We develop a modified formulation of the latter perspective.

4.2. What are some of the limitations of the computer metaphor?

We have suggested that  the computer metaphor  derives from the  hypothesis  of
epistemic  constructivism  and  the  mechanistic  hypothesis  of  the  mind-brain
organization  and  function.  This  latter  hypothesis  leads  to  weaknesses  of  the
computer-metaphor  simply  because  organisms  are  not  machines.  This  is  not  a
trivial  distinction—it  is  not  just  that  brains  are  not  manufactured  or  made  of
aluminum and silicon—rather, assuming that biology is fundamentally mechanical
invokes properties that are inconsistent with biology. The mechanical hypothesis
incorporated  the  following tenets;  (i)  part-function  isometry,  (ii)  decomposable
parts, (iii) part-whole independence, (iv) equilibrium structures; and (v) externally
prescribed  function.  The  first  tenet,  part-function  isometry,  holds  that  every
identifiable part of a mechanical system has a specific function. The second tenet,
decomposable  parts,  holds  that  the  system  can  be  differentiated  into  neatly
separable parts, and via (i) those parts have distinct functions. Features (i) and (ii)
together constitute what Robert Rosen called fractionability, or the separability of
parts  with  localized  functions  (Rosen,  1991).  The  third  tenet,  part-whole
independence,  requires  that  the  function  of  a  given  element  in  the  system  is
independent of the organization and processes within the rest of the system. In
other words, function is intrinsic to an element or part by virtue of its structure, not
by virtue of its context, and so does not change dependent on where it is in the
system nor on what the system is being used for.  The fourth tenet, equilibrium
structures, holds that the mechanisms and their component parts are equilibrium
structures.  That  is,  they  are  stable  at  thermodynamic  equilibrium  and  their
dynamics are driven to minimize deviations from equilibrium. Below, we argue that



it  is  this  last  tenet  that  provides  the  license  for  all  the  others  and  sets  the
mechanical hypothesis off on the wrong foot entirely for explanations of biological
function. The fifth tenet refers to how machines are used by intelligent agents and
essentially  posits  that  machines  are  special  kinds  of  tools  whose  function  is
extrinsically derived from the intentions of an intelligent agent, rather than being
intrinsically determined by the organization of the system.

It  has  long  been  noted  that  living  organisms  fail  to  satisfy  the  above
mechanical  tenets.  Firstly,  organisms  are  not  fractionable  in  the  same  way
machines  are  (Kondepudi  et  al.,  2017;  Rosen,  1991;  Von  Bertalanffy  and
Sutherland,  1974).  While  we  may  draw  boundaries  to  define  physiological
structures, their functions are context sensitive and not entirely localized. Consider
Rosen’s distinction between the wings of a bird and those of an airplane  (Rosen,
1991).  Flight  requires  both  propulsion  and  lift,  functions  that  are  encapsulated
separately in the engine and airfoil (wing) of a plane respectively. However, a bird’s
wings are both engine and airfoil,  such that the functions of propulsion and lift
cannot be attributed to distinct anatomical components.

 We should expect that the brain is similarly non-fractionable; evidence for
this can be found in the debate over the localization of function within the brain. A
longstanding  result  in  neuroscience,  and  a  foundational  observation  in  the
localization debate, is the remarkably consistent loss of language comprehension in
individuals  suffering damage to the left  temporal  hemisphere known as Broca’s
area (Head, 2014; Luria, 2011). However, research with novel non-invasive imaging
techniques  has  explored  the  activity  of  Broca’s  area,  revealing  that  damage  to
Broca’s  area  alone  is  not  sufficient  to  produce  the  classic  aphasic  pathology,
pointing to a more distributed speech production system (Ardila et al., 2016). On
the assumption that semantic linguistic content might thus similarly be localized in
Wernicke’s area or elsewhere, researchers performed fMRI scans while participants
listened  to  two  hours  of  narrative  stories.  Responses  to  different  semantic
categories  of  words  (e.g.,  visual,  social,  emotional,  etc.)  were  widely  distributed
across the cortex,  revealing no localization  (Huth et  al.,  2016).  Further,  despite
well-established evidence of localization like that of Broca and Wernicke, there exist
individuals  with  normal  functional  capacities  who  lack  the  typical  associated
anatomical structure, such as those whose sense of smell is perfectly operational
despite missing their olfactory bulbs (Weiss et al., 2020). Structure and function do
not  appear  to  be intrinsically  linked in organisms nor  in the brain,  as  typically
assumed under the mechanical hypothesis.

Another empirical example of the proposed structure-function relation under
the mechanical hypothesis has been the notion of “wiring diagrams” of the brain,
especially those advocated by the Human Connectome Project (Seton-Rogers, 2013;
Sporns  et  al.,  2005).  These  “connectomes”  may  be  high-level  depictions  of  the
interaction  among  cortical  regions,  or  more  detailed  neural  level  mappings  of
connectivity. In either case, the essential idea is that we might lay the foundations
for  understanding function in the  brain  by rigorously  mapping the  connections



among cortical  elements.  Connectomes  have been mapped in  some non-human
organisms,  including  the  sea  slug  C.  elegans (White  et  al.,  1986),  the  learning
system in the fly  Drosophila (Takemura et al.,  2017), and even for the digestive
system of a crab Cancer borealis (Bargmann and Marder, 2013). Frustratingly, in
all such cases, a complete description of the structural connectivity of neurons does
not yield functional predictability of the network’s activity (Bargmann and Marder,
2013;  Cobb,  2020).  Further,  standard  functions  can  derive  from  different
structures,  as  distinct  networks  of  neurons  can  separately  produce  the  same
swimming behaviors in two species of nudibranch (Sakurai and Katz, 2017). While
such an approach may shed the stronger assumption of functional localization by
seeking to understand distributed networks, it implicitly retains the assumption of
structure-function isometry by seeking to explain the network’s function in terms of
connectivity.

The  functions  of  physiological  elements  (however  construed)  are  not
insulated  from  context  as  required  by  tenet  three,  part-whole  independence.
Outside of the brain e.g., muscular activity displays different functions for different
contexts. When one has their arm at the side of their body, activating the pectoralis
major will  adduct the arm, bringing it  towards the front of the body. However,
while the arm is raised perpendicular to the body, activating the pectoralis major
will  abduct the arm, lifting it away from the body (Turvey et al., 1982). The point
here is that the function of particular muscles (i.e., component parts) depends on
the  larger  context  of  body  position  (i.e.,  the  whole).  Such  context-conditioned
variability is widespread within anatomy, and we should expect that the brain is no
exception. e.g., the dynamics of a neuron are affected by volumetric interactions of
neurotransmitters  with neuromodulators  (Nusbaum et  al.,  2017),  as  well  as  the
individual  history  of  a  given  nerve  (Gina  et  al.,  1994).  Some  researchers  have
pointed  to  the  developmental  trajectories  of  the  brain  to  highlight  its  context-
sensitivity. Some neural systems exhibit redundant functions that support flexible
compensation under  varying contexts  (i.e.,  damage or loss function),  as  well  as
systemic  reorganization  of  networks  to  provide  different  functions  at  different
developmental periods (Johnson, 2017). In some cases, damage to localized cortical
regions  has  consequences  for  the  activity  of  distal  areas  (Carrera  and  Tononi,
2014),  pointing to the contextual  operation of  cortical  regions.  Further,  there is
evidence that the same brain-region may be recruited for varying tasks, suggesting
that function may be more directly related to the coordination dynamics of multiple
regions rather than individuated networks or structures (Bressler and Kelso, 2001;
Ding et al., 2000).

The  remarkable  plasticity  of  the  brain  should  be  considered  a  form  of
context-sensitivity, in that the activity and structure of physiological elements must
be reorganized due to perturbations.  The system must then be “sensitive” (in  a
general  sense)  to perturbations and respond in an appropriate way to maintain
functionality. Machines have limited flexibility to respond to perturbations because
they are equilibrium structures. No doubt clever engineers can design sophisticated



systems that do respond to mechanical breakage; a run-flat tire on a BMW is a
crude example of a redundancy accomplishing this.  However, we argue that the
type of stability associated with the proper function of a machine is categorically
distinct from that of an organism. The stability of machines depends on the parts
being  near  equilibrium.  While  of  course  most  machines  operate  outside  of
equilibrium, depending on energy flows to drive work within the system (e.g., the
gas in your car or the battery in your computer), these irreversible energy flows
destabilize the system and cause it to wear and breakdown8. When the energy flow
stops in a machine, it returns to an equilibrium state and maintains its structure.
Contrast this with organisms, whose structural stability  derives from the flow of
energy.  Further,  if  energy  flows  are  cut  off  for  an  organism,  structural  and
functional stability degrades. Recent advances in cellular biology provide radical
evidence that even the components of cells, typically assumed to be rigid building
blocks of biological systems, are actually in constant flux, with stability maintained
through continuous fluxes of matter and energy (Nicholson, 2019).

From  a  physics  perspective,  this  distinction  is  due  to  different  kinds  of
dynamical  stability;  machines  operate  on  near-equilibrium  or  “energy-well”
stability  (Bickhard, 2009), while organisms exhibit far-from-equilibrium stability.
The stability of organisms is more like that of a driven dynamical system which
settles on a dynamical mode. Notice that when an equilibrium system is perturbed,
it will “adapt” by returning to equilibrium, or a state of rest—not the operational
state of the system. When a far-from-equilibrium system is perturbed, it responds
by  returning  to  the  previous  self-organized  state,  or  by  assuming  a  new  self-
organized state (Nicolis, 1989). The restoration of function demonstrated by brains
is more like the return to a dynamical state in a non-equilibrium system than the
return  to  equilibrium of  a  mechanical  one.  The brain  appears  to  maintain  this
functional stability through at least two means, redundancies and plasticity.

Redundancies  are  effectively  duplicated  systems  that  participate  in  some
functions so that if  one is damaged,  the other can maintain function  (Johnson,
2017).  e.g.,  although  only  a  side-effect  of  a  more  traditional  lesion-based
localization of function study, Newsome and Pare  (1988) discovered that parallel
visual  networks  in  the  occipetal  lobe  appear  to  take  over  functions  lost  due to
lesion.  In  some  stroke  patients  suffering  damage  to  motor  networks  on  one
hemisphere, motor networks on the unaffected hemisphere demonstrate changes in
activity that appear to compensate for the functional losses during recovery (Bajaj
et  al.,  2016;  Liu  et  al.,  2015). Redundancies  in  brains  and  other  far-from-

8 One might  think  of  a  machine  as  “using”  energy  to  operate.  However,  it  is  more  accurate  to
describe a machine as a complex set of constraints on an energy flow. A car, e.g., does not “use”
energy to move; rather, the car is a sophisticated set of constraints on the conversion of chemical to
mechanical  energy.  We  as  intelligent  agents  “use”  the  machine  to  direct  energy  fluxes  in  a
functional way. An organism may similarly be cast as a system that constrains and directs energy
fluxes  but  note  that  the  constraints  (system organization)  emerge due to  the  non-equilibrium
fluxes.  Thus,  we  can  distinguish  machines  from  organisms  in  terms  of  equilibrium  or  non-
equilibrium constraints respectively.



equilibrium systems should be distinguished from those found in machines. In a
machine  a  redundancy  must  be  designed,  requiring  that  the  nature  of  the
breakdown must be anticipated so that an appropriate failsafe can take over. In
machines it is reasonable to expect that engineers could make such predictions, but
the dynamic nature of the biological world seems to forbid anticipating all (or even
enough of) the possible failures and appropriate solutions in advance. Further, a
mechanical redundancy typically serves only a failsafe function, and are essentially
“offline” or nonfunctional absent any perturbations. In the brain it appears that the
systems  that  function  as  redundancies  are  active  networks  prior  to  that
perturbation  and  are  either  adapting  their  function  or  being  incorporated  into
additional  processes,  rather  than  lying  dormant  and  being  brought  “online”  as
needed.

Plasticity is  the broader dynamic change in the structure and function of
nervous tissue (Fuchs and Flügge, 2014). In some animals, learned behaviors can
be disrupted temporarily if the relevant tissue is damaged but will be recovered if
allowed  the  time  for  other  neural  structures  to  modify  their  activity  and
compensate for the loss  (Otchy et al., 2015). e.g., plastic neural network changes
outside the occipital lobe support functional recovery from optic neuritis (Werring
et al., 2000). Such observations suggest that functional stability in brains does not
depend only on structural stability, as redundant networks may take over function
or plastic changes to the structure may restore function. This kind of flexibility is
intrinsic  to  the  physics  of  far-from-equilibrium  systems,  but  requires  special
handling from the perspective of equilibrium structures or machines. Specifically,
from  the  perspective  of  equilibrium  structures,  the  machine  would  need  to  be
prepared in advance to respond appropriately to a particular disruption. 

The final distinction is between the origin of functions within machines and
organisms (or biological systems more broadly, inclusive of the brain). While we
usually think of machines as having a purpose—most are devised with  particular
end in mind—that purpose is not required to explain how it operates. Rather, its
activity can be explained simply by the causal chain of local interactions among
constituent  elements.  Further,  that  purpose  is  always  externally  derived.  A
machine’s purpose is not intrinsic to it but derives from how it is used by an agent.
An object is a hammer when used to pound nails, and a paperweight when it keeps
papers on a table. A computer is a sophisticated encoding device for representing
vast sums of information when used by an intelligent agent as such, and merely a
warm perch for a cat. We hold that the function of organs or activities alternatively
derives  from  the  organization  of  the  system  embedded  in  the  environment.
Function is  not  prescribed prior  to  development (as it  is  in  the blueprints  of  a
machine)  but  emerges  through  self-organizing  dissipative  processes  interacting
with environmental  context  (Bickhard,  2009;  Christensen and Bickhard,  2002).
The  structure  and  behaviors  of  organisms  derive  not  from  pre-ordained
instructions  but  from morphogenic  dynamic  processes  that  are  sensitive  to  the



developmental context (Adolph and Robinson, 2013; Edelman, 1992; Lewis, 2000;
Thelen and Gunnar, 1993).

The discussion has argued that machines and organisms are fundamentally
different types of physical systems and warrant different explanatory frameworks.
We  suggest  that the mechanical hypothesis is  deeply ingrained in contemporary
approaches to brain science, especially in the quests for functional localization and
wiring  diagrams.  We  contrasted  near-  and  far-from-equilibrium  stabilities  to
suggest that the brain’s operation is best understood in terms of the latter. In the
following section, we  argue that the brain, and biology more generally, should be
recognized as members of the class of dissipative structures rather than machines.
Because  dissipative  structures  have  a  different  set  of  intrinsic  properties  than
machines, they offer a means of explaining many biological properties in physical
terms.

4.3. What metaphor should replace the computer metaphor?

In line with the arguments above, we seek a framework for understanding the mind
and  brain  that  does  not  assume  a  mechanical  basis  of  biological  (and  mental)
function.  The class  of  natural  systems encompassing  organisms should be  non-
fractionable, demonstrate non-equilibrium dynamical stability, and have intrinsic
functions. We propose that the proper place for mind and brain is within the class
of  dissipative  structures  (Fig.  8).  Dissipative  structures  are  spatio-temporal
organizations that emerge in systems that are held far from equilibrium (e.g., via
the  continual  input  of  energy  or  matter).  Canonical  examples  include  Benard
convections in fluids subject to thermal gradients or the striking patterns emergent
in chemical oscillators such as the Belousov-Zhabotinsky reaction (Nicolis, 1989).
Organisms are themselves dissipative structures—self-organized systems driven by
flows of energy and matter—and there has been a rich history of applying the theory
of dissipative structures to biological phenomena, especially pattern-formation and
rhythmic processes (Goldbeter, 2018, 2017; Kugler et al., 1980; Kugler and Turvey,
1987). More recently, our group has investigated how some foundational aspects of
biological  behavior  are  explained  through  dissipative  structure  theory.  Perhaps
most strikingly, dissipative structures offer a theoretically based account of end-
directedness, much like that observed in biology.



Fig.  8. A  third,  and  our  preferred,  ontology  of  natural  and  artificial
systems.  Not  only  are  machines  and  organisms  ontologically  distinct,
organisms  are  particular  types  of  a  more  general  physical  system,
dissipative structures.

End-directedness, here, refers to a system preferring a particular end-state,
such that multiple paths can be taken to that state. Biological systems famously
demonstrate  end-directedness  in  their  pursuit  of  resources,  shelter,  mates,  etc.
Nonliving physical systems are sometimes thought not to display end-directedness,
and this distinction is even offered as a potential dividing line between animate and
inanimate  systems  (Jacobs,  1986;  Swenson,  1999;  Villalobos  and  Ward,  2015).
However,  nonliving  physical  systems  are  end-directed  in  well-established  ways.
e.g., consider a box of gas that is isolated from all flows of energy and matter. This
simple system will go to its equilibrium state. Exactly how it will get there (i.e.,
what particles will collide and when) is not known, but the end-state is assured by
the second law of thermodynamics. Our box of gas provides an excellent example of
end-directedness, but the particular end to which it evolves, equilibrium, is of little
use for  living systems.  Any system at  equilibrium will  need an applied external
force to do anything at all and, worse yet, could not be alive. Since organisms are
both alive and exhibit self-initiated growth, motility, and other processes, it seems
clear that being directed to an equilibrium state is a literal dead end theoretically.

Importantly, dissipative structures are also end-directed, but towards a very
different end state. Dissipative structures appear to be end-directed to increase the
rate  at  which  they  produce  entropy  (Endres,  2017;  Kondepudi  et  al.,  2015;
Martyushev and Seleznev,  2006;  Swenson and Turvey,  1991).  While  a  complete
thermodynamic explanation of  this phenomenon is a topic  of  current  debate in
physics,  the  phenomenon  itself  is  firmly  established  empirically  (Chung  et  al.,
2022, 2017; De Bari et al., 2019; Endres, 2017; Kondepudi et al., 2015; Vallino and



Huber,  2018).  The  implications  of  dissipative  structures  being  end-directed
towards states with greater flow of energy are quite profound, even in very simple
systems,  such as the one we discuss  below. The implications for  more complex
dissipative structures, such as those in the biological domain, have not yet been
explored in any detail. For our purposes herein, the end-directedness of dissipative
structures provides a theoretically grounded explanation for how biology can have
an intrinsic function. Next, we review work with a simple dissipative structure that
illustrates  some  of  the  implications  of  being  end-directed  towards  states  the
increase the rate of  entropy production.  By working with a  minimal  dissipative
structure, we can show how end-directedness yields complex behavior in a system
with very few degrees of freedom and relatively tractable physics.

One such system is what we call  our electrical dissipative structure (EDS)
composed of metal beads in a dish with a shallow bath of oil  (Joseph and Hübler,
2005;  Fig. 9).  A source electrode is positioned above the dish, separated by an
approximately  5-cm air-gap.  A  metal  rings  surrounds  the  beads  in  the  dish.  A
grounding electrode is connected to this metal ring. Charges are sprayed out from
the source electrode, accumulate on the oil and the metal beads, and are conducted
through the metal ring to ground. The system is maintained out of equilibrium by
this flux of electrical charges. The beads become charged dipoles and are attracted
to the grounding ring. After some time, the beads will tend to self-organize into
strings of beads called “trees” that branch out from the grounding metal ring. These
trees serve as pathways for the conduction of charge and move about, flexing and
swaying as well as translating along the interior edge of the metal ring.

Fig.  9. The EDS with a tree structure. A source electrode (white tube)
above the dish supplies electrical charges. The metal ring in the dish is
connected to the grounding electrode. Trees will tend to sway and flex and
translate along with the interior of the metal ring.

An essential construct for understanding the dynamics of this system is the
rate  of  entropy  production  (REP).  In  far-from-equilibrium systems,  irreversible



processes that drive changes in the system also produce thermodynamic entropy9, a
physical  quantity much like energy with units of  J*K-1.  In the EDS, the REP is
directly proportional to the electrical current flowing through the ground electrode.
In  subsequent  discussions  of  the  EDS,  REP  and  electrical  current  may  be
interchanged. Experimentation has repeatedly revealed that the system self-selects
for  morphologies  and  dynamics  that  maximize  the  rate  of  entropy  production
(Davis et al., 2016; De Bari et al., 2021, 2020, 2019; Dixon et al., 2016; Kondepudi
et al., 2017). e.g., the initial formation of tree-structures is always accompanied by a
sharp increase in the REP, as the tree becomes an effective pathway for electrical
current. Further, the system will tend to evolve into tree structures from initially
separate beads but will not evolve from tree structures to individuated beads. The
self-selected  structured state and the higher REP state are thus coincident in the
system. Interestingly, tree structures producing greater REP are also more resilient
to  perturbation.  Thus,  the  self-selection of  higher  REP states  is  a  form of  self-
maintenance, demonstrating a self-organized “preference” for stability. In addition
to  self-selection  of  morphological  states,  the  trees’  dynamics  demonstrate  a
tendency  to  maximize  the  REP.  Through  a  combination  of  experiments  and
simulation we have come to understand that the tree follows gradients of increasing
electrical charge-density, thus moving continuously into regions of the dish that
increase  the  current  and  REP.  This  property  enables  a  variety  of  interesting
dynamics, from oscillations and synchronization of multiple trees  (De Bari et al.,
2020, 2019) to the coordination of dynamics among trees  (Davis et al., 2016; De
Bari et al., 2021).

Critically, as described above, we consider this self-selection of dynamics that
maximize the REP as a rudimentary form of end-directedness (akin to that seen in
biology). Here end-directedness may be construed as the time-evolution of a far-
from-equilibrium system constrained by the optimization of a physical quantity.
Moreover, because maximization of the REP also increases stability, the trees are
end-directed to maintain themselves. Structural self-maintenance has often been
taken  as  a  necessary  condition  for  the  emergence  of  life,  as  in  the  concept  of
autopoiesis  (Varela  et  al.,  1974).  Bickhard  and  colleagues (Bickhard,  2009;
Christensen and Bickhard, 2002) have suggested that this self-maintenance is a
foundational form of normativity, with certain states being intrinsically “good” or
“bad” for the system determined by their impact on stability, and for our purposes
on the REP. Certain behaviors and morphologies thus have intrinsic functions and
purposes, derived from this far-from-equilibrium stability and optimization of the
REP.

As has been remarked many times before, machines cannot be said to have
intrinsic functions or purposes, a crucial limitation of the computer metaphor for
explaining  biological  function  (organisms,  we  assert,  necessarily  have intrinsic

9 This is to be contrasted with statistical entropy, such as Boltzmann or Shannon variants. The two
concepts overlap in near-equilibrium systems, but in general, and especially far-from-equilibrium,
are distinct quantities.



functions). Dissipative structures on the other hand offer a principled basis for the
emergence of function, grounded in self-stabilizing processes and concurrently the
optimization of a physical quantity (while syntactically distinguished here,  these
two should not be construed as separate processes in the EDS; optimizing the REP
stabilizes  the  system  and  vice  versa).  In  the  EDS,  end-directedness  has  been
identified  with  the  maximization  of  the  REP.  Many  other  far-from-equilibrium
systems appear to demonstrate a tendency to maximize the REP  (Endres,  2017;
Swenson  and  Turvey,  1991),  and  much  discussion  has  been  devoted  to  the
possibility  that  maximizing  the  rate  of  entropy  production  (MEP)  is  a  general
principle of far-from-equilibrium systems (Martyushev and Seleznev, 2014, 2006).
Despite this, the current argument does not hinge on MEP in particular, as other
variational  principles  could  satisfy  the  same  role.  Further,  if  MEP  is  a  general
principle of far-from-equilibrium systems, we do not intend to advocate that  all
purpose and function in biology is simply to maximize the REP. Such a principle
may be foundational for the emergence of living systems but need not proscribe the
possibility of the emergence of other goals and purposes that should be considered
just as real and valid for understanding a system’s activity. We speculate that MEP
or  some  other  variational  principle  may  be  the  foundational  source  of  end-
directedness in the system and that all other goals ultimately derived from it, often
in  non-obvious  ways.  Even  in  our  very  simple  systems,  we  find  end-directed
behaviors that appear to be contrary to MEP, e.g.,  moving from an energy-rich
region into energy-poor region  (De Bari  et  al.,  2019).  Even in such cases,  these
paradoxical behaviors can be shown to be explained by MEP playing out over the
current constraints on the system (De Bari et al., 2019).

We also distinguished machines and organisms on account of their different
kinds of stability, near- and far-from-equilibrium stability. Dissipative structures
display  this  latter  kind  of  far-from-equilibrium  self-stabilization.  Nicolis  (1989)
cleverly  distinguishes  between  stability  of  mechanical  and  far-from-equilibrium
systems  by  comparing  an  idealized  (i.e.,  frictionless)  simple  pendulum  to  a
chemical oscillator. In each case, the system’s stable state is an oscillatory mode
with a certain frequency and amplitude. If the pendulum is perturbed (pushed) it
will assume a new mode with a different amplitude and frequency. If the chemical
oscillator is perturbed such as by locally increasing the temperature, the system will
relax  back  to  the  original  limit  cycle  (i.e.,  frequency  and  amplitude)  once  the
temperature gradient is dissipated. In further contrast, if a pendulum is subject to
irreversible  entropy-producing  processes  (here,  friction)  the  oscillatory  dynamic
will  decay.  Alternatively,  the  limit  cycle  of  a  chemical  oscillator  is  driven  by
entropy-producing  processes  (here,  chemical  reactions).  The  chemical  oscillator
will decay if irreversible processes are cut-off. The stability of organisms is closer to
the far-from-equilibrium stability of a chemical oscillator than a simple pendulum,
more like a dissipative structure than a machine.

Of course, clever engineers can create machines that demonstrate dynamical
stability, as in the steam-powered Watt governor, which displays classic fixed-point



dynamics much like far-from-equilibrium systems. Both a Watt governor (or any
similar machine) and a dissipative structure will display such dynamical stability
due  to physical  constraints  on  energy  flow.  The  crucial  difference  is  that  in  a
machine,  those  constraints  are  equilibrium  structures  that  originate  through  a
process entirely independent of the energy flux that powers the machine. Further,
those constraints are degraded by the flow of energy. Alternatively, in dissipative
structures, those constraints emerge due to energy flow and will  degrade if  that
energy flow ceases. e.g., the convective cycles in a Benard cell constrain the motion
of  the  individual  particles  (Nicolis,  1989),  and  the  dissipative  flow  of  particles
drives those cycles; if the flow stops, the constraints dissolve. The constraints in
machines  are  equilibrium  structures,  while  those  of  dissipative  structures  and
biological systems are more like stabilized processes (Nicholson, 2019) that require
continual throughput of energy and matter.

The EDS exhibits  remarkable  self-stabilizing  properties  and adaptation to
perturbations. When tree-structures are mechanically perturbed (e.g., by manually
breaking  them  apart  with  a  rod)  they  will  spontaneously  re-form  into  stable
structures.  We have referred to  this  capability  as  self-healing,  analogous to  the
healing capabilities of organisms. In this self-healing process, the system very often
produces different structures post-perturbation while producing the same level of
current (Kondepudi et al., 2017), not unlike the plastic changes in the brain. As an
analogue of  redundancies,  multiple tree structures can demonstrate coordinated
activity when coupled through a shared pool of electrical charges on the oil-surface
(Davis et  al.,  2016; De Bari  et al.,  2021,  2020),  and their joint activity tends to
maximize the REP. When perturbed such that the REP decreases,  the trees will
adjust  their  dyad-level  (Davis  et  al.,  2016) or  individual  (De  Bari  et  al.,  2021)
dynamics in a way that restores the REP.  In the previous section we distinguished
between  mechanical  and  far-from-equilibrium  redundancies.  Mechanical
redundancies  do not  serve  a  function pre-perturbation,  while  in  brains  there  is
evidence that already-functional networks adapt their activity to compensate for
the  perturbation.  In  the  EDS  the  redundant  systems  are  active  dissipative
structures, each functioning (i.e., foraging for electrical charges) pre-perturbation,
changing their dynamics after the perturbation. Thus while both machines and far-
from-equilibrium systems can demonstrate redundancies, they are accomplished in
substantively distinct  ways.  These properties  also neatly  illustrate how the EDS
does  not  readily  satisfy  fractionability,  as  function  and  structure  may  change
independently and in contextually sensitive ways.

4.4. What  empirical  findings  support  your  preferred  alternative
metaphor?

Principles of self-organization and nonlinear dynamics have been applied to the
study  of  biological  behavior  and  the  nervous  system,  especially  through  the
framework  of  coordination  dynamics (Bressler  and  Kelso,  2001;  Kugler  et  al.,
1980;  Kugler  and  Turvey,  1987;  Tognoli  et  al.,  2020).  Coordination  dynamics
investigates  how  multiple  constituents  with  intrinsic  dynamics  (typically



oscillatory) interact with one another. Critically, the approach aims at identifying
coordinative  regimes  defined  by  a  collective  variable that  captures  the  global
dynamics  of  the  ensemble  of  constituents.  Given  the  focus  on  oscillators  as
constituents, a common collective variable is the  relative phase of two (or more)
oscillators. Coupled oscillators tend to exhibit two primary coordination dynamics,
in-phase (relative phase = 0°) and anti-phase (relative phase = 180°), with a typical
preference for in-phase dynamics. These coordination patterns have been observed
in  both  intrapersonal  (Haken  et  al.,  1985;  Kelso,  1984) and  interpersonal
(Richardson et al., 2007; Schmidt et al., 1990) biological contexts, as well as in the
dynamics of coupled structures in the EDS (De Bari et al., 2020). We have found
evidence that, in the EDS, the stability of these modes is directly related to which is
most  functionally  adaptive  (i.e.,  produces  the  most  entropy)  given  system
parameters (De Bari et al., 2020). The kernel insight is that, in order to explain the
remarkably  adept  coordination  of  inordinately  many  physiological  degrees  of
freedom  (nervous,  muscular,  or  otherwise),  biology  capitalizes  on  the  self-
organizing processes native to far-from-equilibrium systems  (Kugler et al., 1980;
Kugler  and  Turvey,  1987).  The  activity  of  the  nervous  system  involves  many
oscillatory processes appropriate for the tools of coordination dynamics, from the
neural-level cyclic activity to the collective oscillatory dynamics of central pattern
generators (Fred, 1980; Marder and Bucher, 2001).

More  recently,  coordination  dynamics  has  been  applied  directly  to  the
nervous system by investigating the relative activity of cortical regions (Alderson et
al., 2020; Bressler and Kelso, 2001; Kelso, 1995). The approach involves recording
cortical  activity  while  subjects  are  engaged  in  various  cognitive  tasks  and
addressing the degree to which the collective activity of multiple brain regions is
associated  with  changes  in  cognitive  activity.  In  classic  fashion,  the  collective
activity is assessed in dynamical terms, including the convergence of relative phase
and frequency of oscillatory events across multiple recording sites. Critically, the
authors  advocate  that  this  coordinated  activity  is  characterized  by  metastable
dynamics.  A metastable dynamic may be crudely cast  as an approximation of  a
fixed point or limit cycle dynamic; the system tends toward the dynamic but does
not converge on that dynamic entirely. Because of this, the system demonstrates
more  flexibility,  transitioning  between  metastable  states  under  varying
circumstances without being “captured” by those states. This flexibility appears to
enable  several  properties  in  line  with  thinking  of  the  brain  as  a  dissipative
structure.  When  monkeys  were  engaged  in  a  visual  task,  changes  in  cognitive
activity (i.e., anticipatory vs. active processing) were accompanied by changes in the
coordinated activity of multiple sites (Bressler and Kelso, 2001; Ding et al., 2000).
Similar  results  were  observed  in  human  subjects  (Alderson  et  al.,  2020).  The
prevailing interpretation is that the adaptive recruitment of multiple regions into a
coordinated dynamic is the same kind of self-organizing process that underwrites
coordination of action in living and non-living dissipative systems.



To summarize, the computer metaphor of mind and brain has two primary
threads:  the  hypothesis  of  mental  operation,  which  we  call  epistemic
constructivism,  and  the  proposition  of  mental  ontology  in  the  mechanistic
hypothesis.  Our  evaluation  of  the  computer  metaphor  of  mind  and  brain  has
focused on the  underwriting  mechanical  hypothesis  and highlighting  disparities
between the nature of  machines and biological  systems.  There have been many
thoroughgoing  critiques  of  epistemic  constructivism,  as  detailed  at  the  outset.
Without  revisiting  these  critiques,  we  argue  that  our  preferred  framework,
dissipative structures, is consistent with these perspectives and has even been a
starting  point  for  these  scientific  approaches  to  behavior  and  mind  (Bickhard,
2009; Kugler et al.,  1980). We have investigated the epistemic properties of the
EDS  and  other  dissipative  structures,  drawing  comparisons  to  the  tenets  of
Ecological Psychology (Chung et al., 2022; De Bari et al., 2020). Further, we point
out  that  even  some  “representation-hungry”  phenomena  like  end-directedness
(Kondepudi et al., 2015) and anticipation (Dixon et al., 2021), typically assumed to
require the tools of epistemic constructivism, can be reasonably attributed to the
EDS.

We identified four components of the mechanical hypothesis and pointed to
their limited application in the brain and biology. We reviewed how, with respect to
each tenet,  the brain behaves more like a dissipative structure than a machine.
Some have identified similar criteria for machines, especially properties related to
the  fractionability,  and  used  such  conclusions  to  highlight  similarities  between
biology and mechanics (Bongard and Levin, 2021). While their compelling analysis
does highlight the ever-increasing sophistication of machines and their integration
into  biological  processes,  it  does  not  consider  the  fundamental  far-from-
equilibrium properties of living systems central to their operation. The properties
of non-equilibrium stability  and intrinsic function remain,  in  our opinion,  clear
demarcations between machines and organisms.

While  we  focused  our  attention  on  one  specific  dissipative  structure,  we
identified  five components  of  the  mechanical  hypothesis  and  pointed  to  their
limited application in the brain and biology. We reviewed how, with respect to each
tenet,  the  brain  behaves  more like  a  dissipative  structure  than a  machine.  Our
suggestion is not that the EDS itself constitutes a metaphor for the brain, but rather
that the brain will  minimally have the properties we find in our simple EDS by
virtue of being a dissipative structure. These properties, such as adaptivity, self-
healing,  and energy-seeking,  are quite mysterious if  one starts with equilibrium
structures  or  mechanical  systems  but  are  a  natural  consequence  of  the  end-
directedness of dissipative structures. It will, of course, be important to establish
the details of how thermodynamic forces and flows are manifested in the complex
dissipative structure that is the brain. It seems likely that the multi-scale nature of
the brain, along with its complex chemistry, will be central to understanding how it
functions as a dissipative structure. It may not necessarily be the case that the brain
self-stabilizes in order to maximize the REP. Rather we are suggesting that brain



activity  and  plasticity  can  only  be  understood  with  reference  to  far-from-
equilibrium  self-organization,  and  not  with  a  mechanical  metaphor.  The  new
metaphor  must  be  in  the  physics  of  dissipative  structures,  not  equilibrium
structures.

5. Complexity: Understanding brains and minds on their own terms—
Luis H. Favela10

To comprehend brains and minds as computers is to explain their activities and
organization in terms of information processing, which is essentially the systematic
manipulation  of  representations.  This  understanding  has  served  as  the
fundamental  guiding  commitment  of  research in artificial  intelligence,  cognitive
psychology,  neuroscience,  and  related  disciplines.  While  computational
terminology has been applied metaphorically to brains and minds, it has certainly
been  applied  in  literal  senses  as  well.  The  Human  Brain  Project’s  SpiNNaker
computer is presented as an example of the inability of research committed to the
computer  metaphor  (and  literalism)  to  facilitate  understanding  of  brains  and
minds.  Long-term  progress  requires  shifting  to  investigative  frameworks  that
approach  brains  and  minds  on  their  own  terms,  and  not  via  inappropriate
metaphors. Complexity science is such a framework, in which brains and minds are
understood via  core  features  of  complex  systems:  emergence,  nonlinearity,  self-
organization, and universality. Extended Haken-Kelso-Bunz models are presented
as empirically-supported research exhibiting a fruitful complexity science approach
to brains and minds across spatial and temporal scales of activity and organization.
The result is a clear case for the effectiveness of investigating brains and minds on
their own terms as complex systems.

5.1. What do we understand by the computer metaphor of the mind and
brain?

At its most basic, to understand brains and minds as “computers” is to treat their
workings in terms of information processing. It can be helpful to define the kind of
processing  carried  out  by  brains  and  minds  by  way  of  twentieth-century
psychologist  Ulric  Neisser’s  (1967) explications  of  the  two  core  elements  of
cognition,  which  contributed  substantially  to  the  conceptual  and  theoretical
foundations  of  cognitive  psychology.  First,  cognition  involves  constructive
processing,  which refers to the reconstruction or transformation of  stimuli  (i.e.,
from within or outside the system) into units for the cognitive system to act on. In
more  contemporary  terms,  these  units  are  commonly  called  representations.
Second, cognition involves information processing, which refers to the ways those
units  (i.e.,  representations)  are  manipulated  in  order  to  produce  behaviors,
perceptions,  reasoning,  and  so  on.  In  more  contemporary  terms,  these

10 Correspondence: luis.favela@ucf.edu (L. Favela).
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manipulations  are  commonly  called  computations.  Of  course,  this  is  a  simple
description of Neisser’s characterization of cognition, one that glosses over details
that can be significant at times, such as the idea that the two processes are not
always  distinct—that  is,  constructive  processing  can  be  a  form  of  information
processing and vice versa. For now, such differences are not important.

What  is  important  now  is  that  conceptualizing  brains  and  minds  as
essentially  involving  the  manipulation  (i.e.,  computation)  of  units  (i.e.,
representations) lined up in a number of meaningful ways with strategies utilized
throughout the early development of artificial intelligence (AI) research (i.e., 1950s
through  1990s;  Wooldridge,  2021).  The  modern  form  of  AI  is  commonly
understood as originating with Alan Turing’s pioneering work on the theoretical
foundations  of  computers  (Turing,  1950b),  which  was  further  developed  and
formalized  by  researchers  such  as  Alonzo  Church  and  Herbert  Simon  (Boden,
2006; Buchanan, 2005). The predominant guide to research following those early
years (~1950s) was the  symbolic AI strategy, which was committed to the claim
that  AI  ought  to  be  based  on  human  minds  (e.g.,  McCarthy  et  al.,  2006).
Accordingly,  AI  research  should  aim  to  identify  the  various  kinds  of  mental
processes (e.g., reasoning) and formalize them (e.g., logic and rules) in a manner
implementable in AI systems. The formalisms appealed to by AI researchers were
based on those developed by Turing and colleagues, namely, rule-based syntax that
operated over semantically-imbued symbols, such as 1s and 0s. It is clear how the
core  commitments of  the symbolic  AI  strategy line up with Neisser’s  approach:
brains/minds and AI systems manipulate (e.g., operate over) units (e.g., symbols)
in some sort of systematic way (e.g., follow rules).

While the symbolic AI approach gets much of the attention in discussions of
the  history  of  AI  (e.g.,  “symbolic  AI”  is  synonymous  with  Good  Old-Fashioned
Artificial Intelligence or GOFAI; e.g., Boden, 2014; Haugeland, 1985) and much of
the criticism (e.g., Dreyfus, 1992; Harnad, 1990), a different neurophysiologically-
based strategy ran in parallel  (e.g.,  McCulloch and Pitts,  1943;  see Wooldridge,
2021).  The  neural  networks  strategy,  much  like  the  symbolic  AI  strategy,  was
committed to the guiding principle that AI ought to be based on those systems we
already  know  are  intelligent,  specifically,  humans.  However,  unlike  the  more
abstract symbolic AI strategy, the neural networks strategy held to a more concrete
commitment  of  basing  the  architecture of  AI  systems on the  physiology  of  the
organ purported to be the seat  of  human intelligence,  namely,  the brain.  To be
more specific, AI architecture should be based on the brain’s structure, which is
comprised  of  more  basic  elements,  i.e.,  neurons  and  their  connections.  While
research programs in line with a generally symbolic AI approach continue to this
day (“Cyc technology overview,” 2022), it is clear that the general neural networks
strategy has prevailed as the predominant guiding approach to AI. This is made
evident in large part due to the dominance of machine learning and deep neural
networks; though, such approaches are not without deep challenges  (e.g., Carlson
et  al.,  2018;  Hosseini  et  al.,  2020).  Like  the  symbolic  AI  strategy,  the  neural



networks strategy also lines up with the Neisser characterization of cognition as
information processing:  brains/minds and artificial  neural  networks  manipulate
(e.g., firing rates) units (e.g., network nodes) in some sort of systematic way (e.g.,
encoding and decoding).

Given  this  (very)  brief  historical  overview,  we  can  return  with  better
understanding to  the point  that  started this  section.  From cognitive  psychology
(e.g.,  Neisser,  1967),  to  the  symbolic  (e.g.,  McCarthy  et  al.,  2006) and  neural
networks  (e.g.,  McCulloch and Pitts,  1943) strategies guiding much AI research,
information processing has been central  to  the investigation and explanation of
brains and minds. In that sense, describing brains and minds as “computers” is not
metaphorical. Strictly speaking, a metaphor is a figure of speech whereby a word is
applied  to  something  else  in  an  analogous  sense,  such  that  the  utilized  word’s
meaning is not  literally true of that which it has been applied to  (“metaphor,  n.,”
2021). So, if one were to say, “Ana has a heart of gold,” it would not be literally true
that the organ in Ana’s chest that pumps blood is made of a material with atomic
number 79. In the same way, for the term “computer” to be applied to brains and
minds in a metaphorical sense would be to say that the latter do not literally do
what  computers  do,  namely,  process  information  in  the  particular  ways  that
computers do. On the contrary,  cognitive psychologists and AI researchers have
literally meant that brains and minds are computational devices. That is to say,
brains  and  minds  are  information  processing  systems  in  the  same  way that
computers are: they systematically operate over representations. This is not to say
that all cognitive psychologists and AI researchers believe that brains and minds
are  literally  computers.  Certainly,  there  are  cognitive  psychologists  and  AI
researchers who explicitly believe that the relationship of brains and minds with
computers is metaphorical. Additionally, there are those whose belief that brains
and minds are computers is implicit as revealed by their research frameworks (e.g.,
the  concepts  and  explanations  used)  and  the  works  they  produce  (e.g.,  journal
publications).  The  same  holds  true  of  the  neurosciences.  Specifically,  several
neuroscience  subdisciplines  (e.g.,  cognitive  neuroscience,  computational
neuroscience, and sensory neuroscience) treat the brain and mind as literally being
computers  in  the  senses  described  above;  and  this  belief  is  held  explicitly  and
implicitly by various neuroscientists.

5.2. What are some of the limitations of the computer metaphor?

The previous section argued that across research in AI, cognitive psychology, and
several neuroscience subdisciplines, brains and minds are typically understood as
being  computers—or  carrying  out  “computations”—in  a  literal  and  not
metaphorical sense. There is an enormous literature in each of those disciplines
alone that engage with the limitations of understanding brains and minds as being
computers—both in the literal and metaphorical sense. In cognitive psychology (as
well  as  other  subdisciplines  of  psychology  and  cognitive  science),  there  is  a
decades-long tradition of anticomputational and antirepresentational approaches
stemming from considerations of mind (inclusive of cognition) as being necessarily



embodied  (Chemero,  2009;  Gibson,  1979).  In  AI  research,  there  is  also  a  long
tradition of  identifying  fundamental  shortcomings  of,  e.g.,  developing  body-less
systems  with  intelligence  primarily  based  upon  abstract  knowledge,  such  as
symbolic logic (Brooks, 1991; Dreyfus, 1992). More recently, the neurosciences are
exhibiting  increasing  criticisms  of  explaining  brain  structure  and  function  in
traditional computational terms, such as defining neural activity in terms of coding
(e.g.,  Brette,  2019),  explaining intelligent  behavior  via  a  central  controller  (e.g.,
Buzsáki,  2019),  and  parsing  the  mind’s  capacities  along  neatly  delineated  folk
psychology-defined cognitive ontologies (e.g., Poldrack and Yarkoni, 2016).

For a bit of background, consider one of the large recent government-funded
projects established to advance understanding of brains and related phenomena,
the Europe-based Human Brain Project (HBP). Beginning in 2013, the HBP is a
ten-year, €1.019 billion budget project that aims to, “tame brain complexity … [by]
building  a  research  infrastructure  to  help  advance  neuroscience,  medicine,
computing and brain-inspired technologies - EBRAINS … to create lasting research
platforms that benefit the wider community”  (“Overview,” 2021). EBRAINS is an
infrastructure for sharing brain data for the purposes of modeling and simulating
neuroanatomy and various kinds of brain activity  (“About EBRAINS,” 2021). As
evidenced  across  the  official  HBP  website,  it  is  undeniable  that  the  brain  and
related  phenomena  are  treated  in  computational  and  representational  terms.
Cognition, e.g., is explicitly defined as such (e.g., “representations are the basis for
higher  cognitive  processes”)  and  is  meant  to  be  explained  via  “‘deep  learning
neuronal network[s]” (“Understanding cognition,” 2021).

At eight years in, HBP leadership published a list of the project’s six most
impressive achievements (Sahakian et al., 2021). These include a human brain atlas
visual data tool, touch-based telerobot hand, neuro-inspired computer, and being
cited in 1,497 peer-reviewed journal articles. There should be no doubt that much of
this research is impressive, particularly when put into various contexts, such as the
potential for advancing robotic limbs to improve the lives of people who have had
amputations. However, it is far from clear whether any of these achievements have
illuminated our understanding of brains and minds in a significant way.

Take e.g.  the “neuro-inspired computer” mentioned above: Spiking Neural
Network Architecture or SpiNNaker (Furber et al., 2014). SpiNNaker is a massively
parallel,  multicore  computing  system  that  is  comprised  of  +57,000  nodes  that
contain  +1  million  ARM9  cores  and  seven  terabytes  of  RAM  (“Architectural
overview. SpiNNaker Project,” 2021). With that many core processors, the amount
of power required to run SpiNNaker is staggering. Consider that a MacBook Pro
laptop with ten cores runs on an average 100 watts  (W) (“MacBook Pro (16-inch,
2021) - Technical Specifications,” 2022). If SpiNNaker’s ARM9 cores are at least as
energy  efficient  as  a  MacBook  Pro’s  cores  are,  then—not  including  the  energy
needed to power cooling systems—SpiNNaker would consume 100,000,000 W, or
100 megawatts (MW). For the sake of comparison, the version of IBM’s Watson
that won first place in the game show Jeopardy!  consumed ~85,000 W (Kelly III



and  Hamm,  2013).  Now,  consider  that  a  human  brain  utilizes  ~20  W
(Balasubramanian, 2021). It can be tough to appreciate what is learned about the
actual  structure  or  function  of  brains  and/or  minds  from  a  computer  that  is
purported  to  be  “inspired  by the  connectivity  characteristics  of  the  mammalian
brain” (Furber et al., 2014, p. 652) and yet consumes about 5,000,000 times more
energy than a human brain. Moreover, though SpiNNaker consumes so much more
resources than a mammalian brain does, it does not have a fraction of the latter’s
capabilities.

SpiNNaker  is  an  illustrative  example  of  the  limitations  of  attempting  to
understand brains and minds as computer.  First,  it  is  unclear that appealing to
networks  as  the  core  defining feature  of  mammalian brain architecture  is  what
makes them appropriately understood via the computer metaphor and, in turn, why
the  SpiNNaker  computer  is  accurately  described  as  brain-like.  Yes,  like  brains,
SpiNNaker  sports  a  massively  parallel  network  architecture  with  information
transferred via spike-like activity (Furber et al., 2014). However, it is unconvincing
to primarily appeal to features such as parallelism and networks to motivate the
claim that SpiNNaker’s computational architecture is  like the mammalian brain’s
purported  similar  computational  structure.  It  is,  however,  evident  that  many
systems share those features, which include, but are not limited to, gene regulatory
systems, Hollywood actors who have worked on the same movies, sexual partners,
and  the  United  States’  airline  system  (Barabási  and  Bonabeau,  2003).
Consequently,  SpiNNaker does not provide further understanding of  brains and
minds on their own terms if the manner by which their relationship is metaphorical
is had by so many other similar systems that could have been described in the same
ways, such as having a parallel network architecture.

Second,  given that  SpiNNaker  is  literally  a  computer,  if  it  is  supposed to
implement a brain-like architecture, then it is implausible to believe that brains are
literally  computers  as  well.  Consider  again  the  incredible  contrast  between  the
power  requirements  of  brains  and  SpiNNaker;  specifically,  a  5,000,000  times
difference. As a starting point, it seems intuitively plausible that if two systems have
comparable architectures (e.g.,  parallel networks) aimed at producing equivalent
capabilities (e.g., control a limb), then their energy requirements would be similar
as  well.  An  obvious  reply  is  that  the  scale  of  those  systems  matters  when
considering energy requirements; that is, a human brain is the fraction of the size of
SpiNNaker’s infrastructure, thus it uses a fraction of the energy. With that said, it is
obvious  that  the  same  ratio  of  power  use  (human  brain  ~20  W:  SpiNNaker
100,000,000 W) does not also hold for the capabilities of those systems. What the
human  brain  can  do  with  ~20  W  is  many  orders  of  magnitude  beyond  what
SpiNNaker can do with 5,000,000 times more power. This fact makes the following
claim likely to be true: SpiNNaker is literally a computer (i.e., it has a computer’s
structures and functions) and brains are not computers in any literal sense (i.e.,
they do not have a computational structure underlying its functions).



Thus, while SpiNNaker is an impressive computer in many ways, it will likely
produce  a  limited  range  of  understanding that  is  derived  from highly  idealized
models  and  simulations.  Putting  the  point  bluntly:  No  matter  how  much
computational  processing  power  is  achieved  by  SpiNNaker,  additional
understanding of the real nature of brains and minds will not be achieved. To be
clear,  the  point  is  not  that  powerful  computers  cannot  process  models  and
simulations  that  can  contribute  to  valuable  research,  such  as  descriptions  of
neurophysiology  and  robotics.  The  point  is  that  attempts  at  illumination  via
comparison will be extremely limited because brains/minds and computers have
radically  different  organizational  principles  underlying  their  capabilities.
Consequently, trying to reduce the real nature of brains/minds to being equivalent
to  that  of  computers,  or  trying  to  base  computers  on  inaccurate  and  false
conceptions of brains/minds, is to promote confusion and impede progress. In this
way,  continuing  to  adhere  to  computer  metaphors  (or  literalisms)  when
investigating  brains  and  minds  would  be  tantamount  to  guiding  cardiovascular
research via the “gold metaphor” of hearts.

5.3. What metaphor should replace the computer metaphor?

As  can  be  gathered  from  the  previous  sections,  I  do  not  think  the  computer
metaphor—and  especially  computer  literalism!—is  facilitating  progress  towards
understanding the real nature of brains and minds. That is not to say that computer
terminology should be banned from all discussions of brains and minds. Certainly,
figures of  speech such as,  “my brain is  processing that  information now,” “that
neuron represents his grandmother’s face,” and “the core processor is the brain of
my  MacBook  Pro,”  can  be  acceptable  in  certain  contexts.  Nevertheless,  when
figures of speech shift from being just metaphors for more informal purposes to
literal comparisons to inform and guide empirical brain research, then concepts
such as “information processing” and “representations” are inappropriate. In the
case of brains and minds, what is not needed are more metaphors that facilitate
false understanding of the natural phenomena under investigation. What is needed
are concepts that convey the real nature of the phenomena on their own terms.

As  the  SpiNNaker  example  shows,  there  must  be  something  radically
different about the physical implementation of brains and minds than computers.
Information  processing  (i.e.,  computations  operating  over  representations)  does
not seem to be the theory that can provide real understanding of brains/minds and
computers; especially pertaining to the structures that instantiate their capabilities.
Case  in  point,  relative  to  computers,  mammalian  brains  consume  a  minuscule
amount  of  power  and  neural  activity  occurs  at  slower  timescales,  all  while
supporting a  wider  range of  possible  sophisticated behaviors  (e.g.,  eating sushi,
juggling chainsaws, writing a novel, and so on). So, if information processing (i.e.,
computer metaphor) cannot provide understanding of brains and minds on their
own terms, then what can?



The language of complexity science has the potential to replace the computer
metaphor of brains and minds. Complexity science is already making inroads in the
cognitive, neural, and psychological sciences by contributing to productive research
programs, which includes inspiring hypothesis generation, providing data analysis
methods, and theories to inform explanations. In what remains of this section, I
provide a brief summary of complexity science. In the next section, I conclude by
providing an illustrative example of the fruitful application of complexity science to
the study of brains and minds. By the end, it will be demonstrated that complexity
is a suitable replacement for the computer metaphor.

As a starting point,  complexity science can be generally understood as the
interdisciplinary  investigation  of  complex  systems,  where  complexity refers  to
certain kinds of order exhibited by systems due to their many interacting parts at a
range of  spatial  and temporal  scales  (Allen,  2001;  Érdi,  2008;  Mitchell,  2009).
Common examples of the kinds of interactions and order include chaos (Bar-Yam,
2016),  circular  causality  (Érdi,  2008),  multiscale  interactions  (Bishop  and
Silberstein, 2006), and phase transitions (Van Orden and Stephen, 2012). At first
pass, a review of the complexity science literature could lead somebody to conclude
that the apparently wide variety of concepts, each with varying definitions, means
there  is  nothing  more  to  “complexity”  than  a  family  resemblance  of  arbitrary
investigator-selected phenomena.

As argued elsewhere (Favela, 2020a), the current state of complexity science
should not be surprising as it is very much in the early years of development  (cf.
Kuhn, 1962). Still, that is not reason alone to disregard the fact that complexity
refers  to  something  very  real  in  the  world  (on  this  point,  also  see  Nicolis  and
Nicolis, 2007; Solomon and Shir, 2003). Moreover, complexity science stems from
a traceable set of disciplines—with their own tried and tested concepts, methods,
and  theories—which  contribute  to  its  foundations  as  it  develops  into  a  mature
science  in  its  own  right.  These  include,  but  are  not  limited  to,  artificial  life,
evolutionary biology, and Gestalt psychology (cf. Goldstein, 1999). When it comes
to applying complexity science to the study of brains and minds, three disciplines
have arguably had the most significant influence.

First,  is  systems  theory,  which  includes  the  concepts  and  theories  of
cybernetics and general systems theory (Wiener, 1948). A key lesson from here is
the identification of irreducible system-level activity—i.e., emergent—as the target
of  investigations  and  assessing  the  roles  of  feedback  and  the  multiscale
contributions  of  components.  The  second  major  contributor  is  nonlinear
dynamical  systems  theory.  Dynamical  systems  theory  (DST)  employs
mathematical  tools,  such  as  differential  equations  and  phase  space  plots,  to
evaluate systems that change over time (for more detailed overview, see  Favela,
2020b, 2021).  Whereas DST studies linear systems (outputs are proportional to
inputs)  nonlinear  DST  (NDST)  employs  many  of  those  same  tools  to  study
phenomena displaying outputs that are exponentially or multiplicatively related to
inputs. Accordingly, NDST is suited to study more exotic phenomena such as those



exhibiting phase transitions or unexpected qualitative shifts. Such phase transitions
are  demonstrated  by water  shifting  among its  solid,  liquid,  and gaseous states;
coordination among an individual’s limbs; and spontaneous organization of groups,
such as schools of fish becoming a bait ball to defend against predators. One of the
most  fascinating contributions NDST has made to complexity science,  is  fractal
geometry (Mandelbrot, 1967). Fractals are self-similar structures, where the pattern
at  one  spatial  or  temporal  scale  is  duplicated  at  other  scales.  Fractals  can  be
perfectly self-similar, such as geometric fractals like the Sierpinski triangle (Fig.
10A).  Fractals can also be statistically  self-similar,  which means only particular
features are repeated at different scales and to certain degrees. Natural fractals with
statistically self-similar structures abound, such as broccoli, clouds, coastlines, and
coral (Fig. 10B). Since the 1990s, there is increasing evidence of statistically self-
similar  fractals  across  a  wide  range  of  physiological  phenomena,  including
structures like bronchial tubes and retinal veins, but also processes like heart beats
and spontaneous neuron activity (Fig. 10C).

Figure 10. Fractals. (A) The self-similarity of fractals can be perfect, as
depicted  by  the  Sierpinski  triangle.  Modified  and  reprinted  with
permission from Wikipedia  (2013;  CC BY-SA 3.0).  (B)  Fractals  can be
statistically self-similar, such as fractals found in nature, e.g., Romanesco
broccoli.  Reprinted  with  permission  from Wikipedia  (2021;  CC  BY-SA
4.0). (C) Physiological activity can also be statistically self-similar. Here,
synthetic  time  series  generated  from  detrended  fluctuation  analysis
(Favela et al., 2016) of data recorded from spontaneous activity of single
neurons in the rat main olfactory bulb (Stakic et al., 2011). Statistical self-
similarity shown in windows based on power of two—(top) 8,192 seconds,



(middle)  2,048  seconds,  and  (bottom)  1,024  seconds—with  overall
temporal trends repeated within each window of time.

The third major contributor to complexity science to highlight is synergetics.
Synergetics  is  itself  an  interdisciplinary  field  that  is  often  applied  to  the
investigation of systems with many interacting components (Haken, 2007). One of
the primary contributions synergetics  makes to  complexity science  are  concepts
and tools for studying self-organization. In the context of the brain and behavioral
sciences,  self-organization  refers  to  the  spontaneous  formation  of  patterns  and
structures in nonequilibrium open systems that exchange energy, information, and
matter  with  their  environments  (Kelso,  1995,  2021a,  2021b).  A  core  aim  of  a
synergetics-based approach is to identify laws that govern a range of phenomena.
One way this is accomplished is by means of a modeling strategy guided by order
and control parameters (Haken, 1988). An order parameter is the system-level (i.e.,
collective)  variable  that  captures  the  macroscopic  state  of  the  system.  Control
parameters are the variables that guide system dynamics. An example of a lawful
governing model of coordination is the Haken-Kelso-Bunz (HKB) model (equation
1;  Haken,  Kelso,  &  Bunz,  1985),  which  was  originally  applied  to  the  study  of
bimanual coordination:

ϕ̇=−a sinϕ−2b sin 2ϕ    (1)

Here, the order parameter ( ϕ ) in eq. 1 is defined as the relative phase state
of  interacting  parts  and  processes,  and  the  control  parameters  (a,b)  are  the
contributors to the state of the order parameter. The model was originally applied
to the study of bimanual coordination, where one person moved the pointer finger
of each hand up and down. The order parameter is the state of those two fingers,
such as in or out of phase with each other. The control parameters are the fingers,
quantified  via  their  frequency  of  movement.  The  HKB  model  (and  its  various
modifications)  can  be  said  to  be  “lawful”  in  that,  e.g.,  it  identifies  consistent
features  of  coordination  across  a  wide  range  of  phenomena,  such  as  synaptic
terminals in astrocytes, limb coordination within and between individual people,
and many more (Kelso, 2021b).

When reviewing the relevant literatures and integrating the contributions of
systems theory, NDST, and synergetics, a number of concepts come to the forefront
as being core to complexity science: emergence, nonlinearity, self-organization, and
universality.  Even though most of these have been discussed above, they are all
worth  summarizing  here.  First,  emergence refers  to  irreducible  system-level
activity  and  organization  (see  systems  theory).  Second,  nonlinearity refers  to
exponential  and multiplicative interactions (see NDST).  Third,  self-organization
refers  to  spontaneous  pattern  and  structure  formation  without  the  need  for  a
central controller or pre-specified instructions (see synergetics). Finally, and not
yet discussed, is  universality. In the simplest terms, universality refers to the fact
that nature exhibits recurring patterns of  activity  and structural  organization in
vastly different substrates and contexts. Fractals are one such universal activity and
organization found in nature. The universality of fractals is both qualitative and



quantitative. Qualitatively speaking, coral, lungs, neurons, and trees all seem upon
viewing to have rather similar branching patterns: larger “branches” that split into
smaller branches, which split into smaller branches, and so on. The universality of
fractals  is  not  limited  to  such  qualitative  “seemings”  alone.  Many  phenomena
exhibiting fractal patterns are also quantitatively similar. Since Benoit Mandelbrot
first  developed  the  fractal  dimension  to  quantify  the  coastline  of  Britain
(Mandelbrot,  1967),  other  mathematical  tools  have  been  developed  to  assess
fractals—and other forms of self-similarity, such as scale-freeness—with increasing
sophistication. Examples of such tools include box counting, detrended fluctuation
analysis, multifractal analysis, and wavelets.

From the background of systems theory, NDST, and synergetics, complexity
science  offers  a  rich  investigative  framework  for  understanding  brains  (and
possibly minds) in terms of the key characteristics of emergence, nonlinearity, self-
organization,  and  universality.  Furthermore,  each  of  those  concepts  have
sophisticated qualitative and quantitative tools to empirically record and evaluate
them.  In  the  final  section,  I  present  some  empirical  findings  that  support  this
investigative framework.

5.4.  What  empirical  findings  support  your  preferred  alternative
metaphor?

In concluding, one set of empirical findings are presented as supporting the claim
that complexity is the proper replacement for the computer metaphor of brains and
minds,  and that complexity science is the suitable investigative framework.  The
findings  stem from the  extended  HKB models.  Since  the  HKB model  was  first
introduced  (Haken  et  al.,  1985;  see  previous  section  for  discussion),  it  has
undergone various extensions and been incorporated into other models in order to
capture a wider range of phenomena (for review see Kelso, 2021a). Throughout its
modifications, the core principle remains, namely, the regular features of systems
that  facilitate  lawful  coupling  (or  coordination)  of  interacting  components.  In
Kelso’s own words, the HKB model can be understood as lawful in that:

The  HKB  law  of  coordination  takes  the  form  of  an  equation  that
expresses  how  patterns  of  coordination  defined  by  informationally
meaningful  collective  variables/order  parameters  evolve  and  change
due to nonlinear interactions between parts and processes.

— Kelso (2021b; p. 317)

One  of  the  first  extensions  of  the  HKB  model  was  the  incorporation
oscillatory  dynamics  via  the  parameter  Δω ,  which  incorporates  the  oscillator
frequency of components (eq. 2 in Fuchs et al., 1996).

ϕ̇=∆ω−asin ϕ−2b sin 2ϕ    (2)

The HKB model has since been incorporated into various models (Fig. 11) that can
account for an even wider range of behavior from the scale of brains (e.g., neuronal
oscillations)  to  the  behavioral  and  cognitive  (e.g.,  learning,  memory,  and
perception; for references see (Kelso, 2021b).



The HKB model and its extensions are a paradigmatic instance of successfully
applying complexity science to the study of brains and minds. First, it is continuous
with other successful sciences, especially NDST and synergetics. Second, while it is
a  model—and  thereby  is  an  idealization  that,  strictly  speaking,  introduces
falsehoods  and  simplifications—it  has  a  wealth  of  empirical  data  to  support  its
various  versions.  Third,  and,  again,  though  it  is  a  model,  it  explains  its  target
phenomena on their  own terms.  Within  a  complexity  science  framework,  those
terms  are  emergence,  nonlinearity,  self-organization,  and  universality.  Those
systems that  HKB models are empirically  supported in being applied to  exhibit
emergence in that their activities and structures are irreducible to its constituent
parts. The systems also exhibit a wide range of  nonlinearities, such as those that
occur via phase transitions and symmetry breaking. Additionally, the systems are
self-organized, meaning their behaviors, no matter how intricate, occur without a
controller  or  preprogrammed  rules.  Specifically,  the  activities  and  organization
result (emerge) from the (nonlinear) interactions among components. Finally, the
HKB models exhibit universality. The kind of coupling and coordination captured
by the HKB model is widespread in nature. When extended or integrated with other
models—such as the Kuramoto model of oscillatory behavior—even larger classes of
phenomena are explained, including various kinds of neuronal dynamics, human-
machine interactions, and multiagent coordination.

The  HKB  model  is  but  one  example  of  the  empirical  fruitfulness  of
complexity  science.  Part  of  the  interesting  work  of  doing  complexity  science  is
identifying and applying those laws of nature and universal classes of activity and
organization (e.g., fractals and self-organized criticality;  Bak et al., 1988; Jensen,
1998;  Plenz  and  Niebur,  2014).  Most  significantly  for  the  current  context,
achievements like the HKB model  demonstrate how complexity  science  aims at
investigating, explaining, and understanding phenomena on their own terms. HKB
is a law of coupling and coordination that emerged from doing the empirical work
of  investigating  certain  behaviors,  namely,  bimanual  finger  movements.  The
dynamics of  finger movements did not need to be first defined as “coupling” in
order  for  the  HKB model  to  be  explanatory.  On  the  other  hand,  the  computer
metaphor is typically applied to phenomena already defined as being computers,
which results in a sort of circular justification. None of this is to say that complexity
science is the perfect and final science for studying brains and minds. But it does
have a lot to offer conceptually, methodologically, and theoretically—certainly more
than the computer metaphor.



Figure  11. Extensions  and  incorporations  of  the  Haken-Kelso-Bunz
(HKB) model. (1) Original HKB model (dashed lines) for capturing the
collective  scale  (right)  and  definition  of  parameters  for  oscillatory
behaviors  (left).  The  parameters  in  blue  (Ω x and  Ω y)  are  intrinsic
frequencies of oscillators. The parameters in orange (a and  2b) capture
the coupling phases.  (2)  Incorporating metastable  states  via  symmetry
breaking  captured  by  green  parameter  (δω).  (3)  Modifying  oscillator
dynamics to allow for regimes from discrete to continuous states via three
lavender parameters (τ , ρ, and  θ).  Such extended HKB models capture
dynamics of human-machine interactions. (4) Extended HKB applied to
partners  with  adapting  oscillatory  dynamics.  Oscillator  parameters  in
blue  (Ω)  are  coupled  via  adaptation  rate  purple  parameter  (ϵ ).  (5)
Another model of human-machine dyads. Here, red parameters refer to
bias  (ψ)  of  various  strength (c).  (6)  HKB model  scalable  for  coupling
among multiple agents utilizing same orange coupling phase parameters
in  original  HKB  model.  For  additional  explication  of  the  models  and
supporting empirical evidence, see Tognoli et al.  (2020). Modified with
permission from Tognoli et al. (2020).



6. Radical embodied computation: Emergence of meaning through the
reproduction of similarity by analogy—Fred Hasselman11

The computer metaphor of mind and brain is unviable as an explanatory vehicle for
the  complex  adaptive  behavior  of  living  systems.  I  present  anomalies  in  the
empirical  record  of  the  neurosciences  that  expose  profound  problems  with  the
assumption that the brain performs machine-like computations. As an alternative, I
suggest  that  evolved  agents’  adaptive  coordination  of  behavior  is  based  on  a
massive redundancy of reality instead of massive modularity of mind. A research
program of  Radical  Embodied  Computation based on contemporary  theories  of
physical information and natural computation takes the order generating process of
the reproduction of  similarity by analogy as its main topic of inquiry.  Finally,  I
provide empirical  evidence for  the  ability  of  all  evolved  agents,  including  those
without  a  nervous  system,  to  exploit  the  massive  redundancy  of  reality  to
coordinate their behavior.

6.1. What do we understand by the computer metaphor of the mind and
brain?

In  order  to  be  able  to  operate  as  a  skilled  agent  in  a  dynamically  changing
environment,  an  organism  will  have  to  coordinate  its  behavior  adaptively  and
intelligently relative to the constraints of its internal structure and the demands of
the task at hand  (Bruineberg and Rietveld, 2019). The computer metaphor of the
mind and brain of skilled agents comes in many different shapes and forms but
generally describes a discrete input-output machine that performs computations
relatively  independent  of  its  immediate  environment.  Most  accounts  share  the
following  three  ingredients:  (i)  a  virtual-physical  dualism;  (ii)  unauthorized
information theory12,  and (iii)  a component-dominant causal ontology (Newton’s
curse).

The  first  ingredient,  the  virtual-physical  dualism,  refers  to  a  mind-body
dualism in which the mind of a skilled agent is considered a virtual machine that is
emulated on the evolved hardware of its physical body. More generally stated, a
divide  is  introduced  between  the  physical  medium  and  its  behavior,  which  is
interpreted as the result of some form of computation. The dualism is expressed
most explicitly in the classical Computational Theory of Mind:

Computer theorists [… ] often speak of identities of virtual architecture.
Roughly,  you  establish  the  virtual  architecture  of  a  machine  by
specifying which sets of instructions can constitute its programs [… ] the

11 Correspondence: fred.hasselman@ru.nl (F. Hasselman).
12 “Unauthorized,” due to an anecdote related by Walter Freeman on the inaugural meeting of the Society for

Complex Systems in Cognitive Science (Amsterdam, 2009), in which he recalled a lab-visit by Claude
Shannon,  the  progenitor  of  classical  information  theory,  who  expressed  severe  concerns  about  the
applicability of his theory for describing information processing in biological systems.
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present question is why anything except virtual architecture should be
of any interest to the psychologist.

— Fodor (1983, p. 33)

How  exactly  the  physical  and  virtual  architectures  interact  is  often  omitted  or
considered irrelevant (e.g., nonreductive physicalism, Fodor, 1974). It is common to
posit only a minimalist correspondence principle that assumes correlates must exist
between the states of the virtual and physical machines:

… symbol structures [… ] are assumed to correspond to real physical
structures  in  the  brain  and  the  combinatorial  structure  of  a
representation is supposed to have a counterpart in structural relations
among physical properties of the brain.

— Fodor and Pylyshyn (1988, p. 13)

Virtual-physical dualism can be found at many different scales of observation (Fig.
12), e.g., the Neuron Doctrine, posited by Ramón y Cajal in 1888 (cf. López-Muñoz
et al., 2006) considers the neuron to be (i) a fundamental structural and functional
unit of the nervous system, (ii) an input-output machine with discrete states, (iii) in
which input from dendrites is processed by the cell body and sent as output to the
axon. The same virtual architecture is applied to larger assemblies of neurons:

I refer to ‘path theory’, which states, roughly, that the functions of the
central nervous system are controlled by chains of neurons laid down as
a path so as to conduct the impulse to its appropriate end-organ: that
the  paths  are  strictly  constant,  thus  accounting  for  the  fact  that  the
reflexes and reactions are largely constant: that learning consists of the
opening up of new paths and that memory consists of the retraversing
of some old path by another impulse.

— Ashly (1931, p. 148)



Fig.  12. Virtual  machines  posited  to  exist  at  different  levels  of
organization of the nervous system: (A) the neuron; (B) the path; (C) the
engram.

In 1904, Richard Semon (cf. Lashley, 1950) applied the same architecture to even
larger scales when he suggested the engram to be the unique physiological trace left
in the central nervous system by each stimulus and thing that an organism had
experienced  or  learned  (Bruce,  2001;  McConnell,  1968).  The  brain  could  be
considered  a  storehouse  for  engrams  (Gibson,  1966),  a  biological  machine
responsible  for  processing,  storing,  and  retrieving  information to  coordinate
behavior. Although these machine models of biological computation were posited
over a century ago, they remain omnipresent in contemporary literature:

Memories  are  presumably  stored  in  subgroups  of  neurons  that  are
activated in response to a given conjunction of sensory inputs.

— Reijmers et al. (2007, p. 1230)

The activity of individual neurons during learning is likely to determine
their recruitment into the memory trace.

— Nonaka et al. (2014, p. 9309)

The  second  ingredient  concerns  the  conflation  of  the  formal  concept  of
information  (a  quantity  that  resolves  uncertainty  about  the  configuration  of  an
information  source)  with  meaningful  or  semantic  information (similarities
between  configurations  of  different  information  sources).  Classical,  algorithmic,
and quantum information theory, explicitly exclude it as part of their explanatory
domain (Desurvire, 2009, p. 38). As Shannon (1948) lucidly explained:

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is, they refer to or
are  correlated  according  to  some  system  with  certain  physical  or



conceptual  entities.  These  semantic  aspects  of  communication  are
irrelevant to the engineering problem.

— Shannon (1948, p. 378)

The semantic aspects of a message are irrelevant for reproducing it, if they were
relevant  for  message  reproduction,  a  universal  theory  of  information  and
communication would not be possible. 

The third ingredient concerns the assumed relationship between parts and
wholes in explanations based on the computer metaphor, which is best described as
Newton’s Curse:

[… ] conceptualizing causal primacy in terms of a reduction of wholes to
parts,  where  the  wholes  are  causally  impotent  epiphenomena,  i.e.,
merely aggregates of microphysical constituents.

— Leeuwen (2009, p. 38)

The idea is that, like a machine, the phenomena of the body and mind can be
explained  as  a  composition  of  independently  operating  parts  whose  functions
essentially “add up” to generate behavior at the level of the whole. As we go from
neuron to brain, the functions of the physical substrate essentially stack up like lego
blocks as information is passed from one scale of the organization to the next. This
move leads to a science of human behavior and cognition in which research efforts
focus on identifying functionally independent components (component-dominant
dynamics)  instead  of  the  interactions  between  them  (interaction-dominant
dynamics).

To summarize, the computer metaphor of body and mind as presented here is
a  general  metaphor  of  machine-like  computations  performed  by  the  biological
subsystems of the body, most prominently the neurons in the brain. The metaphor
can  be  found  in  scientific  theorizing  dating  back  to  the  very  conception  of  the
cognitive, behavioral, and neurosciences and has led to an interpretative view of
computation, the brain can be thought of as performing logical operations, but the
focus of research should be on understanding how minds emerge from the physical
characteristics of the complex biological systems nested inside our bodies  (Boyle,
1994,  p.  452).  Before  such a  change can happen,  the cognitive,  behavioral,  and
neurosciences will have to acknowledge the anomalies that exist in the empirical
record to even the most general assumptions underlying the physical realization of
the virtual computing machines.

6.2. What are some of the limitations of the computer metaphor?

No matter how minimal a correspondence principle between the virtual and the
physical is defined, all scientific claims based on the computer metaphor assume
neurons  in  the  brain  perform  computations  and  that  these  computations  are
somehow causally  entailed  in  bringing about  coordinated,  adaptive behavior.
Fig.  13 summarizes a selection of cases that can be said to be anomalous to  that
claim. When MRI scans of the brain show a large black hole inside the skull of a
patient,  indicative  of  a  liquid  occupying  50  –75%  of  the  volume  that  typically



contains vast amounts of interconnected neurons, anyone would be surprised to
learn the patient is an otherwise healthy 44-years-old French civil servant, married,
with children (Feuillet et al., 2007). In China, a 24-year-old woman, married with a
daughter, went to a hospital because of persisting nausea and was found to be the
9th recorded case of Cerebellar agenesis: her cerebellum was missing completely
(Yu  et  al.,  2015).  Due  to  Rasmussen  syndrome,  a  a  3-years-old  Dutch  girl
underwent  surgery  to  remove  her  language  dominant  hemisphere.  This  chronic
focal  encephalitis  had  caused  a  severe  regression  of  language  skills,  but  at  age
seven, except for slight spasticity of the left arm and leg, she is living an everyday
life and is fully bilingual in Turkish and Dutch (Borgstein and Grootendorst, 2002).



K 50-75% of brain 
tissue is missing

Feuillet et al. (2007)

Age: 44
Gender: Male
Residence: France
Cause: Childhood hydrocephalus
Discovery: Hospital due to mild weakness in left leg
Health: Complaints went away after shunt was placed
Social/Cognitive Skills: Married with children, Civil 
servant

Cerebellum is 
missing

 
Yu et al. (2015)

Age: 24 
Gender: Female
Residence: China
Cause: Cerebellar Agenesis
Discovery: Hospital due to persistent nausea
Health: Mild to moderate disfluencies in motor 
coordination 
Social/Cognitive Skills: Married with children

Hemisphere is 
missing

 
Borgstein and 
Grootendorst (2002)

Age: 7
Gender: Female
Residence: Netherlands
Cause: Hemispherectomy of language dominant 
hemisphere at age 3 
Discovery: Severe Language impairment due to 
Rasmussen Syndrome 
Health: Slight spasticity of left arm & leg at age 7
Social/Cognitive Skills: Bilingual Turkish/Dutch, 
Typical development

Hemisphere is 
missing

Smith (1966)

Age: 47
Gender: Male
Residence: United States
Cause: Hemispherectomy of language dominant 
hemisphere at age 47
Discovery: Mild Weakness in right arm
Health: Post-operative impaired speech production
Social/Cognitive Skills: Pre/Post-operative PIQ = 
107/104, Married with children



Fig. 13. Face the brains that should not be: Examples of anomalies in the
empirical record to the computer metaphor of mind and brain (see text
for details). All figures reprodiced with permission from publishers of the
respective articles.

Majorek  (2012) provides an exhaustive review of research articles and case
reports that represent  more than 100 individuals  who live rather ordinary lives
given  their  out-of-the-ordinary  brains.  The  vast  majority  experience  relatively
minor discomforts due to their condition. To be more specific about the extent of
problems these cases pose for the idea that the brain is a central processing unit,
consider the loss of computational power due to loss of brain tissue: the cerebellum
makes up 10% of total brain mass but contains 80% of all the neurons in the brain,
the cortex comprises 80% of brain mass, but only 20% of neurons (Azevedo et al.,
2009). This composition is due to the distribution of non-neurons (e.g., glial cells)
to neurons, which is about 3.7 in the cortex, but only 0.2 in the cerebellum. In the
case of the woman with cerebellar agenesis, only 20% of the neurons available in a
typical brain were sufficient for this individual to behave as a skilled agent in a
dynamically changing environment. It was estimated that the brain tissue (neurons
and  glial  cells)  of  the  French  civil  servant  was  reduced  by  50-75%.  A
hemispherectomy would remove “only” 10% of the neurons in a typical brain but
almost  four  times  as  many  non-neuronal  cells.  Notwithstanding,  most
contemporary cognitive neuroscience is based on studies of the activity of neurons
in the neocortex, which is reduced in mass by 50% due to the surgery. Vining et al.
(1997) studied  the  burden  of  illness  in  58  children  who  had  undergone
hemispherectomy due to various kinds of debilitating afflictions of the brain and,
remarkably, found that most children were better off with half a brain:

We are awed by the apparent retention of memory after removal of half
of the brain, either half, and by the retention of the child’s personality
and sense of humor. Yet we look forward to the time when there are less
mutilating approaches to these problems. Until then it seems that half of
a brain is less burdensome to these children than a whole brain where
one side is badly misfiring.

— Vining et al. (1997, p. 170)

The authors report that these children leave the hospital on average ten days after
the surgery. How is that possible if the brain is responsible for all our experiences of
the world and our actions upon it?

What is often pointed out as an explanation is the extreme plasticity of the
brain in young children, which would allow the remaining part of the brain to take
over  functions  from  the  half  that  was  removed.  Aside  from  the  biologically
implausible mechanisms that need to be invoked for such an explanation to be valid
(cf.  Majorek, 2012), the scientific literature reveals that  the remarkable recovery
from hemispherectomy  also  occurs in much older patients. Consider the case of
E.C.,  a  47-year-old right-handed, right-eyed patient who had his  left  (language)
dominant  cerebral  cortex  removed  (Smith,  1966).  E.C.  had  a  pre-operative
performance I.Q. (WAIS) of 108. Seven months after his dominant hemisphere was



removed, his performance I.Q. was 104. He scored 85 out of 112 items correct on a
verbal comprehension test. One would expect that removing a hemisphere storing
many decades of unique traces of experienced events would scale to a much larger
effect on I.Q. and cognitive ability.

The virtual  machines hypothesized to exist  at  the level  of  the neuron and
neuronal assemblies (e.g., paths, traces, the engram) do not escape clashes with a
much more complex and dynamic reality. The validity of the storehouse or database
metaphor of the brain has been criticized for many years  (Wolpaw, 2002), but it
was Lashley (1950) who, after a lifetime spent searching for the engram, declared
no such structures could be found anywhere in the central nervous system. What is
striking about Lashley’s objections is that he suggested memory traces could not be
unique or constant, localizable, that there are multiple representations of the same
experience, and these representations are not reducible to the physical parts of the
brain but to dynamically changing relations between those parts. Induced loss of
brain  tissue  in  the  associative  areas  of  animals  does  not  cause  amnesias  but
difficulties with abstraction and generalization. Wherever the engram may hide, its
true nature must be a “multiplicity of interactions that can only be inferred from
the final results of their activity” (Lashley, 1950, p. 27).

At the cell level, anomalies to the three postulates of the Neuron Doctrine
have also been found.  The idea that  the neuron is  the fundamental  unit  of  the
nervous system is challenged by the different types of glial cells that, in total, make
up half of the mass of the brain and perform a wide range of functions such as
forming  communication  networks,  control  over  capillary  blood-flow,  neuron
discharge and the pruning of connections between neurons. One astrocyte cell can
control thousands of neurons (Miller and Gauthier, 2007; Takatsuru et al., 2014).
The idea that the neuron is an independent discrete unit that is triggered by input
and generates output is challenged by the fact that activation of neuronal pathways
traced  from  the  moment  a  stimulus  is  presented  to  the  senses  is  not  possible
beyond the neurons in the primary sensory cortices, after which any association
between input and output is lost  (Freeman, 2008). A further complication is the
finding that individual spiking series, as well as large scale neuronal avalanches,
display  scaling  behavior  that  conforms  to  the  statistics  of  selforganized  critical
processes,  not  to  linear  arrangements  of  deterministic  oscillators  with
characteristic/fundamental  frequencies  (Chialvo,  2004;  Rubinov  et  al.,  2011).
Finally,  the  postulated  locus  of  impulse  generation and the  direction of  flow is
incorrect,  due  to  the  observation  of  antidromic  spiking;  an  impulse  can  travel
“upstream” in the opposite direction. Moreover, an impulse can be (spontaneously)
generated anywhere (Bukalo et al., 2013).

To summarize, in addition to the empirical findings that are inconsistent with
the models displayed in Fig. 12, the main problem exposed by the anomalous cases
in Fig.  13 is twofold. (i) Drastic reduction of the number of neurons in the brain
does  not  impact  the  ability  of  individuals  to  lead  relatively  ordinary  lives;
individuals with extreme atypical brain development can complete an education,



maintain a job, and support a family. (ii) The brain cannot be considered a central
processing  unit  composed  of  functional  modules  and  storage  capacity  for
experienced  events,  the  removal  of  an  entire  hemisphere  does  not  lead  to  the
expected impairment of cognitive functions and memory loss if  it  were to fulfill
those functions.

6.3. What metaphor should replace the computer metaphor?

The persistent problem for any theory seeking to explain intelligent behavior by a
complex  adaptive  system  that  appears  to  coordinate  its  behavior  based  on
previously experienced events,  is  explaining the existence  of  thermodynamically
improbable order representing highly contextualized meaningful information about
particular  facts  of  those  experienced  events.  The  anomalous  nervous  systems
summarized in Fig. 13 suggest there cannot be a collection of snapshots of the past
imprinted onto the biological substrate. Alternative perspectives to the computer
metaphor indeed seek to dispense with internal information storage and processing
by “offloading” to relationships between the structure of the evolved body and the
environment it evolved in. Examples are the theory of direct perception  (Gibson,
1979); the ontology of affordances and effectivities  (Turvey et al., 1981) and more
recently  Radical  Embodied  Cognition (Chemero,  2009),  Physical  Intelligence
(Turvey and Carello,  2012) and  Embodied,  Embedded,  Extended,  Enactive (4E)
Cognition (Newen et al.,  2018).  I  conclude from the anomalies discussed in the
previous section that the alternative perspectives are not radical enough in their
conception  of  the  opportunities  for  coordination  of  behavior  presented  by  the
nested structure of reality. Instead of a massive modularity of mind  (Carruthers,
2006), there is a massive redundancy of reality. In what follows I will argue that
coordinative structures can be realized through the recognition and reproduction of
multi-scale  redundancies and that  physical systems that  do so,  engage in the
encoding and decoding of meaningful information.

I  suggest  Radical  Embodied Computation as a research program that can
generate viable alternatives to theories based on the computer metaphor. Radically
embodied computational theories depart from three core assumptions, the first is
that a massively redundant reality exists that is composed of many nested spatial
and temporal scales on which physical  processes interact by exchanging energy,
matter  and information.  A second assumption is  that  the state configuration of
physical  systems  can  be  described  in  terms  of  physical  information  and  their
behavior  as  the  result  of  natural  computations  (Fredkin,  1990;  Hopfield,  1994;
Wheeler, 1990; Wolfram, 2002). Informational Realism  (cf. Floridi, 2014, p. 59)
and  Digital  Physics  can  be  said  to  “[…]  regard  the  physical  world  as  made  of
information,  with  energy  and  matter  as  incidentals”  (Bekenstein,  2003,  p.  59).
When systems self-organize from one state configuration to another, the amount of
information they represent changes, because different sets of degrees of freedom
become available,  while  others  are  fixed.  This  can  be  described  as  information
processing,  or  embodied  computation (Flack,  2017;  Kondepudi  et  al.,  2017;
MacLennan, 2012; Polani et al., 2007). The third assumption is that all behavior of



living systems concerns the  reproduction of  similarity by analogy.  In  fact,  any
structure  or  process  that  generates  or  persists  thermodynamically  improbable
order in the universe, at some level of analysis, reproduces redundancies as a self-
organizing dynamic pattern over time, or as an emergent structural pattern through
a spatial configuration, or both. In complex systems this can be observed  as  the
emergence  of  long-range  temporal  correlations  and  (multi-)fractal  geometry  in
system observables  (Gilden et al., 1995; Goldberger et al., 2002; Kelty-Stephen et
al., 2013; Wijnants et al., 2012). The order generating phenomena at the level of the
behavior  of  an  organism  are hypothesized  to  belong  to  the  same  domain  as  is
described by the physical, chemical and biological principles and laws suggested to
be responsible for the emergence of complexity in the universe, e.g. in the statistical
physics of self-replication (England, 2013) and assembly theory (Marshall et al.,
2021).  The idea is that  living systems are able to recognize,  couple,  interact,  or
resonate with the multi-scale invariant patterns presented by their  internal  and
external  environments.  What  is  generally  meant  by  terms  such  as  recognition,
coupling, multiscale interaction and resonance is often formally equivalent to the
dynamic patterns produced by multivariate (coupled) dynamic system models  (cf.
Broer, 2012).

As  an  example,  consider  a  well-known  system  from  organic  chemistry  in
which  two  physical  information  sources  (nucleotides  and  amino  acids)  are
connected  through  a  coding  structure,  transfer  RNA.  The  relationship  between
RNA and DNA is apparent, however:

[…] the conversion of the information in RNA into protein represents a
translation  of  the  information  into  another  language  that  uses  quite
different symbols. Moreover, […], this translation cannot be accounted
for by a direct one-to-one correspondence between a nucleotide in RNA
and an amino acid in protein.

— Alberts et al. (2002, p. 334)

Transfer RNA is an analogy that gives meaning to the information structures by
translating their similarities, i.e., by recognizing or signaling the invariant structure
that exists between them, but cannot do so directly:

Two  separately  identifiable  patterns  are  related  by  analogy  if  the
existence and frequency of the one is correlated with the existence and
frequency of the other in the absence of direct forces between the two
patterns  that  could  cause  the  correlation.  That  is,  correspondence
between  codon  and  analogon  came  about,  and  is  maintained,  by
reproduction of an initial random event.

— Walker (1983, p. 809).

The transfer RNA molecule can be said to connect the world of nucleotides to
the world of amino acids (Barbieri, 2003, P. 98), it represents the transmission of a
message “correlated according to some system with certain physical or conceptual
entities”  (Shannon, 1948). The tRNA translates redundancies that were captured
and encoded millions of years ago, but it takes just 20 seconds to several minutes to
reproduce those patterns in the present (Alberts et al., 2002). The communication



system as  a  whole  is  the embodiment  of  contextual  meaning,  but  the semantic
aspects  of  the  message  are  still  irrelevant  for  successful  transmission.  The
translation leads to the identification of mutual information between the different
information  sources,  which  reflects  the  emergence  of  meaning  (Kolchinsky  and
Wolpert, 2018).

The next step is to extend this idea to explaining “higher cognition” without
machine-like  storage  and  processing  of  meaningful  information,  the
“Representation-Hungry Challenge” (Kiverstein and Rietveld, 2018). This concerns
the problem which Bruinenberg et al. (2019) define as the coordination of behavior
based on “aspects of the sociomaterial environment that are not sensorily present”.
Coordination of behavior that is  not considered representation-hungry, concerns
the perceptual coupling of an evolved agent to the regularities and invariants of its
ecological  niche,  which  Bruinenberg  et  al.  (2019) define  as  lawful  ecological
information.  This  perceptual  coupling  represents  the  offloading  of  functions  to
ecological principles and laws (Petrusz and Turvey, 2010). Bruinenberg et al. (2019)
describe general ecological information as regularities of the ecological niche of the
kind that if X occurs, it is likely that Y will occur as well (i.e., statistical regularities).
Coordination of behavior based on statistical regularities could indeed be a way to
account for higher cognition. However, I argue that from the perspective of radical
embodied computation, this distinction is unnecessary and, in both cases, refers to
the decoding of meaningful information by an order generating process.

The fact that organisms can perceptually couple with their environment is
due to the evolutionary process of speciation by natural selection, which occurs on
time  scales  at  which  the  identities  of  genomes  fluctuate.  The  coordination  of
behavior based on lawful ecological information is an uncontroversial evolutionary
account of how specific knowledge about the world ended up represented by the
physical  configuration  of  an  organism.  The  only  difference  between  lower  and
higher cognition, or, lawful and general information, seems to be the time it takes
for meaning to become encoded by the body. In fact, the evolutionary events that
caused fish to have gills, birds to have wings and humans to walk upright, are also
no longer sensorily present in the sociomaterial environment, but their after-effects
certainly are! The events in a family history that caused an individual to be born at
a  particular  geographical  location,  in  a  specific  sociocultural  environment,  in  a
specific moment in time, are no longer present, but they do play a role in explaining
why the behavior of an individual is considered psychopathological or not (Olthof et
al., 2022). The thermodynamically improbable order generated by living systems
through  their  structure  and  behavior  represents  an  accumulation  of  broken
symmetries  of  the  past  (cf.  Hopfield,  1994),  a  living  record  of  meaningful
information.

To  partly  resolve  the  “Representation-Hungry  Challenge,”  I  suggest  to
distinguish between immediate causal entailment and entailment that is mediative
for explaining the behavior of skilled agents (Fig. 14). The former refers to causes
for  the  current  state  of  affairs  whose  effects  are  immediate  (laws  of  physics,



genotype, sociocultural  environment,  personality),  the latter refers to the causes
that can be traced as mediators in the realization of the current state of affairs (age,
time of day, quality of sleep last night, current emotional state). The scale divide is
an effect horizon, its main purpose is to serve as an explanatory vehicle to indicate
there is a structure that is permissive of the behavior in the present, and a structure
that is causative. The permissive structure appears as a set of constants painted on
the  horizon,  representing  boundary  conditions  for  the  causative  structure.  The
causative structure lies within the horizon and is the set of efficient causes of the
behavior under scrutiny in the present. This interaction-dominant causal ontology
is consistent with theories about causation and direction of coupling in complex
systems in which there is no privileged scale at which causality resides. In general,
fast  processes  evolving  at  shorter  time scales  can  be  said  to  be  responsible  for
bottom-up, aggregate effects, whereas processes at slower scales have a top-down
effect,  setting  boundary  conditions  for  the  faster  processes  (coarse  graining  as
downward causation, (Flack, 2017; biological relativity, Noble et al., 2019).

Fig.  14. The massive redundancy of reality provides sufficient structure
for evolved agents to coordinate their behavior as is if it were based on a
unique  internalized  interaction  history.  The  grey  boxes  represent
different effect horizons that can be placed at an arbitrary divide between
spatial and temporal scales to separate immediate and mediative effects
into permissive and causative structures,  respectively.  In addition, this
illustration shows  that  upward  causation  involves  structures  and
processes  that  have  cascading  or  aggregate  effects  relative  to  higher
scales.  Downward causation  involves  structures  and processes  that  set
parameters  and  boundary  conditions  for  lower  scales.  Meaningful
information  emerges  whenever  an  analogy  reproduces  similarities
between structural or dynamical patterns that exist on different scales.

The horizon also can separate spatial scales, to explain phenomena such as
swarming behavior,  the (temporary) collective coordination of behavior between



many individual agents, it seems obvious that system boundaries should at times be
able to extend beyond the individual or its component parts  (Brush et al., 2022).
Note that for temporal scales, the relationship between the relative order of the
scale  and  their  classification  as  immediate  versus  mediative  may  be  more
consistent than for spatial scales. However, what should be considered fast or slow,
small  or  large,  is  arbitrary,  unless there is  knowledge about naturally  occurring
divides (e.g., adiabatic separation, Hopfield, 1994). Quantum physical phenomena
are  permissive  of  phenomena  observable  at  larger  spatial  scales.  In  most
circumstances it will not be sensible to declare quantum phenomena as the efficient
causes for the macro scale  structure of  biological  systems, but the macro states
could not manifest without the immediate entailment of quantum phenomena. The
same holds for speciation by natural selection, it is not wrong, but also not very
informative,  to  suggest  the  adaptive  behavior  of  an  individual  organism  in  the
present was caused by an ancient event in its evolutionary history, but the genome
does not provides a structure that is permissive of such behavior.

6.4.  What  empirical  findings  support  your  preferred  alternative
metaphor?

In order to produce viable alternatives to the computer metaphor, the perspective
of  radical  embodied  computation  should  of  course  be  supported  by  empirical
evidence.  I  will  address  two  questions:  (i)  Do  skilled  agents  indeed  reproduce
multi-scale  invariant  structure  of  the  internal  and  external  environment  to
coordinate  their  behavior?  (ii)  Can  the  brain  function  as  the  redundancy
reproduction system?

The most direct evidence supporting the first question is the phenomenon of
Complexity Matching in which synchronization between systems occurs at the level
of  complex  dynamical  patterns.  Evidence  of  selective  matching  of  dynamical
behavior to  scaling exponents  in  different  observables measured simultaneously
throughout the body suggests that such a complex multiscale coupling relationship
between physiological and psychological processes could actually exist (Coey et al.,
2018; Rigoli et al., 2014). Complexity matching has also been reported for dyadic
interactions,  e.g.,  interpersonal coordination of coupled movements  (Almurad et
al., 2017; Marmelat and Delignières, 2012) and overt behavior during joint problem
solving  (Abney  et  al.,  2014). Speech  perception  experiments  have  shown  that
human participants make use of the multifractal structure of the signal to classify
speech sounds (Hasselman, 2015; Ward and Kelty-Stephen, 2018). The Complexity
Matching or Complexity Control hypothesis of human behavior is comparable to
principles  for  optimal  and  maximal  information  transport  between  complex
systems such as posited by fluctuation-dissipation theorems and non-equilibrium
thermodynamics. The general idea is to regard self-affine structure as a complex
resonance frequency (e.g. the 1/f resonance hypothesis, Aquino et al., 2011; chaotic
resonance, Freeman et al., 2001; complex stochastic resonance Kelty-Stephen and
Dixon,  2013). The multifractal  spectrum is  a code that  exposes the existence of



redundancies between different scales, the ability to match, resonate, synchronize
or couple to this code implies the reproduction of similarity by analogy.

To  answer  the  second  question,  consider  studies  on  (congenitally)
decorticated  animals  and  humans.  Reviewing  studies  on  the  behavior  OF
decorticated rats  (cf. Whishaw, 1990), Merker  (Merker, 2007) concluded it would
be difficult  to distinguish them from animals with a cortex,  they can engage in
social behavior (grooming, mating) and do not perform worse on learning tasks. In
a  case  report  of  a  congenitally  decorticated  rat  identified  as  R222,  the  authors
concluded:

Long before encephalization there was centralization of function in the
upper brainstem for sensory integration, learning, memory, motivation,
and organization and expression of complex behaviors […] R222 lived a
long “normal” life by defaulting to brain organization that has sustained
and propagated vertebrate life since inception.

— Ferris et al. (2019, p. 9)

Based on many behavioral experiments and neuro imaging of R222, the authors
were able to corroborate a conjecture by Merker  (2007) that the basic minimum
brain structure required for a “normal” life is everything that evolved before the
neocortex. The neocortex is not even required for consciousness. Shewmon et al.
(1999) report 4 cases of children with total to near-total absence of a cerebral cortex
who possessed many “higher” cognitive skills, such as distinguishing familiar from
unfamiliar  people  and  environments;  social  interaction;  musical  preferences;
appropriate affective responses, and associative learning. The authors suggest these
children had a mind without a brain because their caregivers continued to interact
with  them  as  autonomous  individuals,  providing  a  safe,  stable,  predictable
environment.

Most evolved organism do not have a neocortex, in fact, most do not have a
nervous  system.  However,  even  the  behavior  of  plants  can  be  described  as
retrospective,  prospective,  flexible,  i.e.,  apparently  coordinated  by  previously
experienced  events (Carello  et  al.,  2012).  What  could  be  the  function  of  the
neocortex?  The  nervous  system  of  invertebrates  is  rather  simple  and  has  been
found to contribute variability, or, adaptive indeterminacy to their behavior, rather
than exert executive goal-directed control (cf. Maye et al., 2007). Perhaps the role
of the neocortex is to make the behavior of evolved agents less determined by the
highly predictable structure of our massively redundant reality. Perhaps it is there
to introduce some randomness and novelty to our adaptive behavior.

7.  Tunnel  vision,  tunnel  action,  tunnel  mind:  Just  get  out—Fred
Keijzer13

The computer metaphor invites views on mental, neural, and behavioral processes
built  around the  input-output  relations between an inner and an outer domain
usually  cast  in terms of  information processing.  This metaphor also operates in

13 Correspondence: f.a.keijzer@rug.nl (F. Keijzer).
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ways  that  make  the  material  constitution and  context  of  these  processes  and
domains less relevant. There are two problems here. First, the metaphor suggests
that we know more about these processes and domains than we do. The metaphor
also shields this unwarranted confidence from the life sciences’ broader empirical
context that provides examples and conceptual frameworks that bear critically on
much work within the cognitive, neural, and behavioral sciences. In both ways, the
computer metaphor limits the range of conceptual and empirical options to make
further progress. By discarding the computer metaphor and positioning the various
cognitive  sciences  within  the  general  life  science  domain,  new views  on minds,
brains, and behavior become possible that have a closer fit to the other sciences.
The early evolution of the nervous will be used as a showcase that provides new
approaches to understanding cognitive and experiential phenomena.

7.1. What do we understand by the computer metaphor of the mind and
brain?

The  computer  metaphor  has  taken  many  different  forms.  Here,  I  address  two
issues: First, this metaphor invites an interpretation of mental and neural processes
that hardly diverges from a dualistic view of the mind that goes back hundreds of
years. The central innovation is that the idea of an immaterial mind is now recast
in  terms  of  a  material  brain acting  as  a  computational  device  running  mental
processes.  Second,  this  metaphor  operates  in  ways  that  make  the  material
constitution  and  bodily  context of  mental  processes  and  their  interactions  less
relevant. Though the brain is obviously a material system, its present status as the
modern material  version of  the  mind—a  mind-brain—comes from acting  as  a
computational system (e.g., Piccinini and Scarantino  (2010), among others many
others).  Its  physical  constitution is  relevant  as  far  as  it  provides  a  medium for
computational processes.

Both aspects fit a long-standing way of thinking that separates the (human)
mind from both the body and the rest of the world. The computer metaphor invites
a computational dualism that remains conceptually close to Cartesian dualism—a
separate  inner  space  of  reasoning  that  accesses  a  separate  external  world  only
through perception and action. The interpretation of the brain as a computational
medium invites a brain-body dualism in turn that sets the brain apart from the
rest of the body.

All in all, the computer metaphor offers a conservative view of the mind that
remains close to views predating modern science, leaving alone the current views of
the  natural  world.  I  want  to  stress  two  specific  issues  for  their  impact  on  the
cognitive sciences.

The central role of input-output relations

The  concept  of  computation  is  tied  to  input-output  functions,  and  computing
involves executing such functions, calculating the output states given specific input
states.  Initially,  computers  were  humans,  often  grouped and organized  in  large



office  environments,  who performed useful  calculations  by hand.  This  task  was
later delegated to digital computers that performed this function faster and more
reliable.  The computer metaphor for  human thinking derives from this  context.
Mental processes could be interpreted as computational processes that are at heart
well understood and do not involve a spooky immaterial substance. The latter was a
major  scientific  improvement  that  enabled  what  came  to  be  The  Mind’s  New
Science (Gardner, 1987). The various cognitive sciences that we know today all go
back to this shift in perspective, which enabled the nonreductive scientific study of
the mind in a form that remained close to its pre-existing conception.

Input-output  relations  play  a  central  role  here.  There  are  various  related
issues.  First,  while  there  is  ample  flexibility  in  how  the  mind-brain  might
implement computational processes, thm being computational is tied to articulated
inputs and outputs as these  enable us to specify  these  processes as algorithms,
rules, or just “computation.” As it has been formulated:

All that the rules need to do is specify what relationship obtains between
the  strings  of  digits  constituting  the  inputs  and  the  strings  of  digits
constituting the outputs.

— Piccinini and Scarantino (2010, p. 238)

Having definite inputs and outputs is usually not problematical in the context of
computation.  They  more  or  less  define  the  problems  or  functions  addressed.
However, for the computer metaphor, the situation is less clear as it is cast as a way
to  explain  all—or  at  least  large  chunks—of  (human)  behavior.  Here  it  becomes
difficult to establish in a nonarbitrary way what human beings’ overall inputs and
outputs are. Usually, they are selected by researchers in convenient and relevant
ways for a particular task at hand. But specifying the human input and output in a
more general way is not a self-evident issue.

The human task most  central  to  the computer metaphor,  computing,  is  a
highly specialized one, which (some) humans can learn, given sufficient training
and context.  Computing  is  not  the  obvious  core  of  human thought  and  action,
which might  be  more in  the line of  manual  and social  skills  or  fun things  like
dancing. Recasting the environment that we inhabit and the things we do in terms
of “strings of digits” is a formidable challenge. As long as we focus on vision, the
input  definition  may  look  complex  but  achievable,  but  we  rely  on  much  more
sensory devices on and in our bodies. Obviously, there are the standard five senses,
but here tactile sensing also includes temperature and nociception. Internally, we
have a wide range of proprioceptive devices, including the vestibular apparatus, but
also  a  wide  sensitivity  to  visceral  stimuli.  The  concept  “input”  requires  more
explication than it often receives. For the action side, the situation is similar as
basically  everything  we  do—even  remaining  motionless—requires  the  full
musculoskeletal system and its ongoing coordination even when the focal action
consists of entering a single button press, e.g., pressing the ‘x’ on a keyboard.



Concepts  like  input  and  output  impose  a  restricted  access  between  the
external  world  and  an  inner  mental  domain.  To  provide  a  metaphor  for  the
computer, input and output are like tunnels connecting two different worlds, while
the inner mind becomes a tunnel of its own, the one where information is processed
and sent onwards. Like the classic notion of mind, the computational mind-brain
remains separate from the physical world, being merely linked to them via their
input (sensory) and output (action) connections. The brain as the material realizer
obviously is part of the world, but is treated as being sufficiently isolated from the
body and the world to maintain the classic view of mind.

The  computer  metaphor  nicely  fits  the  rational,  reasoning  mind  that
dominated  large  parts  of  historical  philosophy  and  twentieth-century  analytic
philosophy (Hooijmans and Keijzer, 2007). This rational mind made us special and
kept  us separate from the rest  of  the (living) natural  world.  Now, hundred and
sixty-plus years after Darwin’s Origin, it still keeps our mind conceptually isolated
from the rest of the (living) natural world: a world of reason versus one of causes,
connected by perception and action.

Backgrounding the material constitution of the cognitive system and
processes

The computer metaphor with its emphasis on input-output relations stresses the
functional  and  computational  organization  of  the  mind-brain  and  provides  a
framework that specifies which aspects of the human body are relevant.  Choosing
appropriate and relatively abstract inputs and output definitions that are useful for
a given task or setting is one method by means of which the details of the physical
body can be set aside.  For the internal computational processing part,  a similar
abstract  characterization  is  sought.  Piccinini  and  Scarantino  (2010) define
computation in this context as any process the function of which is to manipulate
medium-independent vehicles according to a rule defined over the vehicles. They
also describe “medium-independence:”

a  medium  independent  vehicle  is  such  that  all  that  matters  for  its
processing  are  the  differences  between  the  values  of  the  different
portions of the vehicle along a relevant dimension (as opposed to more
specific physical properties, such as the vehicle’s material composition)

— Piccinini and Scarantino (2010, p. 238)

The computational interpretation determines which parts of the physical system
actually constitute the computational vehicles and which do not. Importantly, the
computational  interpretation,  including  the  notions  of  input  and output,  comes
first,  while  the  actual  physical  system—the  living  and  acting  organism—acts
subserviently as an implementation or realizer for the computational processes.

Thus,  under  this  metaphor,  cognitive  processes  and  the  mind  itself  are
thought  to  exist  as  a  set  of  abstract  processes  and/or  functions  that  are  not
necessarily tied to a brain, even when, in practice, they are. As said, the computer



metaphor fits nicely with classic dualism and the idea of the mind as a separate
space of thought and reason.

As a result, a living and acting organism is not considered cognitively relevant
in its own right but as the carrier of an inner set of computational processes that
together constitutes the organism’s mind. The remainder of the organism can be
left out of consideration as long as the overall functionality remains intact, notably
perceptual processes and motility. Also, the human mind provides the yard-stick
for what we take the mind to be, which further limits the physical systems deemed
relevant from a cognitive science perspective. Given the computer metaphor, it is
self-evident that, when it comes to cognition, the brain is an essential part of the
body  while,  e.g.,  our  intestines  are  not.  Interest  and  relevance  depend  on  the
presence of the mind, not on the human body itself.

The focus on the brain comes with an additional and important characteristic
that  is  widespread  within  the  cognitive  sciences:  brain-body  dualism.  The
computer  metaphor  zooms  in  on  the  brain—its  neurons  and  action  potentials
constituting crucial  computational  mechanisms—and possibly  other  parts  of  the
nervous  system.  Maybe  the  senses  and  muscle  system  are  taken  in  as  central
components of an organism’s embodiment. However, other parts like glands, liver,
stomach, intestines or immune system are not taken on board by the metaphor. The
result is a new form of dualism between the brain and the rest of the body, which
seems not, or much less, relevant for the mind.

Brain-body dualism makes perfect sense as long as it remains implicit and in
the background. Once it becomes an explicit characteristic, it becomes an awkward
implication, as will become clear below.

7.2. What are some of the limitations of the computer metaphor?

The computer metaphor gave birth to the current cognitive sciences and is still
shaping our thinking about potential scientific approaches for the set of phenomena
we currently designate with terms like mind and brain. I discuss three ways the
metaphor hinders conceptual and empirical advances within the cognitive sciences.

Conceptual conservatism and false confidence

In his classic book Progress and Its Problems, philosopher of science Larry Laudan
(1978) argued for the central importance of empirical and conceptual problems
in the sciences.  In his view, both historians and philosophers of science tended to
underestimate the central role of conceptual problems when it came to scientific
progress. Laudan also argued that the conceptual issues of scientific theories are
not  always clearly distinguished from non-scientific  conceptual  implications.  He
discusses  worldview difficulties that  arise  when a  particular  scientific  theory  is
incompatible or difficult to reconcile with a body of widely accepted but prima facie
non-scientific  beliefs (1978,  p.  61).  Laudan treats  these worldview difficulties  as
intra-scientific  difficulties  except  that  the  inconsistency  or  lack  of  reciprocal
support is between a scientific theory or claim and some “extra-scientific beliefs”



deriving from areas like metaphysics, logic, ethics, and theology. The well-known
Libet  experiments  and  their  presumed  implications  for  the  notion  of  free  will
provide an example where such worldview difficulties play(ed) a major role. Much
of the critical response to Libet’s original studies and claims was motivated by the
aim to counter the problems they raised—or seemed to raise—for our continuing
acceptance of us having free will (Libet, 1999; Schurger et al., 2012).

The computer metaphor is also tied to worldview difficulties but then in a
reversed way. Instead of being inconsistent with important “extra-scientific beliefs,”
there is a very close fit with long-standing views of the mind deeply embedded in
our  extra-scientific  views  of  our  own  subjective  experience  (epistemological,
metaphysical, phenomenal). Notwithstanding scientific developments that stressed
physiology and behavioral studies, the rise of the computer metaphor reinvigorated
the idea of an inner domain of reasons, reinterpreted as a computational device.
Once the metaphor was in place, the notion—and the topic—of mind as a domain of
logic, reasons,  and language became a scientifically credible target that could be
studied as a computational  system in relative independence of  underlying brain
processes and their biological context.

The connection with neuroscience changed over time when the brain itself
became reinterpreted as a computational device with the rise of neural networks
and parallel computing. Now, after several decades of the brain, the brain is often
treated as a device that has morphed into the material substance constituting the
mind. From an initial  opposition,  the new interpretation became one of  mutual
reinforcement where the classic inner mind idea became tied to the human brain,
strengthening itself in a new way.

Having  a  classic  philosophical  concept  figuring  as  the  central  target  of  a
modern scientific domain need not be problematical. However, we should be wary
about its impact on otherwise reasonable attempts to reorient that same domain
based on ongoing progress, both empirical and conceptual. The concept of mind is
a powerful and influential conceptual structure that has a major influence on how
the  problem  space  of  the  cognitive  sciences  is  conceived:  an  inner  domain  of
reasons connected with inputs and outputs to an independently existing external
world. This conceptualization is so deeply established and generally accepted that it
is  difficult  to  see  it  as  a  conceptualization  that  may  be  questioned,  as  classic
phenomenology indeed does (Zahavi, 2003). Diverging from this conceptualization
will  be  harder  to  accept  than  staying  in  its  wake.  Such  divergences  will  raise
conceptual problems in ways that have a very long history in science, such as, e.g.,
the difficulties related to Ptolemaic mathematical astronomy given the acceptance
of an Aristotelian cosmology during the later Middle Ages  (Lindberg, 2010). The
worries about Libet’s experiments and their potential impact on the reality of free
will also illustrate the forces at play.

I worry that the computer metaphor reinforces the ongoing acceptance of a
classic interpretation of the mind, although now with a different operating system.



In this way, the computer metaphor can easily convey confidence in its soundness
by reinforcing long-standing and largely extra-scientific views, while the conceptual
and empirical status of the sciences inspired by the computer metaphor may not
warrant such confidence.

Body loss

When I travel by train, I find it enticing to watch disembarking passengers walk
away across the platform at intermediate stops. The motions and rhythms involved
in walking are so different between individuals. People move fast, slow, energetic,
slumped, tired, jerky, proud, elegant, awkward, stiff, and in many other ways. These
differences derive from physical variations in the state of one’s tendons, joints and
muscles,  but  also  differences  in  height,  body  mass,  fatigue,  individual  walking
habits,  as  the  shoes  that  are  worn.  In addition,  moods and other  psychological
states  have their  own effects.  This  fascinating kaleidoscope of  different  walking
patterns and rhythms shows how (human) bodies have lives of their own that are
intrinsically coupled to inner neural processes. Thelen and Smith (1996) made it a
central  case  in  their  classical  studies  on how movement development in  babies
depends on an ongoing dynamical coupling between neural processes and the fast-
growing baby body. These movements are also not merely physical but, as we all
know from our own experience, also involve the pleasure that simple movements
like walking often bring, leave alone the joy of dancing, playing, stretching, running
fast, or feeling the sand of a beach beneath your bare feet. Our moving bodies are a
significant  and  direct  source  of  feelings  and,  in  that  sense,  an  integral  part  of
mental phenomena in their own right.

All  these movements, rhythms, and feelings of our living bodies disappear
when  we  bring  the  computer  metaphor  into  play.  The  metaphor  abstracts  the
“inessential” parts away and focuses on what is deemed relevant to the mind-brain
and its connections to the objective world. Our active, sensuous, and sometimes
hurting bodies that constitute our fleshy presence in the world are dismantled and
analyzed to tease out the part they play as input channels, output channels, and a
connecting mental mechanism situated in our heads.

The  motivation  for  this  major  excision  of  bodies  from  cognitive  science
derives from the differentiation between the mind-brain and the remainder of the
body, which is just the body and not part of the mind. This differentiation between
the merely physical and the mental domain is deeply engrained in our culture more
generally and pervades the cognitive sciences. e.g., the classic Turing Test builds on
the idea  that  the  body is  not  necessary  for  thinking.  We are  also  familiar  with
thought  experiments  involving  isolated  brains  or  other  computational  devices
hooked  up  to  the  world  and  still  functioning  as  minds.  These  ideas  seem self-
evident and to make sense. The computer metaphor perfectly fits such hypothetical
cases that—supposedly—show the living body to be inessential.

Nowadays,  the  relevance  of  embodiment  and  the  environment  is  widely
acknowledged and given attention (see, e.g., Newen et al. (2018) for an overview of



this extensive literature). However, as long as the computer metaphor and the inner
mind-brain remain central ingredients, embodiment easily becomes an elaborate
input-output  channel  around  the  central  mind-brain  that  need  not  be  a  full
biological body as robotic devices may count as well (Degenaar and O’Regan, 2017;
Hooijmans and Keijzer, 2007). Overall, it is a widely shared view that the body can
be artificial and need not be biological as far as it is relevant for cognitive science.

Interestingly,  this position makes sense from a conceptual  standpoint,  but
empirically it is difficult to defend. Conceptually, it  is hard to defend that living
systems provide necessary and sufficient conditions for cognitive systems and that,
therefore, the bodies of cognitive systems must be  biological.  However, from an
empirical  perspective,  such an argument is  beside the point.  The observation is
simply that, as a matter of fact, in all naturally occurring cases, the mind-brain’s
embodiment is biological. Humans are organisms with everything that implies. The
humans stepping across the station’s platform are biological entities as they stride
rhythmically to their various destinations. Humans—including their living bodies—
are the natural  instances of  the  cognitive  sciences.  Difficulties  only  arise  if  one
starts to think in terms of a mind-body opposition and the empirical bodily context
is set aside.

Sheets-Johnstone  (2009) formulates  her  critique  both  strong  and  clear,
“embodiment” amounts to a lexical band-aid on the more than 350-year-old wound
inflicted by the Cartesian split of mind and body, which for her refers clearly to our
living and animated bodies. 

There are clear empirical reasons why the cognitive sciences should focus on
full  walking,  thinking,  and  sensuous  living  bodies.  The  computer  metaphor
suggests cutting away the largest part of our bodies from consideration as being
inessential  to  our  thinking  and  feeling.  This  leaves  our  physical  mind-brain,
accompanied by abstract input and output boxes to connect it to the world. We
must be critical about this excision. First, how can we be so sure—given our current
limited state of knowledge—that we need this erasure to make headway with the
study of mental phenomena? So far, we have no clue how a computational device
would ever come to have the kinds of experiences that humans experience in an
ongoing way. So, second, how can we defend this excision when it leads us to an
abstraction  that  excludes  the  sensuousness  of  our  natural  bodies  and  the  wide
range of ways in which it immerses us, cognitively and experientially, within the
world?  Finally,  where  and  how  could  we  ever  make  such  a  cut?  Our  bodies
themselves are the central interaction device that lets us partake in the world. The
very idea of a potentially clear cut between mind and body derives from a dualistic
conceptualization of the mind, but a cut that involves the mind-brain, itself a body
part that evolved in conjunction with the rest of the body, becomes a very messy
and bloody operation.

Empirical isolation



As discussed elsewhere (Keijzer, 2021), backgrounding the material living systems
that  constitute naturally  occurring cognitive systems discourages the conceptual
integration of  the cognitive sciences within the wider range of  natural  sciences,
particularly  the life  sciences.  The connection between the  cognitive  and natural
sciences is often cast as  naturalization: cognitive and experiential phenomena as
we know them must be understood in ways that are  compatible with the natural
sciences but not necessarily derived from them. Another option is to stress a plain
naturalism that  aims  to  develop  an  account  of  cognitive  and  experiential
phenomena  that  interprets  these  phenomena  as  being  fully  derived  from  the
context provided by the natural and, most relevantly, the life sciences. Instead of
naturalizing the mind, this scientific project tries to conceptualize what cognitive
and experiential  phenomena are by understanding how they arise—evolutionary
and organizationally—from existing natural processes. How this latter project could
take shape remains  an  open issue,  but  there  are  several  relevant  points  in  this
context.

The computer metaphor focuses on IO functions, and backgrounding of the
material  substrate—the living  body—tends  to  limit  the  range of  empirical  fields
plausibly  relevant  for  the  study  of  mental  phenomena.  Given  the  metaphor’s
background in fields like computation, formal systems, and logic, the role of the
biological background of cognitive and experiential phenomena is not self-evidently
a central  concern.  In addition,  this  restraint  dovetails  nicely with long-standing
tendencies  in  psychology  to  maintain  some  distance  with  strong  reductive
approaches such as biological theories.

In cases where a field like neuroscience is taken on board, the focus remains
primarily  on  human cognition  and  experience  and  subsequently  on  the  human
central nervous system and its operation. In addition, a limited number of animal
model systems help clarify specific scientific questions relevant to the human case.
Kandel’s work on Aplysia in relation to LTP and the study of memory is an example
of  the  latter  (Kandel  and  Schwartz,  1982).  Finally,  the  IO  focus  on  perceptual
stimuli and behavioral output as general functions, irrespective of the organism or
agent involved,  again reinforces thinking about  the cognitive domain in a more
general way that need not be tied too closely to a wide range of biological fields and
organisms.

The situation changes radically when the cognitive sciences are positioned
within the domain of  the life sciences.  Working from the basic observation that
natural  instances of  mental  phenomena  are  exhibited  by  organisms,  it  can  be
assumed that cognition and experience are labels for phenomena that arose and
belong  within  this  general  context.  Once  such  an  approach  is  taken,  general
considerations and theories from biology provide a clear background from which
mental phenomena can be understood and studied.

This turn to the life sciences depends not only on the need to avoid losing the
human  body  from  cognitive  consideration.  There  is  currently  a  wealth  of  new



empirical work that targets a very wide array of nonhuman cases of what tends to
be called minimal or basal forms of cognition  (Baluška and Levin, 2016; Levin et
al., 2021; Lyon et al., 2021).14 These cases consist, e.g., of decision making by slime
molds, plant signaling that attracts predators that will eat the insect attacking the
plant, and the organization and operation of basic nervous systems. While one may
resist  the  use  of  the  word  “cognitive”  for  this  wide  range  of  phenomena,  it  is
becoming increasingly clear that the phenomena that are cognitively relevant and
interesting are widespread and arguably universally present in all life forms.

In this context, the words “biology” and “biological” do not so much refer to
the various details of the neural systems that underly cognitive processes or even
the human body, but to the wider biological domain in which cognitive phenomena
have evolved exist  in a wide variety.  In this case,  the question of  what nervous
systems are and how they operate become open issues in need of further research
and conceptual work.

A good example of what such a program could look like at a wide conceptual
level is provided by Godfrey-Smith’s recent work on the constitution and evolution
of  animal  minds  and  experience  (2020,  2016a,  2016b).  Building  on  Hoffmann
(2012), Godfrey-Smith (2016a) sketches how metabolic processes root in processes
at the nanoscale,  where spontaneous motion maintains a continuous “molecular
storm” that drives and shapes molecular  events in ways very different from the
push and pull of events at our bodily scale. From here on, evolution comes into
play, including the origins of nervous systems and questions about the evolution of
animals and eventually experience. In this approach, issues about the molecular
constitution of life,  the origins of  animals and other groups, developmental  and
physiological  processes,  and  the  operation  of  nervous  systems  are  all  brought
together  in  a  broad  overarching  framework  in  which  human  cognition  and
experience acquire a context. Godfrey-Smith focuses here on the broader picture
and  explores  potential  ways  of  redrawing  fundamental  issues  such  as  the  hard
problem. However, more specialized targets, such as, e.g., Cisek’s (2019) proposal
to  link  the  evolution  of  the  functional  architecture  of  the  mammalian (human)
brain to expanding capacities of behavioral feedback control, also relies on such a
broader biological and evolutionary background.

The  wider  biological  context  invites  attention  to  basically  all  organisms’
behavioral  and  perceptual  processes,  providing  a  testing  ground  for  developing
theories and explanations that encompass this wide range and provide a common
ground in which the eccentricities of the human case can be highlighted.

Building  on  this  wide  biological  context  does  not  involve  a  critique  of
computational  approaches  or  techniques.  On  the  contrary,  this  wider  context
provides new domains and testing grounds for such techniques. The animal body

14 A recent overview of these developments can be found in the double special issue of Philosophical
Transactions B, Volume 376, Issues 1820 and 1821, “Part I: Conceptual tools and the view from the
single cell” and “Part II: Basal cognition: Multicellularity, neurons and the cognitive lens” edited by
Lyon et al. (2021).



itself  requires  computational  models  to  understand  its  development  and
maintenance (Manicka and Levin, 2019). From this perspective, the still influential
idea of a division between automatic and simple processes maintaining the body in
contrast  to  the  complex  information processing  occurring  in  the  brain  must  be
discarded.

To  conclude,  the  computer  metaphor  tends  to  limit  and  isolate  what  we
consider to be the relevant set of empirical phenomena for the cognitive sciences.
This creates difficulties in accepting the relevance of our bodies for cognition and
experience. It also keeps a distance from nonhuman cases of cognitively relevant
phenomena that range from bacteria to plants, fungi, and animals.

7.3. What metaphor should replace the computer metaphor?

Instead of presenting a new metaphor, I suggest pushing more strongly towards a
conceptually  wider  and  more  empirically  inclusive  methodological  change.  This
would also include a more open and wider target than the mind and brain. Both
concepts take humans as the paradigm case and, in doing so, limit the breadth of a
systematic empirical and conceptual study of, what I would like to call,  cognitive
and experiential phenomena.  The latter phrase is more open and inclusive than
“mind” and not hindered by chestnut problems whether animal species so-and-so
does  really have a  mind or are really  conscious.  In this  way,  all  organisms are
treated as valid, plausibly cognitive and potentially conscious cases.

Instead  of  “brain,”  using  “nervous  systems”  (plural)  would  also  be  more
inclusive and more open to a fuller integration of their operation as a part of whole
animal bodies. As the many nonhuman cases  discussed within the field of basal
cognition (Levin et al., 2021), the presence of a nervous system is not a condition
for cognitively interesting behavior, and decision-making as these phenomena also
occur in organisms without one. This, in turn, raises important questions as to why
nervous systems initially evolved and what their functions might be (Arendt, 2021;
Keijzer et al., 2013). This is an important empirical question that requires serious
consideration of possible answers rather than assuming that there can be only one,
and we already know what it is.

Pamela  Lyon’s  biogenic  approach provides  an  important  and  useful
methodological  proposal  for  articulating a  wider empirical  focus.  This  approach
states that the cognitive sciences can better start from general biological principles
than by taking the specific human condition as its basic exemplar (Lyon, 2006; see
also Lyon et al., 2021; Lyon and Caporael, 2016). As such biogenic principles, she
names continuity,  control,  interaction, normativity,  memory, selectivity,  valency,
and  others.  The  aim  is  explicitly  not  to  reduce  cognitive  phenomena  to  basic
molecular mechanisms but to trace such phenomena “in the flesh” and understand
better what they amount to, including such things as the normative assessments of
both the organisms’ state and their environment.



A biogenic approach stresses the need to focus on a wide range of organisms
to investigate what cognition is and what it  does,  something,  I  would add, that
would also apply to experiential phenomena. This may imply a call to turn away
from  the  central  focus  of  the  cognitive  sciences:  human  cognition  and
consciousness. But this is not a necessary implication at all. Instead, the point is to
position human cognition and experience in a much more comprehensive range of
natural examples. Some of these cases will be similar yet different, others could
provide more basic forms of cognitive and experiential phenomena, and still, other
cases may be radically different and will tell us about alternative forms that such
phenomena  might  take.  The  key  issue  here  is  to  add  to  the  pool  of  relevant
phenomena and data, not to exclude the human case that remains as important as
it ever was.

Adding  such  a  wider  evolutionary  and  organizationally  context  is  already
helping to make sense of the cases closer to ourselves and learn more about how the
human nervous system operates. A good example is provided by Cisek (2019; this
paper),  who  explicitly  uses  a  phylogenetic  approach  to  develop  a  conceptual
taxonomy of neural mechanisms that map to neurophysiological and anatomical
data and that help to improve upon traditional concepts of cognitive science. In a
roughly similar way, authors like Feinberg and Mallatt  (2016) and Ginsburg and
Jablonka (2019) have also developed accounts of consciousness basing themselves
on phylogenetic perspectives.

A difficult issue here could be the central role envisioned for living systems at
the cost  of  artificial  ones.  This  could be a  major  point  of  debate,  but  it  can be
pushed forward for now. Again, the key issue here is to expand the range of relevant
phenomena by turning to the many natural cases provided by living systems, cases
that have received too little attention until recently. How AI examples fit into this
range will become clearer later on when more becomes known about the conceptual
and empirical impact of the nonhuman additions.

In whatever way this particular issue will unfold, computational techniques
and  ideas  are  crucial  tools  to  develop  such  a  cognitive  life  science.  The  main
difference lies not with their central role within the cognitive sciences but in being
potentially critical about using these tools as basic examples of the cognitive and
experiential phenomena that have been present here on earth for billions of years.

7.4.  What  empirical  findings  support  your  preferred  alternative
metaphor?

When discussing the limitations of the computer metaphor, I stressed three points:
conceptual conservatism, body loss, and empirical isolation. Here, I sketch ongoing
work on the evolution of the first nervous systems, both empirical and conceptual,
impacting these three points. At this early evolutionary stage, the applicability of
the computer metaphor and the “mind-brain” that it envisions is not the only game
in  town,  nor  the  most  obvious.  Various  architectural,  developmental,  and
operational interpretations are being developed and under consideration. One of



these options is a proposal for a basic behavioral organization of early evolutionary
animals that amounts to moving and sensing in ways that diverge in important
ways from the computational input-output interpretation. I give a short overview of
the field and then say a bit more on the moving and sensing proposal.

Early nervous systems

Proposals about the possible origins of the first nervous systems go back to the 19th
century, starting shortly after Darwin launched his theory of evolution. For a long
time,  development  was  slow  (see,  e.g.,  Mackie  (1990) and  Lichtneckert  and
Reichert (2009) for overviews), but in the last 15 years or so, the field has become
very active (see, e.g., Moroz  (2014) and Arendt  (2021) for overviews). I will rely
primarily on Arendt’s overview, which nicely sets out the conceptual options. I will
ignore the empirical evidence here.

As  to  why nervous  systems  first  evolved,  Arendt  dismisses  the  seemingly
obvious answer that they enabled more smart behavior (Lyon et al., 2021). Instead,
he stresses that nervous systems evolved for information exchange and integration
between the cells of a multicellular organism. He also differentiates between the
vertical and horizontal transmission of signals, each tied to different views
on early functionality. A focus on the vertical transmission from sensors to effectors
—a reflex arc being the most basic form—highlights the cellular level of analysis and
focuses on various neural circuits for behavior  (Fig. 15). In contrast, attention to
horizontal  transmission  comes  into  its  own  from  a  tissue-level  perspective.  It
focuses  on  the  coordination  of  macroscopic  effectors,  such  as  ciliated  and
contractile  surfaces,  where  large  groups  of  cells  must  act  in  unison  to  have  a
behavioral effect at the level of the whole organism.

Fig.  15. Top:  Vertical  neural transmission from sensors to effectors,  a
basic Braitenberg vehicle (left) illustrates the behavior produced by the
neural  connections  between  well-placed  sensors  and  effectors  (right).
Bottom: Horizontal neural transmission across a body surface, where a



basic nerve net (right) maintains peristaltic waves of contraction (left).
Reproduced from de Wiljis et al. (2017).

In  addition  to  these  two  global  functional  options,  there  are  additional
possible variations that also may have impacted the historical set (or sets) of events
that have produced the wide variety of nervous systems present in extant animals.
Here are some notable possibilities:

• Nervous  systems,  and neurons,  may  have  evolved  independently  in  more
than one evolutionary lineage (Moroz, 2009).

• Extant nervous systems within  a  specific lineage probably have a chimeric
history. Separate nervous systems evolved separately at different locations in
the same animal and grew together over time (Arendt et al., 2016).

• Nervous systems may have originated first as a chemical transmission system
—like  a  hormonal  system—using  neuropeptides  to  transmit  signals  to
dedicated reception sites (Jékely, 2021). In this case, electrical signaling and
neural elongations were a later innovations.

• Neurons may have evolved as a part of an ancestral neuroimmune system
(Klimovich and Bosch, 2018).

These options may be combined in various ways and, together with the cell- and
tissue-oriented functionalities, provide a rich set of empirical possibilities that still
need to be sorted out. These new insights and possibilities of how nervous systems
may  have  functioned  at  an  early  stage  suggest  that  the  straightforward
interpretation of nervous systems as a biological analog of a digital computer is too
hasty  and  requires  scrutiny.  The  entangled  relations  between  chemical  and
electrical signals and physical forces (also acting as signals), both at and between a
wide range of scales, constitute an organization that is not yet well understood.

Body central

In  response  to  the  computer  metaphor,  the  option  that  stresses  horizontal
transmission  and  the  need  to  coordinate  macroscopic  effector  surfaces  is
particularly relevant. A recent version of the basic idea is the so-called skin brain
thesis (Jékely et al., 2015; Keijzer, 2015; Keijzer et al., 2013; Keijzer and Arnellos,
2017). The skin brain thesis starts from the idea that agency is not a given but an
explanandum.  Early  animals  were  initially  multicellular  aggregates  that,  over
evolutionary time became increasingly integrated and acquired forms of agency on
the way (Fig. 16).



Fig.  16. Sensing bodies:  a self-induced motion to the right can either
proceed (top) or is blocked by an external obstacle (below). The difference
in body contraction can be detected without requiring external sensors.
Reproduced from Keijzer (2015).

One crucial  problem on that road was to find ways to make multicellular
aggregates of connected cells move as a single unit. More down to earth, think of it
in terms of water-filled balloon-like organisms that can gain evolutionary benefits
by evolving into forms that can move about. A fairly easy and cheap solution here is
to remain as flat as possible and crawl about by using cilia, cellular extensions that
act like small oars and provide a limited propulsive force that allows crawling and
swimming.  But  what  made  (some)  animals  so  extremely  successful  was  the
evolution of  cellular (muscle)  contraction as a mechanism for motility,  enabling
much faster and more forceful forms of movement. The skin brain thesis proposes
that early nervous systems arose as basic nerve nets that coordinated the patterns
of contraction across the animal body, turning the “balloon” into a motile unit.

With this change, the contractile body became a more unified entity, bound
together by contractile cells,  connective tissues, and a sensitivity to the forces it
imposed  on  the  body.  Neural  signals,  both  chemical  and  electrical,  had  to  be
integrated with the physical forces at a larger, bodily scale that themselves acted as
signals feeding back to the neural and cellular levels. Importantly, the skin brain
thesis  proposes that  contraction-based motility  allowed the multicellular  animal
body to acquire the characteristics of an agent ath the whole-body level, rather than
remaining  a  smart  collective  of  cellular  agents.  Importantly,  this  bodily
configuration turned the body itself into a sensing device that became sensitive to
physical environmental happenings at the scale of the whole body, also tying the
constitutive cells together as sensory devices (Fig. 16; Keijzer, 2015).

Stressing  bodily  coordination  as  a  crucial  evolutionary  step  provides  a
perspective on the relation between animal bodies and their nervous systems that
differs  importantly  from  the  separate  information  processing  device  that  the
computer metaphor suggests. The skin brain perspective casts nervous systems as
an intrinsic part of the body and as being dependent on the body as a functioning



entity. The animal body is not a pre-existing platform to which a controlling device
becomes attached.

This  intrinsic  connection  will  also  be  the  context  to  make  sense  of  what
nervous systems do and how they operate. While it is obvious that nervous systems
have grown in many different and often extremely complex new forms, at heart, the
neural  mechanisms by which muscle and body control  are  organized remain in
place when we sit upright typing away at our keyboards. My hunch here is that this
basic evolutionary background principle provides an important understanding of
what nervous systems are and do.

8. Resonances in the brain—Vicente Raja15

The computer metaphor has constituted a central component of the narrative in
cognitive psychology and cognitive neuroscience since roughly the 1960s, although
the interpretations of the metaphor are not homogeneous and many of them are
not even compatible. However, the general take is that the brain is in the business
of processing inputs to deliver appropriate outputs using a roughly computational
strategy. Namely, the brain somehow encodes inputs, manipulates them following
some algorithms, stores some information extracted from those inputs, recombines
some  bits  of  that  information,  delivers  the  proper  commands  for  the  accurate
outputs,  and so  on.  The  computer  metaphor  has  offered  decades  of  theoretical
progress as well as many computational methods and models within the cognitive
sciences.  However,  it  similarly  faces longstanding problems that  cyclically  bring
into question the usefulness of the metaphor to guide the scientific approach to
fundamental (and not so fundamental) issues in the sciences of the mind. Here I
defend an alternative metaphor inspired by the use of the notion of resonance in
cognitive science and neuroscience writ large, and more concretely based on the
notion of ecological resonance developed in the literature of ecological psychology.

8.1. What do we understand by the computer metaphor of the mind and
brain?

The computer metaphor is not what it seems to be and this fact makes it difficult to
analyze. One may think the computer metaphor is somewhat straightforward. The
brain is a computer.16 That is it. And in some sense, that is literally all the computer
metaphor  entails.  This  simplicity  is  likely  one  of  the  main  strengths  of  the
metaphor. It does not involve technical terms or sophisticated formalisms, so its
meaning is easy to grasp in fairly familiar terms: the brain is a computer that gets

15 Correspondence: vgalian@uwo.ca (V. Raja).
16 A different formulation, perhaps more accurate, would be something like “the mind-brain system is

a computer.” This formulation would highlight that the computer metaphor applies to minds, and
brains, and their relationship in general. In order to maintain some economy of words, I will use
“brain” instead of “mind-brain system,” but both formulations can be taken as equivalent with
regard to the arguments I will be presenting.
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some  inputs,  applies  some  computing  to  them,  and  delivers  some  outputs.
However,  this very simplicity  is  at  the same time one of  the weaknesses of  the
computer  metaphor.  It  is  so  simple  that  it  is  helplessly  vague.  The  computer
metaphor  is  pretty  much an “everything  goes”  kind  of  framework  for  cognitive
science and neuroscience. But why is this the case? Well, this is because it is not
clear what “computer” means in the computer metaphor and, depending on what it
means, a “computer” may be a very particular device or quite literally any system in
the known universe. Before we go on, let us take a closer look at this issue.

In its original formulation, the computer metaphor was inspired by the digital
computer. The cognitive revolution that began in the late 1950s was carried out by a
group of scholars from different fields who found a coherent narrative precisely by
virtue of their common interest in digital computers (Miller, 2003).17 The computer
metaphor was a natural corollary of this interest in digital computation, and the
brain was regarded as that kind of  computational  system. This is  still  the most
common take on the computer metaphor in most cognitive science textbooks (e.g.,
Clark, 2014; Thagard, 2005). Whenever one finds a statement like “the brain is the
hardware and the mind is the software,” the notion of “computer” at play is the
“digital  computer”  one.  This  formulation  of  the  computer  metaphor  was
significantly  productive  and  gave  rise  to  research  related  to  the  nature  of  the
computational states in minds and brains—usually characterized in terms of mental
or neural representations (Shea, 2018)—and the computational rules to manipulate
them  (Milkowski,  2013).  It  was  however  a  quite  restrictive  metaphor.  Digital
computers are a very particular kind of formal system that involves some equally
particular forms of processing (e.g., serial processing), syntax, semantics, etc. The
restrictive nature of digital computers was the main target of early criticisms of the
computer metaphor. The metaphor was regarded as incapable of accommodating
central aspects of the workings and the phenomenology of cognitive systems (e.g.,
Dreyfus,  1972;  Turvey,  2018).  These  criticisms  and  further  advances  in  the
cognitive sciences provided different formulations of the computer metaphor where
“computer” did not mean “digital computer” anymore.

Among the other available formulations of the computer metaphor, the one
that  stands in the most  radical  contrast  to the digital  computer is  the one that
promotes a deflationary interpretation of computation and, therefore, regards it as
a kind of universal phenomenon. Put simply, this formulation takes “computer” to
be a system that implements a function in a set of finite algorithmic steps. In this
sense, it may be said that a “computer” is a universal Turing machine without the
need for the von Neumann architecture typical of digital computers. The benefits of
interpreting  the  computer  metaphor  in  this  sense  is  that  researchers  are  less

17 The  famous  meeting  at  Dartmouth  College  in  September  of  1956—which  is  somewhat
mythologically regarded as the beginning of the cognitive revolution—is an example of this fact.
The meeting was attended by Noam Chomsky (linguist), Charles Miller (psychologist), Alan Newell
(mathematician), and Herbert Simon (political scientist), among others. They belonged to different
fields and had diverse interests, but they were united by their interest in digital computation.



constrained by the particular features of digital computers and have more room to
accommodate  typical  cognitive  science  questions  within  the  framework.  For
instance, under this formulation of the computer metaphor, both digital computers
and neural  networks  are  computational  devices  even though they differ  in  core
details such as the nature of the information-processing (serial vs. parallel) or the
status  of  their  representations  (discrete  vs.  distributed).  This  is  obviously  an
improvement in facing criticisms regarding issues like the biological plausibility or
the formal scope of computational models. However, these benefits come at a high
price:  the  vagueness  or  lack  of  specificity  of  the  computer  metaphor.  The
deflationary  definition  of  “computer”  is  as  general  as  it  gets  and  applies  to  a
universal domain of systems. Almost all physical, chemical, and biological systems
and  processes  can  be  described  as  implementing  a  function  in  a  set  of  finite
algorithmic steps (Fredkin, 2003; Rozenberg et al., 2012). Indeed, often the same
function  can  be  described  in  terms  of  different  sets  of  algorithmic  steps.  The
consequences of this fact are deep. First, the computer metaphor does not constrain
the kinds  of  explanation offered  in  the  cognitive  sciences.  Many computational
explanations of the same cognitive event, including incompatible ones, can coexist
under the umbrella of the computer  metaphor insofar as it is interpreted in the
deflationary  sense.  Additionally,  as  the  deflationary  reading  of  the  computer
metaphor may be applied to virtually any physical, chemical, and biological system,
it  really  says  nothing  about  the  concrete  nature  of  cognitive  systems.  It  allows
researchers neither to distinguish the cognitive from the non-cognitive nor to make
claims that apply specifically to brains. The computer metaphor becomes in this
way more of a desideratum than a research guide.

There  are  of  course  several  positions  between  the  Scylla  of  the  digital
computer and the Charybdis of the computational universe. Some positions accept
the computational metaphor but defend a framework based on  analog instead of
digital  computation  (Maley,  2021).  Other  approaches  regard  computation  as  a
particular kind of mechanism (which is taken to be a more general notion) and
claim that this conceptual move has significant effects for the computer metaphor
and the explanatory strategy of the cognitive sciences (Piccinini, 2020). Still other
approaches take computation to be in the eye of the beholder (Szangolies, 2020) or
simply take the notion of computation to be a placeholder for any activity we can
measure  in  the  brain.  All  these  alternative  interpretations  of  the  computer
metaphor show it is more than just one metaphor. It is many metaphors that are
not always compatible with each other. Therefore, it is difficult to assess just  one
ensuing research program stemming from it. Actually, it is even difficult to pinpoint
a set of common features shared by all of the computer metaphor formulations. But
what can we do? Are we doomed due to the ambiguity of the computer metaphor? I
would not say so. It is true that providing a concrete definition or a set of sufficient
and necessary conditions for the computer metaphor is likely impossible. However,
we can list  a  kind of  open-ended family of  concepts  that  usually  feature in the
explanations provided by paradigms and researchers that work under the umbrella



of  the  computer  metaphor.  This  open-ended  family  of  concepts  is  the  real
contribution of the computer metaphor to the cognitive sciences.  Let  us turn to
some of these concepts.

The first concept associated with the computer metaphor is that the brain
should be modeled as an input-output system. The characterization of the brain in
these  particular  terms  might  seem  fairly  innocuous  but  it  indeed  has  deep
implications that will be discussed in the next section. Right now, I just want to
highlight that once an input-output computational system is defined, both the input
and  the  output  are  usually  taken  for  granted  and  the  efforts  to  explain  the
computational machinery then focus on whatever happens in between them. In the
case of the cognitive sciences, once the brain is regarded as an input-output system,
both the sensory input and the behavioral output are taken to be the precedent and
the product of the computational activity, respectively. However, neither of them
gets cast in computational terms.

Another concept associated with the computer metaphor is coding. When the
input  arrives  to  the  computational  system,  it  gets  encoded  to  be  suitable  for
computational manipulation. This is very easy to illustrate using the example of the
digital computer. In a digital computer, the input from the keyboard, for instance,
gets  encoded  as  a  string  of  binary  code  that  can  be  manipulated  by  the  von
Neumann architecture.18 The case of the brain is similar. In a perceptual task, e.g.,
the  sensory  input  is  received  and  encoded  in  the  nervous  activity  to  then  be
processed in different regions of the brain. The characterization of the encoding
process proposed in the literature is almost as diverse as the computer metaphor
formulations—see,  e.g.,  Stone  (2012) for the visual system—and even coding has
been regarded as a metaphor itself (Brette, 2019). These two facts make the waters
of  coding  a  little  bit  muddy,  but  its  fundamental  idea  remains  the  same:
metaphorically or not, the input of the cognitive system must be encoded for the
system to be able to do computational work on it.

Finally,  the  computer  metaphor  leads  to  the  concept  of  algorithms that
implement (or at least approximate) cognitive functions. The activity of the brain,
when regarded as a computational system, is expected to be suitable for algorithmic
explanation. Namely, the way the brain manipulates an input to deliver an output
of a cognitive function is expected to be suitable for an explanation based on the
sequential application of a limited set of rules. The specifications of these rules may
vary significantly and go from explicit computational commands to heuristics or
Bayesian statistical inferences, to name a few. But, in the general case, it must be
possible to explain the cognitive function in this way.

As noted before,  the computer metaphor must be understood as an open-
ended  family  of  concepts  used  to  provide  explanations  within  the  cognitive

18 This is an openly idealized characterization of the process. There are many levels of description of a
digital computer in which we could find a code. I decide to stick to the algorithmic/formal level
because it delivers the message without too many technicalities.



sciences.  The  reason  to  focus  on  the  concepts  of  input-output,  coding,  and
algorithm is that they feature a very prominent role in virtually all the flavors of the
computer metaphor. There are, of course, other concepts—such as mental/neural
representation,  filtering,  storing,  information,  and  so  on—but  these  three  are
enough to characterize a general view on the computer metaphor and, importantly,
to understand its fundamental limitations to account for cognitive systems.

8.2. What are some of the limitations of the computer metaphor?

Even with all these caveats, it can be said that the computer metaphor describes the
brain as a specific kind of system. A system that takes whatever input is available in
a task, encodes it, processes it algorithmically, and delivers an output. I take this
description to  be  uncontroversial  enough as  to  be  accepted  for  most  practicing
cognitive scientists and neuroscientists nowadays. At the same time, it has all the
components to understand the main problems of the computational metaphor as a
guiding  idea  in  the  cognitive  sciences.  These  problems are  different  but  deeply
related and I will refer to them as (i) the problem of relevance and (ii) the problem
of inference (see Raja, 2020).

The problem of relevance has encountered several formulations both in the
computer  and  the  cognitive  sciences.  Put  simply,  the  problem  of  relevance
highlights  a  very  fundamental  feature  of  cognitive  systems  that  is  difficult  to
accommodate in computational terms: cognitive systems exhibit sensitivity to and
selectivity  of  some  aspects  of  their  environments  while  ignoring  other  ones.
Additionally,  cognitive  systems  can  manipulate  the  selected  aspects  of  their
environment—in the sense of manipulating the input they get from them or in the
sense of acting upon them—and are subsequently equally able to be sensitive to and
selective  of  some  aspects  of  the  results  of  that  manipulation.  In  other  words,
cognitive systems engage with relevant aspects of their environment in a context-
dependent  way.  They  are  even  able  to  generate  such  relevant  aspects  ex  novo
through their own actions  (Roli et al., 2022). The problem of relevance emerges
when a computational algorithm is used in an attempt to implement this relevance-
driven  behavior  of  cognitive  systems.  Both  technically  and  conceptually,
computational algorithms seem unable to provide such an implementation.

 The technical side of the problem of relevance is exemplified by the infamous
frame problem, first described by McCarthy and Hayes (1969) and still largely an
open question in the cognitive sciences—also somewhat open in computer science
as well, although some partial solutions have been already proposed (e.g., Lifschitz,
2015; Shanahan, 1997). In its simplest form, the frame problem describes the issue
of  knowing  which  elements  of  an  environment  change  and  which  ones  remain
unchanged  when  a  computational  (rule-following)  system  engages  in  a  specific
course  of  action.  In  other  words,  it  is  the problem of  knowing what  things  are
relevantly  changed  by  an  action.  This  version  of  the  frame  problem  has  been
claimed to entail an important shortcoming of computational systems in modeling
biological  and  cognitive  systems  (Danks,  2014;  Dennett,  2006;  Dreyfus,  1992;



Fodor,  2000b).  However,  conceptually  speaking,  the  frame  problem  is  only  a
concrete instantiation of the wider problem of knowing what is relevant (and what
is  not)  in  the  input  the  system  gets  from  its  environment  as  the  system-
environment  interactions  develop  in  time.  For  instance,  what  aspects  of  the
changing retinal input are the relevant ones to visually know when to stop before
hitting an obstacle while running? Object shapes? The optic flow? Textures? All of
the above? The brain must know the answer to these questions in order to properly
parse and encode the input. This problem is exacerbated by the fact that there is a
nonlinear and highly non-lawful relationship between environmental states and the
retinal input. This entails that a retinal input may be produced by an almost infinite
set of environmental states and leaves what seems to be an ill-posed problem for
the brain (see Raja, 2020).

The issue just presented leads to the second problem of the computational
metaphor, the problem of inference. This problem highlights the issues that appear
when  implementing  an  inference  in  a  computational  system  and  the  need  for
assuming  the  system  already  has  some  prior  knowledge  to  scaffold  such  an
inference.  An  early  example  of  this  problem  was  identified  by  William  James
(1890) when  discussing  Helmholtz’s  theory  of  spatial  perception.  Helmholtz’s
theory proposed an unconscious inference that  transforms space-less sensations
into spatial perceptions. William James then asked: “But how, it may be asked, can
association  [a  form  of  inference]  produce  a  space-quality  not  in  the  things
associated? How can we by induction or analogy  infer what  we do not  already
generically know?”  (James, 1890, p. 279; emphasis added). According to William
James,  spatial  perception cannot  be taken to  be  a  form of  inference  because  it
would require some a priori knowledge of space that is, by definition, not present
in the stimuli (i.e., the stimulus is space-less by definition). And that is impossible
to justify unless one adopts a highly unsatisfactory Kantian stance.

The problem of inference did not go away with the advent of the computer
metaphor.  For  instance,  the  problem  of  perceptual  inference  remains
acknowledged nowadays both in the theoretical and the empirical literature  (e.g.,
Chemero, 2009; Dennett, 1978; Turvey, 2018). And this is true even for the most
advanced  theories  and  techniques  in  computational  neuroscience  and  machine
learning, such as representation learning or reinforcement learning (see Raja et al.,
2021).  The  only  difference  between  current  formulations  of  the  problem  of
inference  and  William  James’s  formulation  is  that  inferences  are  now  more
explicitly characterized as computational processes entailing a relation between the
system’s  input  and  the  environmental  causes  of  that  input.  Friston  (2005),  for
instance,  claims that  “[t]he  problem the brain has  to  contend with is  to  find a
function of the inputs that recognizes the underlying causes;” he then immediately
acknowledges that such a functional relation “may not be invertible and that the
estimation  of  causes  from  input  may  be  fundamentally  ill-posed”  (p.  820).
Similarly, Stone (2012) claims that “[t]he brain is constantly doing its best to find
out what in the world is responsible for the image on the retina” (p. 2); he then



rapidly highlights the difficulty of the task. Another illustration of the problem of
inference’s current validity is that proponents of different computational theories
and models  of  cognition feel  the need to justify  the prior  knowledge they must
postulate  for  their  theories  and  models  to  work;  be  it  an  empirical  Bayes
formulation of a priori beliefs (Friston, 2005, 2003) or an evolutionary explanation
of that kind of knowledge (Gallistel, 2020; Gallistel and King, 2010).

Summing up, the models of the brain developed under the umbrella of the
computer metaphor share technical and especially theoretical issues that have to do
with very fundamental assets of biological brains: (i) the capacity to relate to their
environment in terms of relevance and (ii) the capacity to create new knowledge
and inferences without the need of a priori knowledge. Even the most deflationary
accounts of the computer metaphor characterize brains in such a way (i.e., input-
output, coding, algorithms, etc.) that these limitations are impossible to overcome.
Thus, the main question is whether all metaphors of the brain fall prey to these
problems.

8.3. What metaphor should replace the computer metaphor?

Let me be very straightforward and say I do not think there is  any overarching
metaphor available in the cognitive science literature to substitute the computer
metaphor. There are of course alternatives to the kind of information-processing,
computational-cum-representational framework usually entailed by the computer
metaphor (e.g.,  enactivism, ecological  psychology),  but these alternatives do not
emerge from nor entail an overarching metaphor. This is probably for the good.
Another  metaphor  with  the  universal  scope  of  the  computer  metaphor  would
probably also suffer from being either too particular or too general as to serve as an
illustration of cognitive systems. However, the lack of an alternative overarching
metaphor does not mean that we cannot use alternative metaphors in particular
contexts. And, more concretely, it does not entail that we cannot use metaphors
that do not fall prey to the same shortcomings as the computational one. Such is the
context  in  which  I  want  to  propose  the  concept  of  resonance,  an  undeniably
growing concept in cognitive science and neuroscience, as a metaphor for some of
the activities of the brain. Then I want to briefly show how the resonance metaphor
overcomes the problems of the computer metaphor (Raja, 2021).

Resonance  is  a  widely  observed  phenomenon  in  nature  (e.g.,  acoustic
resonance,  mechanical  resonance,  and  electrical  resonance).  In  its  physical
definition, resonance occurs when an oscillatory system entrains another system,
and the latter oscillates at a greater amplitude at some specific frequencies. In this
sense,  resonant  systems  exhibit  three  fundamental  characteristics:  filtering,
amplification, and synchronization (or coupling). A resonant system amplifies its
own activity at specific frequencies (filtering), and this activity depends on its own
constitution  and  the  entraining  influence  of  a  driven  system  (synchronization).
These three core aspects of resonance are the ones that have led to cognitive science
and cognitive neuroscience’s growing interest in this concept.



The brain may be metaphorically  seen as  a  resonant  system composed of
oscillators that gets entrained with a restricted set of inputs—therefore filtering out
other inputs—and that amplifies its activity when influenced by those inputs. Such
a  characterization  would  be  a  way  to  say  the  brain,  composed  by  neurons
(oscillators)  is  sensitive  to  selected  aspects  of  its  environment  (filtering)  and
maximizes  its  activity  when  some  of  them  are  present  (synchronization  and
amplification).  In  this  sense,  resonance  is  a  good  metaphor  for  at  least  some
interactions between cognitive systems and their environments. Indeed, far from
being  a  radical  proposal,  we  see  the  concept  of  resonance  playing  such  a
metaphorical  role  in  many  research  fields  within  cognitive  science  and
neuroscience. In terms of neurophysiology, resonance has been used to describe
single-neuron  activity  (Kasevich  and  LaBerge,  2011);  and  resonance  frequency
shifts  (i.e.,  subthreshold  oscillations  in  the  brain)  have  been  proposed  as  a
mechanism for the complex patterns of coupling between neural networks and their
input as well  as for the processes of structural and functional coupling between
neural networks during learning events  (Lau and Zochowski, 2011; Roach et al.,
2018; Shtrahman and Zochowski, 2015). Motor resonance has also been used as a
metaphor in the case of mirror neurons (Leonetti et al., 2015). Different notions of
resonance  have  also  been  used  in  the  field  of  computational  neuroscience  to
describe different activities of artificial neural networks. Some of these concepts are
coherence resonance (Yu et al., 2018), network resonance (Helfrich et al., 2019), or
stochastic  resonance  (Ikemoto  et  al.,  2018).  More  generally,  in  theoretical
neuroscience  both dynamical  and inferential  models  of  different  brain activities
have been based on non-linear resonance (e.g., Large, 2008) or adaptive resonance
theory (Grossberg, 2013). In psychology, sequential effects have been explained in
terms of resonant processes  (Gökaydin et al., 2016). And even more generally, in
the case of general theoretical frameworks and philosophy, the idea of the resonant
brain is not a new one (Grossberg, 2021).

On top of this, Raja (2021, 2019, 2018; see also Raja and Anderson, 2019) has
proposed  the  notion  of  ecological  resonance  to  explicitly  target  the  problem of
perception without  assuming the  brain  is  a  computational  system.  Importantly,
ecological  resonance  offers  an  alternative  to  computation  that  overcomes  the
problems  of  relevance  and  inference  in  perception.  Explicitly  inspired  in  the
ecological approach to perception and action developed by James J. Gibson (1979,
1966), the notion of ecological resonance aims to explain the role of the brain in the
activity of detecting perceptual information. Put simply, a core tenet of ecological
psychology  is  that  environmental  regularities  relevant  for  behavior  (e.g.,  the
distance towards an obstacle as an organism locomotes) are lawfully related to the
structural patters of ambient arrays (e.g., the structure of light in the optic array or
the  structure  of  sound  in  the  acoustic  array).  Some  aspects  of  these  structural
patterns remain invariant when the organism moves around its environment and
constitute the perceptual information it uses to control its behavior. Within such an
ecological framework, the question of interest is: how is the organism able to detect



this  perceptual  information?  The  answer  to  this  question  involves  the  brain
resonating to the perceptual information.

Ecological  resonance  is  defined  as  the  process  by  which  brain  dynamics
become constrained by the ecological information that is available at, and is already
constraining,  the  organism-environment  scale  (Raja,  2021,  2019,  2018).  As
depicted in Fig. 17, formally speaking and following the methodological tradition
in  ecological  psychology  (Chemero,  2009;  Warren,  2006),  the  organism-
environment interactions (O-ED) can be described using dynamical systems theory
as function (G) of time where one of the main variables is perceptual information
(Ψ). As brain dynamics (ND) can also be described in terms of dynamical systems
theory,  one  can  represent  ND as  resonating  to  O-ED by  forcing  a  coupling
relationship between perceptual information (Ψ) and the relevant ND variables (χ)
such that χ = kΨ (where k represents the parameters of the coupling).

Fig. 17. General model of ecological resonance. Reproduced from Raja 
(2019, p. 409).

This  general  model  of  ecological  resonance  is  metaphorical  despite  being
formal.  The resonance model  does not  entail  the brain is  literally  resonating to
perceptual information in the physical sense of the term. What it says is that, when
trying to explain the way organisms can detect perceptual information, the brain
dynamics  can  be  metaphorically  understood  as  resonating  to  perceptual
information.  Namely,  the  brain  dynamics  filter,  synchronize,  and  amplify  the
perceptual  information  that  constrains  the  overall  organism-environment
dynamics. This entails that if, e.g., you have a dynamical model that accounts for a
given behavior (e.g., a baseball player hitting a ball) and that includes a variable of
perceptual  information  (e.g.,  tau (τ)  or  time-to-contact),  you  should  find  that
perceptual variable (τ) in the dynamics of the brain activity (e.g., in some relevant
parts of your EEG data). If that is the case, it is proper to claim that the brain is
resonating to the perceptual information (τ).

Ecological  resonance  does  not  fall  prey  to  the  problems of  relevance  and
inference in the context of perception and action. First, when brain dynamics are
understood in  terms of  ecological  resonance,  perception is  not  characterized  in
terms of inference. In other words, due to the lawful relationship between elements
of the environment and the structural patterns of the ambient arrays, perceptual



information  is  not  assumed  to  be  ambiguous  and,  therefore,  the  brain  is  not
assumed to need to perform any kind of inference to disambiguate it. In this sense,
the brain resembles a self-tuning radio more than it resembles a device performing
computational inferences (see Gibson, 1966). And second, the problem of relevance
gets  diluted once the  input of  the system is  better  characterized.  The computer
metaphor ignores the features of the input and assumes a proper description of it is
not relevant for the characterization of the computational machine. For this reason,
the input to the brain is understood as whatever the researcher defines as an input
— from simple inputs to retinal ganglion cells (Sayood, 2018) to clips of the movie
Memento (Kauttonen et al., 2018), e.g.. As I have already noted, such a theoretical
context  makes  relevance  an  issue.  On  the  contrary,  ecological  resonance  is
inscribed within the ecological approach to perception and action. One of the main
features of this approach is it provides a careful characterization of the input to the
brain  (perceptual  information)  in  perception-action  events.  As  I  have  briefly
pointed  out,  the  ecological  approach  offers  a  description  of  the  organism-
environment system in which structural patterns of the ambient arrays fully specify
the environment of the organism. To put it in Jamesian terms with regard to spatial
perception, the structural patterns of the ambient arrays already contain spatial
information. So, as far as space is relevant for an organism (e.g., for survival), its
brain  does  not  need  decide  which  part  of  the  input  may  be  used  for  spatial
perception but only to resonate to spatial information. But how is the organism able
to know that “that” part of the input (and not others) is  the spatial information?
Once the ecological stance is taken and the availability of perceptual information in
the  environment  is  justified,  an  evolutionary  explanation  in  which  perceptual
abilities have evolved through the constraints of available information becomes way
more compelling (see Warren, 2005).

The resonance metaphor combines all of the just-reviewed metaphorical uses
of the resonance notion in the cognitive sciences. As noted at the beginning of this
section,  it  is  not  an  all-encompassing  metaphor,  but  it  is  applied  to  particular
instances and problems within cognitive science and neuroscience.  Many of  the
different notions of resonance reviewed enjoy well-known empirical support (e.g.,
motor resonance, adaptive resonance theory, or stochastic resonance), so I will not
refer to them anymore. Ecological resonance, however, is a more recent proposal
and its empirical support is less well-known within the cognitive sciences. I will
focus on it in the last section.

8.4.  What  empirical  findings  support  your  preferred  alternative
metaphor?

 Ecological  resonance  is  best  supported  by  the  empirical  literature  on  the
perceptual information variable known as tau or time-to-contact (Lee et al., 2009;
Lee and Reddish, 1981). Tau is defined as the inverse of the relative rate of change
of a closing gap. The closing gap can be described in any domain—e.g., it can be a
distance  gap,  like  the  one  between  an  approaching  ball  and  the  position  of  a
baseball bat, or an energy gap, like the current potential of a neuron and its firing



threshold. Given this, tau is the variable that specifies the time it will take for the
described gap to be completely closed. This is also known as “time-to-contact.” In
addition to the variable  tau,  tau-coupling has been a resource to explain the way
two closing  gaps  are  synchronically  closed  by the  activity  of  an  organism  (Lee,
1998; Lee et al., 2009). Formally speaking,  tau-coupling takes the form τA = kτB,
which is just a particular instantiation of the general ecological resonance form χ =
kΨ  (see  the  previous  section).  Thus,  tau-coupling  is  formally  equivalent  to
ecological resonance.

This equivalence becomes even more relevant when the literature about tau
is reviewed. In general,  tau and  tau-coupling are important aspects of perceptual
information  that  have  been  described  as  constraining  organism-environment
dynamics in a multitude of situations (for review, see Craig et al., 2000; Craig and
Lee,  1999;  Lee,  2005;  Tan  et  al.,  2009).  Importantly,  some of  these  situations
involve tau and tau-coupling both in and between organism-environment dynamics
and brain-dynamics. In these cases, tau-coupling is an explicit instantiation of the
formal model  of  ecological  resonance described in the previous section  (e.g.,  de
Rugy et al., 2002; Field and Wann, 2005; Georgopoulos, 2007; Lee et al., 2001;
Merchant et al., 2004, 2003a, 2003b, 2001; Merchant and Georgopoulos, 2006;
Port et al., 2001; Sun and Frost, 1998; Tan et al., 2009; van der Weel and van der
Meer,  2009;  Wang  and  Frost,  1992).  Moreover,  tau-coupling  involving  both
organism-environment and brain dynamics has sometimes been explicitly referred
to as an instance of  ecological  resonance  (van der Weel  et  al.,  2019).  Thus,  the
plausibility of ecological resonance has found a good amount of empirical support
in the ecological psychology literature.

9. The brain as a fractal antenna—Jeffrey B. Wagman19 and Brandon J.
Thomas20

We argue  that  all  computational  processes  require  data  that  must  be  received,
represented,  and  processed.  The  inherent  ambiguity  in  these  processes  is
incompatible with a lawful explanation of psychological phenomena, in particular
the successful performance of everyday goal-directed behaviors in organisms all at
levels of taxonomic scale. We argue that, as scientific devices, metaphors are best
used  a posteriori to generate testable hypotheses about a well-developed theory.
Therefore,  we  develop  a  metaphor  for  mind  and  brain  in  the  context  of  the
Ecological approach to perception, action, and cognition—an approach in which the
successful performance of everyday behavior is a lawful process of detecting and
exploiting  lawful  relations.  We propose  that  in  this  context,  the  brain  could  be
understood as a fractal antenna. That is, it could aid in the detecting and exploiting

19 Correspondence: jbwagma@ilstu.edu (J. B. Wagman).
20 Correspondence: thomasb@uww.edu (B. J. Thomas).
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of  lawful  relations  at  multiple  nested  levels,  without  generating,  modifying,  or
interpreting such lawful relations.

9.1. What do we understand by the computer metaphor of the mind and
brain?

To  us,  the  computer  metaphor  of  mind  and  brain  is  the  seemingly  simple  yet
seductive  claim  that  states  of  mind  and  brain  are  (or  can  be  understood  as)
computational states. In other words, the mind and brain are (or can be understood
as) things that compute, including—but not limited to—digital computers.

This  metaphor  (in  various  guises)  has  long  been  part  of  the  attempt  to
understand the mind and brain. However, it became especially prevalent in the 17 th,
18th,  and 19th centuries  with  the  attempt  to  understand all  natural  processes  as
mechanistic processes by leveraging the explanatory power of Newtonian physics
and Euclidean geometry. When applied to processes occurring within the mind and
brain, these mechanistic processes took the form of  computation. Thus, the mind
and brain were (or could be understood as) computers because they were  things
that computed—things that performed computations of some kind. This is explicit
or implicit in the work of scholars of the brain and mind  such as  Locke, Leibniz,
Descartes, and Helmholtz.

In  the  early-to-middle  20th century,  the  specific  vehicle  for  the  metaphor
became clearer, given the substantial conceptual and technological progress toward
developing  the  modern (programmable)  digital  computer.  Among the  landmark
steps in this process was Turing’s  (1936) demonstration that it  was possible—in
principle—for a programmable digital computing device to solve any well-specified
computational  problem.  This  was  possible  because  the  device  that  Turing
envisioned—the  Turing  machine—was  specifically  designed  to  operate  as  a
formal system. In such systems—including but not limited to logic, language, and
games like chess—a given goal is achieved by performing a series of system-wide
rule-based operations on symbols, creating a local pattern of symbols—a symbol
string.

By definition, symbols (and symbol strings) lack inherent meaning but can be
interpreted to have a particular meaning in the context of a particular system (e.g.,
“+” means “to sum” in the context of mathematics and “a move resulting in check”
in the context of  chess).  Symbols are  abstract—they stand for  or refer  to other
things or processes but not any specific thing or process. Consequently, a given goal
is achieved when a sequence of operations successfully generates a symbol string
that preserves truth value,  regardless of the symbols or symbol strings. e.g.,  the
mathematical  expression  “1  +  1  =  2”  is  true  regardless  of  what  the  numbers
themselves  refer  to.  Critically,  the  abstractness  of  this  process  is  the  primary
strength of formal systems and hence of digital computers.

Given that  formal  systems are goal-directed (i.e.,  truth-preserving),  ruled-
based,  and  mechanistic,  they  seemed  to  be  appropriate  models  by  which  to



understand  states  of  mind  and  brain—which  also  seemed  to  possess  these
properties. Filtered through Turing’s work—with an assist from Hilbert, Whitehead,
and Russell—mind and brain were thought to be (understandable as) computers in
the sense that they performed computations of  the kind performed by a Turing
machine—that is, a sequence of syntactical operations on abstract symbols.

Shortly  after  Turing’s  breakthrough—and  not  coincidentally—several
technological advances turned the possibility of a programmable digital computing
device—the digital computer—into a reality. In the last quarter of the 20th century,
the  applicability  of  such  devices  to  understanding  the  mind  and  brain  was
formalized by Newell and Simon (1976) in the Physical Symbol System Hypothesis.
They proposed that a physical symbol system—such as a digital computer—has the
necessary and  sufficient means  for  intelligence  (or,  more  properly,  producing
intelligent action).

This claim can be interpreted to mean that (i) biological minds and brains
(are  intelligent  only  because  they)  are  symbol  manipulation  devices,  and  (ii)
artificial minds and brains (can be intelligent only if they) are symbol manipulation
devices. This is explicit or implicit in the work of scholars of the brain and mind
such  as  Putnam,  Marr,  and  Fodor.  Given  the  shortcomings  of  the  behaviorist
approach to language outlined by Chomsky (1959), psychology was a discipline in
need  of a  new  model  for  understanding  the  abstractness  of  psychological
phenomena.  Such  a  model  is  what  the  computer  metaphor  of  mind  and  brain
provided.

But, of course, the digital computer is not the only possible computational
model of the mind and brain. Connectionist networks, e.g., take as their inspiration
not an abstract formal system such as logic, math, language, or chess but a concrete
neurological system—the brain itself.  Furthermore, in connectionist  networks,  a
given goal is achieved not through system-wide operations performed on abstract
symbols but through the  emergence of a system-wide pattern of activity among
the many individual components of a network.

Moreover,  there  are  no  explicit  symbols  in  a  connectionist  network—the
components  are  merely  computational  relay  stations.  Each  component  receives
incoming activity  from many other  components  and then relays  this  activity  to
other components (or not) based on the relative weightings of the incoming (and
outgoing) connections to (and from) those components. Therefore, a series of local
computations determine how activity propagates through the network, creating the
emergence of an interpretable global pattern of activations across the network as a
whole. In connectionist models, states of mind and brain result from parallel and
distributed  processing (McClelland  and  Rumelhart,  1989).  This  is  implicit  or
explicit  in  the  work  of  scholars  of  the  brain  and  mind  such  as  McClelleland,
Rummelhardt, Churchland, and Pinker.

In  the  21st century,  computational  models  of  the  brain  and  mind  have
emerged  that—at  least  to  some  extent—combine  features  of  both  formal  and



connectionist  models.  e.g.,  in  predictive processing models,  the brain and mind
serve as “prediction machines.” Furthermore, rather than being deterministic, the
predictions are probabilistic. A given goal is achieved not by rule-based operations
on symbols or by the emergence of a particular distributed pattern but rather when
prediction errors are sufficiently small.  When described this way, the brain and
minds operate as  Bayesian inference engines—they use internal models to make
probabilistic  predictions  about  an  incoming  signal.  The  incoming  signal  is
compared  to  a  “multilevel  cascade”  of  top-down predictions  (Clark,  2013).  Any
mismatches between the predicted and actual signal are used to modify the model
to progressively reduce the error.

Thus, in predictive models, states of mind and brain are neither constructed
(symbol  strings)  nor  emerge  (as  a  pattern).  Rather  they  are  hypothesized  or
reasoned out under states of uncertainty. In other words, states of mind and brain
are "controlled hallucinations." This is implicit or explicit in work by scholars of the
brain and mind such as Friston, Gregory, Hinton, Clark, and in the performance of
Watson (the question-answering and game-show-winning computer).

9.2. What are some of the limitations of the computer metaphor?

As described above,  the  computer  metaphor  of  mind and brain  can  take  many
forms—including  but  not  limited  to—formal  operations  on  symbols,  parallel
distributed processing, and Bayesian prediction. While the specifics of each of these
computational  models  differ,  they  share  a  set  of  requirements  and  processes
common  to  all  computational  devices.  Namely,  (i)  all  computational  processes
require data;  (ii)  that  data must  be  received and  represented in  a  form that  is
appropriate  for  the  computational  device;  and  (iii)  the  represented  data  are
processed by some means such that they are rendered interpretable, meaningful, or
otherwise more useful to a given user.

In computational models of mind and brain, the data are states of the world
(e.g., the sizes, shapes, colors, and distances of surrounding objects) or—perhaps
more accurately—the states of the world as  encoded in low-level energy patterns
(e.g., rays of light). These data are received by the sense organs (e.g., points of light
on the retina) and are represented in states of mind and brain (i.e., a pattern of
brain activity). The represented data is then processed by a set of operations (e.g.,
symbol manipulation, weightings in a network, or Bayesian statistical inference)
such that it is rendered interpretable, meaningful, or otherwise more useful to the
organism itself. The result of such processing is the mental experience of states of
the world. In other words, the focus in all computational models of mind and brain
is on how states of the world are remade inside the organism (see Reed, 1996). In
particular,  the  focus  is  on  the  intelligent  means by  which  this  occurs—rule-
following, pattern matching, or statistical inference.

Despite the prevalence and promise of computational models of mind and
brain, there are many reasons why such models are untenable (Blau and Wagman,
2022;  Turvey,  2018).  In  what  follows,  we  discuss  two  such  reasons—the



grounding  problem (Von  Eckardt,  1995) and  the  everyday  behavior
problem.

The grounding problem. As described above,  computer  models— of  mind
and brain or otherwise—require representations in the form of encoded data. The
fundamental  problem  is  that—by  definition—representations  bear  no  necessary
relationship to that which they represent. That is—by design—representations are
entirely ungrounded. While this is a primary strength in models of formal systems
in which the relationship between representation and that  which is represented
does not matter, it is a primary weakness in models of mind and brain in which it
does.

Thus, the data received by the sense organs (e.g., the points of light on the
retina) and the represented and processed data (i.e., a pattern of brain activity) are
both ambiguously  related to  states  of  the  world.  The processing  performed on
these representations aims to bring the mental experience of states of the world
into  closer approximation to the actual states of the world. But even in the best-
case scenario, such processes can only create mental states that just so happen to
be a reasonable facsimile of world states—the so-called “veridical hallucination”—
and even then, only when circumstances are just right.

Ambiguity  in  any  process  is  antithetical  to  a  lawful  explanation  of  that
process  in  which  unambiguous  relations hold  across  all  possible (or  known)
circumstances. Yet ambiguity is a necessary component of model of the mind and
brain based on the computer metaphor. Moreover, such metaphors neither reduce
to nor emerge from lawful relations.  Consequently, these models drive a wedge
between psychological  and natural  sciences  (Turvey,  2013;  Wagman,  2010) and
create unsolvable mysteries rather than scientifically tractable problems.

The everyday behavior problem. Even if we assume computational models
are  responsible  for  a  very  particular  psychological  phenomenon—the  mental
experience of states of the world—this does not bring us any closer to explaining a
much  more  general  psychological  phenomenon—the  successful  performance  of
everyday  goal-directed  behavior.  The  fundamental  problem  is  that  everyday
behaviors are necessarily performed with respect to the world itself, not the mental
experience of the world. While the former is physical, objective, external, and law-
based,  the  latter  is  mental,  subjective,  internal,  and  rule-based.  Despite  these
fundamental  differences,  everyday  behaviors  must  nonetheless  be  performed
prospectively, flexibly, online, and real-time.

This challenge is compounded by the fact that in most computational models,
the processing results in mental experience of isolated and objective properties that
are—at  best—indirectly  related  to and—at  worst—completely  independent  of
performing any behavior (e.g., brightness, color, distance). Moreover, such models
are typically mute on the experience of context-dependent and relational properties
directly related  to  performing  a  particular  behavior  (e.g.,  reachable,  catchable,
climbable).



Moreover, performing the movements required of any everyday goal-directed
behavior requires coordinating the activity of an inordinate number of anatomical
units—the so-called degrees of freedom problem (Bernstein, 1967). Therefore,
in a  thoroughgoing computational model of mind and brain,  the computational
power of the mind and brain would not only be brought to bear in intelligently
generating an appropriate mental experience of states of the world from a pattern
of  brain  activity  but  also  in  using  such  mental  experience  to  generate  an
appropriate sequence of muscular contractions resulting in everyday behavior with
respect to the states of the world.

Empirical demonstrations that either one of these (i.e., mental experience of
states of the world or everyday goal-directed behavior) is possible in an organism
without  substantial  computational  power—without  a  sophisticated  brain  or  any
brain  whatsoever—would  weaken  the  case  for  a  thoroughgoing  computational
model of mind and brain. Such demonstrations would mean that a computational
model of mind and brain is—at best—sufficient but unnecessary.

While it may be challenging, if not impossible, to empirically demonstrate
mental experience of states of the world in an organism without a sophisticated
brain or any brain whatsoever, it is possible to empirically demonstrate prospective,
flexible, online, and real-time performance of goal-directed everyday behavior by
such organisms (Turvey, 2013; Wagman, 2010). We now provide a brief overview of
such empirical evidence.

Worms plug  their  burrows  with  leaves  to  avoid  desiccation.  But  they  are
selective in doing so—both in terms of the size and shape of the leaf they choose
and how they choose to grasp and drag that leaf into their burrow. When leaves are
not  present,  they show the  same selectivity with  other materials  such as paper
strips (see Reed, 1982).

Limpets  are  aquatic  snails  that  are  preyed  upon by  several  other  aquatic
species. How they respond to predation attempts depends on the relative size and
species of the predator. When attacked by a whelk—another kind of aquatic snail—
that is slighter larger than the limpet, they fight back.  When attacked by a whelk
that is much larger than the limpet, they retreat. When attacked by a starfish, they
almost always retreat regardless of relative size (Branch, 1979; see also Wagman et
al., 2019).

The dodder is a parasitic plant. When no host plants are available, the dodder
will grow in no particular direction. If only a low-nutrition host plant is available,
the dodder will  grow toward the low-nutrition host.  If  both a  low- and a high-
nutrition host are available, it will grow in the direction of the high-nutrition host.
If the dodder is tethered to a very low-nutrition host, it will grow away from that
host in search of a more nutritious host (Carello et al., 2012; see also Runyon et al.,
2006).



Amoeba from the genus Difflugia construct shells using 200–300 individual
mineral particles. Like the worms, they do so selectively in terms of the size and
material  composition of  each particle.  Some species  of  Difflugia use differently
sized particles in different places in the process of creating the shell.  And some
species even create functional “teeth” at the opening of the shell that  are used to
catch, pry open, and eat microscopic prey (Han et al., 2008; Turvey, 2018).

Such empirical findings create a dilemma for a throughgoing computational
model of mind and brain. Either (i) computational models of mind and brain must
(somehow) account for mental experience and performance of everyday behavior in
all  species—  regardless  of  the  sophistication  or  presence  of  a  brain,  or  (ii)
computational models of mind and brain can only account for such processes in
species with sufficiently sophisticated brains—in which case,  some other kind of
model is  necessary  to  account  for  such  processes  in  all  other  species.  Neither
possibility is desirable, and both are problematic. And in either case, such findings
imply that computational  models of  mind and brain are—at best—sufficient but
unnecessary.

9.3. What metaphor should replace the computer metaphor?

We do not necessarily support the notion that a metaphor for the mind or brain (or
other natural entity or process) is necessary. But, at the same time, good theories
are usually amenable to metaphors because the theoretical constructs—the topic of
the  metaphor—often  have  the  required  combination  of  scope  and  clarity  to  be
likened to something else—the vehicle of the metaphor. And metaphors are useful
as (i)  scientific devices because the proposed relationship between the two—the
ground of the metaphor—can generate testable hypotheses about the theoretical
constructs and (ii) pedagogical devices because —by design— the vehicle is often
familiar even if the topic is not.

However, the difficulty comes when what starts as a  metaphorical relation
tacitly  becomes  an  identity  relation—  that  is,  when  the  topic  of  the  metaphor
eventually becomes identified with (or identical to) the vehicle for the metaphor. In
our estimation, this has happened to the computer metaphor for mind and brain.
At some point, the computer metaphor of mind and brain underwent a shift from
being a useful means to generate testable hypotheses about a theory of mind and
brain to being the theory of mind and brain itself.

We suspect that if the (often implicit) assumptions and implications of the
computer metaphor of mind and brain had been seriously considered  (Blau and
Wagman, 2022; Turvey, 2018), then the metaphor (and subsequent theory) might
not have been adopted as widely and unquestionably as it was. Thus, we take the
stance that metaphors are best used a posteriori to generate testable hypotheses
about a well-developed theory rather than a priori to develop (or be) the theory in
the first place. Accordingly, we offer an alternative to the computer metaphor of
mind  and  brain  by  first  providing  a  sketch  of  a  well-developed  theory  of  the
successful  performance  of  everyday  goal-directed  behavior—the  Ecological



approach  to  perceiving,  acting,  and  cognizing—and  then  using  a  metaphor—a
fractal antenna—to generate testable hypothesis about the role of mind and brain
in that process based on that theory.

The  ecological  approach  to  perceiving,  acting,  and  cognizing. In  the
ecological  approach  to  perceiving  and  acting  (Gibson,  1979,  1966),  as  well  as
psychological  phenomena  more  generally  (Blau  and  Wagman,  2022),  the
fundamental  unit  of  analysis  is  the  animal-environment  system—not  the
animal  (or  any  part  of  it,  including  its  brain)  or  the  environment  in  isolation
(Turvey, 2018). There are at least two important reasons for this.

The first  is  that  it  is  at  this  level  that  the  performance of  everyday goal-
directed behavior occurs. Specifically, the relationship or fit between a given animal
and a given environment (i) determines the set of behaviors that are possible for
that  animal  in  that  environment—the  affordances for  that  animal  such  as
reachable,  catchable,  climbable;  and (ii)  supports  the  performance of  any given
behavior within this set—reaching, catching, or climbing. The explicit focus on the
prospective,  flexible,  online,  and  real-time performance  of  everyday  behavior
rather than on mental experience means that the Ecological approach never has to
generalize from the former to the latter. Therefore, it avoids the everyday behavior
problem—it focuses on how an animal makes its way in the world rather than how a
world is made inside of that animal (Reed, 1996).

The second is that the Ecological approach proposes that it is only at this level
that the lawful relations that underlie the performance of everyday goal-directed
behavior emerge. In particular, the structured energy patterns surrounding a given
animal are lawfully (unambiguously, invariantly) structured by the substances and
surfaces  that  surround  that  animal.  Therefore,  the  structured  energy  patterns
encountered by a given animal at a particular point of observation are informative
about that animal’s relationship to those substances and surfaces. In other words,
those patterns are informative about the set  of  behaviors that are possible—the
affordances—for that animal in that environment. Therefore, performing everyday
goal-directed  behaviors  requires  detecting  and  exploiting  information  about
affordances—no  more  and  no  less (Wagman  et  al.,  2019).  The  insistence  on
lawfulness  rather  than  the  acceptance  of  ambiguity  means  that  the  Ecological
approach never has to explain how the experiences of the perceiver (just so happen
to) relate to the states of the world. Such experiences are a lawful consequence of
detecting information. Therefore, it avoids the  grounding problem—it focuses on
providing  a  lawful  account  of  perceiving,  acting,  and  cognizing  from  the  first
principles (Turvey and Carello, 2012).

Moreover, given the description of perception as the detection of information
—no more and no less—the Ecological approach is never faced with the dilemma of
providing different explanations for perceiving, acting, and cognizing depending on
the  sophistication  or  presence  of  a  brain  or  nervous  system.  In  the  Ecological
approach, perceiving, acting, and cognizing result from the same lawful processes



—the  detection  and  exploitation  of  information—at  all  levels  of  the  taxonomy.
Therefore, the Ecological approach is a theory for all animals—and perhaps for all
organisms—serving as a mutually supportive partner to extant theories of evolution
(Keijzer, 2015; Turvey, 2013; Wagman et al., 2023).

Requirements for an Ecological metaphor for brain and nervous system. It
might seem challenging—if not impossible—to develop a metaphor for the role of
mind and brain in an approach in which the brain itself is potentially unnecessary
and  insufficient (so long as  the organism can detect  and exploit  the structured
energy patterns that are informative about affordances). But even if the brain is
unnecessary  and  insufficient,  it  does  not  mean  that  the  brain  plays  no  role
whatsoever in  performing  everyday  behaviors.  After  all,  there  is  a  reason  why
brains  (and  nervous  systems)  emerged  and  persist  in  animal  species  at  many
taxonomic levels  (Fultot et al., 2019; Keijzer, 2015; Keijzer et al., 2013; Swenson
and Turvey, 1991).

Developing  this  metaphor  requires  an  appreciation that,  in  the  Ecological
approach, the phenomena of interest occur at the scale of the animal-environment
system, and this system is highly nested. In both the animal and the environment,
systems are nested within systems, units are nested within units, and processes are
nested within processes at  all  scale  levels.  While it  is  the case that the animal-
environment system is the scale at which all psychological phenomena emerge, this
does not mean that systems, units,  and processes are nested within this system
(such as the nervous system or the structured energy arrays) do not contribute to
such emergence. Many different task-specific systems are nested within the animal-
environment system (including the nervous system) are flexibly recruited to detect
and exploit information in the performance of everyday behaviors (Reed, 1982; Van
Orden et al., 2003).

But, of course, any metaphor for the role of the brain and nervous system
would  need  to  be  consistent  with  the  fundamental  principles  of  the  Ecological
approach. First, the vehicle for the metaphor would need to be transparent to the
lawful relations in animal-environment systems (Fultot et al., 2019). It could aid
in  detecting  and  exploiting  information,  but  it  would  not  generate,  modify,  or
interpret such information. Second, the vehicle for the metaphor would also need to
exhibit the nestedness that is characteristic of units, systems, and processes at (and
within) the ecological scale. And third, it would need to be one that could apply
across taxonomy levels.

In his most mature description of the Ecological approach, Gibson (1979, p.
246) suggested a possibility that meets all three of these conditions. In particular,
he  suggested  that  the  process  of  detecting and exploiting  information is  one of
resonating with that information. If so, perhaps the brain and nervous system can
be understood as resonators. Importantly, a resonator is sensitive to, reverberates
with,  and  amplifies  a  pattern  of  structured  energy,  making  it  possible  for  that



energy  pattern  to  influence  units,  processes,  and  systems  existing  at  larger  or
smaller scales.

While  a  resonator  metaphor  has  recently  been  used  to  generate  testable
hypotheses  about  neural  activity  in  the  Ecological  approach to  perception
and action (Anderson, 2014; Raja, 2018; Raja and Anderson, 2019), we wish to
develop this metaphor a bit further. We would like to speculate on what  specific
kind of a resonator the brain and nervous might be.

The brain is a fractal antenna. In the animal-environment system, systems
are nested within systems, units are nested within units, and processes are nested
within  processes.  This  nesting  includes  systems,  units,  and  processes  at  many
different spatial and temporal scales and levels of complexity. Moreover, many (if
not  all)  of  these  systems,  units,  and  processes  have  analogous  or  identical
structures across scales. Many (if  not all)  of these systems, units, and processes
exhibit  self-similarity  or  scale  invariance—the  defining  feature  of  fractality
(Mandelbrot, 1982). Fractality is an indication that the various micro and macro
systems, units, and processes are coordinated across spatial and temporal scales
and are poised to flexibly reorganize into a new coordination pattern—if and when
conditions demand it (Fig. 18).

Fig. 18. Fractal organization in sea coral (top left), lightning (top right),
and geological formations (bottom). In each case, the patterns at all scales
all  emerge by  the  same  recursive  process.  Credits:  Coral  photo  from
Albert Koch / Wikimedia Commons / Public Domain; Lightning photo
from Felix Mittermeir/ Wikimedia Commons/ Public Domain; Geological
formation photo from Brandon Thomas.

Whatever kind of resonator the brain and nervous system is, given that it is
nested within the animal-environment system, it is likely to exhibit self-similarity



or scale invariance. And given that it is recruited in the service of detecting and
exploiting  information in  the  animal-environment  system,  such an organization
would allow it to be sensitive to, reverberate with, and amplify information at each
of the nested levels of this system (perhaps even simultaneously).

Therefore,  we propose  that  the brain  and nervous system can be  usefully
understood  as  a  fractal  or  self-complementary  antenna  (Cohen,  1995).  Fractal
antennas  have  a  self-similar  geometric  design  that  enables  them  to  operate  at
multiple  nested  scales—that  is,  they  are  frequency  and  bandwidth  independent
(Fig. 19). Consequently, they can simultaneously send and receive transmissions at
many different frequencies and bandwidths, simultaneously. This contrasts with a
standard antenna that is limited to sending and receiving transmissions only at a
particular frequency and bandwidth.

Fig.  19. A design for a fractal antenna based on the Sierpiński triangle.
The  nested  triangles  are  sensitive  are  capable  of  resonating  to
transmissions  at  multiple  frequencies  (e.g.,  1f,  2f,  4f,  8f,  and  16f)
simultaneously.

While  it  is  possible  to  send  and  receive  transmissions  without  a  fractal
antenna,  the fractal  antenna aids in  the sending and receiving transmissions  at
multiple  scales,  even  simultaneously.  And  the  main  difference  between  more
sophisticated and less sophisticated fractal antenna is the number of scales over
which such signals can be sent and received. In the same way, while it is possible to
detect  and  exploit  the  information  that  supports  the  performance  of  everyday
behavior without a brain,  a brain aids in the ability to do so at multiple nested
levels, even simultaneously. And the main difference between more sophisticated
and less sophisticated brains  is the number and scope of the nested levels (e.g.,
cultural,  socio-technological)  over  which  such  information  can  be  detected  and
exploited.

9.4.  What  empirical  findings  support  your  preferred  alternative
metaphor?



Consistent with the Ecological approach to perceiving, acting, and cognizing, we
have  proposed  that  the  animal-environment  system  is  the  level  at  which  the
phenomena of interest occur and the level at which lawful relations that underlie
these  phenomena  emerge.  Performing  everyday  goal-directed  behavior  requires
detecting  and  exploiting  such  lawful  relations—information  about  affordances.
Furthermore,  we  proposed  that  the  brain  might  aid  in  the  ability  to  do  so  by
resonating to and amplifying such information at multiple scales simultaneously. In
this way, the brain may be usefully understood as a fractal antenna.

The  empirical  findings  that  support  this  alternative  metaphor  are  those
demonstrate  that  the  detection  and  exploitation  of  information  in  performing
everyday  goal-directed  behaviors  exhibit  fractality.  Fortunately,  such  empirical
evidence abounds. In what follows, we provide a brief overview of a few examples
from everyday (and perhaps not so everyday) goal-directed perceiving, acting, and
cognizing.

Fractality  in  goal-directed  perceiving. Detecting  lawful  relations  in
structured energy arrays that are informative about affordances requires actively
exploring that structured energy array. To this end, fractal fluctuations appear in
the  exploratory  wielding  movements  used  to  perceive  properties  of  hand-held
objects, and the degree of fractality predicts the ability to perceive those properties
(Stephen et al., 2009). Moreover, (multi)fractal fluctuations are also exhibited in
the postural sway movements that occur in perceiving properties of objects that are
either held in hand (Mangalam et al., 2020b, 2020a) or attached to the body. And
subtle differences in these fractal fluctuations emerge depending on what specific
property  the  person  is  attempting  to  perceive  (Palatinus  et  al.,  2014).  Finally,
(multi)fractal fluctuations are also exhibited in the postural sway movements used
in the service of visually perceiving the affordances of a surface, and the degree of
(multi)fractality  predicted  whether  that  surface  was  perceived  to  afford  a  given
behavior (Hajnal et al., 2018).

Fractality  in  doing. Finer-grained  movements  such  as  those  used  to
manipulate  objects  are  nested  within  (and  in  many  cases,  impossible  without)
coarser-grained movements such as those used to stabilize posture. To this end,
(multi)fractal fluctuations appear in the coarser-grained postural sway movements
that support finer-grained eye movement in precision viewing task, and changes in
the viewing task change the nature of these fractal fluctuations  (Kelty-Stephen et
al.,  2021).  (Multi)fractal  fluctuations  also  appear  in  the  fine-grained  dexterous
hammering  movements  used  by  expert  bead  craftsmen  to  remove  flakes  of  a
particular size and shape from a larger stone. And the degree of fractality is reduced
when  less-skilled  craftsmen  perform  this  task  with  unfamiliar  raw  material
(Nonaka  and  Bril,  2014).  Fractal  fluctuations  also  appear  in  the  fine-grained
movements of a computer mouse used to control a cursor in a virtual herding task.
And the degree of fractality is reduced when the functional relation between mouse
and cursor movements is temporarily disrupted (Dotov et al., 2010).



Fractality in cognizing. In the Ecological approach, cognizing is continuous
with  perceiving  or  acting.  Thus,  it  too  requires  detecting  and  exploiting  lawful
relations  in  structured  energy  arrays  that  are  informative  about  affordances.
Accordingly, fractal fluctuations appear in the variability observed in both simple
reaction  times  and  word  naming  times  when  such  tasks  are  performed  over
thousands of trials. The fractality is less prominent in word naming, likely due to
subtle  trial-to-trial  differences  in  this  task  (i.e.,  the  phonemic  properties  of  the
words) not present in the simple reaction time task (Van Orden et al., 2005, 2003).
Fractal fluctuations are also present in the finger movements that participants use
in the early stages of solving a gear systems problem-solving task. Moreover, there
are  changes  in  these  fractal  fluctuations  that  occur  just  before  the  participants
discover a more efficient strategy for solving such problems  (Dixon et al.,  2012;
Stephen et al., 2012, 2009).

10. Discussion

The skepticism over the computer metaphor has created the momentum to search
for an alternative metaphor to describe the mind and brain. The above collection of
responses confirms that multiple philosophical and scientific investigations support
a variety of metaphors to describe the mind and brain. All authors found support
for  their  proposed  metaphor  in  the  empirical  literature.  None  of  the  authors
advocated rejecting all metaphors. Instead, their respective positions suggest that
we should recognize that metaphors  are merely means by which to use what we
know  to  explain  that  which  we  do  not  know—but  would  like  to  know.  Several
contributions refer to (multi)fractal structure/multiplicative cascade as an essential
metaphor/construct to understand adaptive behavior. e.g.,  the fractal antenna is
quite similar to the idea of reproduction of similarity by analogy in which the fractal
spectrum is the analogy and resonance is the reproduction of similarity. We hope
that the foregoing stimulates future discourse about all  these new metaphors in
studying the mind, brain, and behavior.

10.1. Towards a Kuhnian revolution in the study of the mind and brain

Thomas  Kuhn’s  (1962) notion of  scientific  revolution is  central  to  the  current
discussion. Within a scientific field, a dominating paradigm inevitably emerges. In
the  psychological  and  neurosciences,  the  computational  paradigm emerged  and
was fueled by (i) the deficiencies of Behaviorism explanations of language, (ii) the
development  of  Communication  Theory  to  quantify  information,  and  (iii)  the
advent  of  digital  computers.  The  paradigm’s  practices,  models,  exemplars,  and
most significant applications are taught to psychology and neuroscience students—
e.g.,  computational  explanations  have  become  the  mainstay  of  behavioral,
cognitive, and systems neuroscience courses. And, a pattern of  business-as-usual
science follows:  these  resources  are  further  developed,  and  the  paradigm  is
expanded beyond its original applications. For instance, computationalism is not



only  used  to  explain  the  mind  and  behavior  but  every  new  development  in
computer technology (e.g., convolutional neural networks) is also used to explain
some  other  feature  of  the  mind  and  brain  (e.g.,  visual  processing  in  area  V4).
Nonetheless, anomalies, applications that appear to be intuitively promising for the
paradigm  but  are  resistant  to  absorption,  begin  to  emerge—e.g.,  findings  that
neurons cannot  implicate  symbolic  computation,  newly  discovered roles  of  glial
cells.  Anomalies  accumulate,  and  some  practitioners  begin  to  see  similarities,
indicating the beginnings of a new paradigm—e.g., the contributing authors of this
article and the complex systems community. Even while some practitioners stick to
the  still-dominant  paradigm  and  pursue  standard  research,  the  authors  of  the
present article identify brain and mind research crises, which can serve as catalysts
for paradigm shifts.

Some argue that the neurosciences have not exhibited revolutions over the
past 70 years due to conflicting paradigms, so much as they have demonstrated
“revolutionary”  technological  developments  that  have  altered  research aims and
practices (e.g., optogenetics;  (Bickle, 2016; Bickle et al., 2022). There is no doubt
that the creation of new tools is crucial to advancing neuroscience research. The
Atwood machine was used to test Newton’s second law of motion, while Galileo’s
inclined plane was used to explore how a body moves under its own weight (Kuhn,
1962).  Both  tested  established  beliefs  and  were  thus  considered  conventional
science.  Similarly,  the  advancement  of  these  techniques  in  neuroscience  simply
allows for different approaches to questions framed using the old paradigm. “If the
tools are good,” Dyson  (2009) writes, “nature will give a clear answer to a clear
question.”  However,  a  clear  question  and  answer,  as  well  as  an  elegant  or
sophisticated  instrument  or  technique,  will  not  be  enough  to  overcome
shortcomings in theory—such as may have occurred in equating the mind and brain
with a computer. Indeed, Boyden, one of the developers of optogenetic approaches,
has written, “no major paradigm shift in neuroscience has resulted from the use of
optogenetic tools …. What optogenetics has done so far is make the study of circuits
more tractable” (Boyden, 2015, p. 1200). So, the development of these tools defines
normal science—and not the revolutionary science associated with paradigm shifts.

The  authors  of  this  article  call  for  an  epistemological  paradigm  shift  in
psychology and neuroscience. Such a call is not aimed at undermining the ongoing
developments  in  existing  techniques,  methods,  or  approaches.  Instead,  it  is  to
advocate for changes in beliefs, standards, and speculations that will help elucidate
those  aspects  of  the  mind  and  brain  that  have  remained  out  of  the  computer
metaphor’s reach. Of course, this new epistemology may call for new techniques,
methods, or approaches but may also  leverage existing ones. And these proposals
may not have any noticeable impact in the short run, as any paradigm shift involves
a  variety  of  cultural  and  contextual  factors  beyond  advocacy  itself.  The
psychological-neuroscience structures in place rest on decades-long investments in
the computer metaphor. Nonetheless, many students just beginning their research
career or even seasoned researchers might feel that the mind and brain are beyond



the computer metaphor’s reach. This collection of perspectives might serve as a
valuable  resource  to  these  individuals,  providing  fresh  grounds  for  thinking
through some of the challenging problems in neuroscience. As noted over 30 years
ago, “to deny that the brain is computational is to risk losing your membership in
the scientific  community”  (Searle,  1990a,  p.  24).  We hope things  have changed
since then.
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