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We develop and analyze a new residual-based a posteriori error estimator for the 
discontinuous Galerkin (DG) method for nonlinear ordinary differential equations (ODEs). 
The a posteriori DG error estimator under investigation is computationally simple, efficient, 
and asymptotically exact. It is obtained by solving a local residual problem with no 
boundary condition on each element. We first prove that the DG solution exhibits an 
optimal O(hp+1) convergence rate in the L2-norm when p-degree piecewise polynomials 
with p ≥ 1 are used. We further prove that the DG solution is O(h2p+1) superconvergent 
at the downwind points. We use these results to prove that the p-degree DG solution is 
O(hp+2) super close to a particular projection of the exact solution. This superconvergence 
result allows us to show that the true error can be divided into a significant part and a 
less significant part. The significant part of the discretization error for the DG solution is 
proportional to the (p + 1)-degree right Radau polynomial and the less significant part 
converges at O(hp+2) rate in the L2-norm. Numerical experiments demonstrate that the 
theoretical rates are optimal. Based on the global superconvergent approximations, we 
construct asymptotically exact a posteriori error estimates and prove that they converge 
to the true errors in the L2-norm under mesh refinement. The order of convergence is 
proved to be p + 2. Finally, we prove that the global effectivity index in the L2-norm 
converges to unity at O(h) rate. Several numerical examples are provided to illustrate 
the global superconvergence results and the convergence of the proposed estimator under 
mesh refinement. A local adaptive procedure that makes use of our local a posteriori error 
estimate is also presented.

© 2016 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we investigate the superconvergence properties and analyze a residual-based a posteriori error estimator 
of the discretization errors for the discontinuous Galerkin (DG) method applied to the following first-order initial-value 
problem (IVP) of nonlinear ordinary differential equation (ODE) on [0, T ]:

d�u
dt

= �f (t, �u), t ∈ [0, T ], �u(0) = �u0, (1.1)

where �u : [0, T ] → R
n , �u0 ∈ R

n , and �f : [0, T ] ×R
n → R

n . In our analysis, we assume that the solution exists and is unique. 
According to the ODE theory, the condition �f ∈ C1([0, T ] ×R

n) is sufficient to guarantee the existence and uniqueness of the 
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solution to (1.1). We note that an IVP for higher-order ODE may be solved using the DG method for solving first-order system 
of the form (1.1) since one can transform higher-order equations into several coupled first-order equations by introducing 
new unknowns.

ODEs solvers are important tools for the computational solutions of higher-order ODEs and many partial differential equa-
tions (PDEs). For instance, the application of the standard finite element method or DG in space to solve time-dependent 
PDEs generates a coupled system of ODEs. Once the spatial discretization is constructed, one would then need to employ a 
suitable ODE solver for the time discretization. If the mesh size in space becomes small then often the ODE system becomes 
more and more stiff. It is very well-known that explicit schemes suffer from extremely small time step restriction for sta-
bility. Therefore, explicit time discretization techniques are not a suitable choice and implicit, at least A-stable methods are 
desirable. There are many A-stable higher-order time discretization schemes designed for different purposes in the litera-
ture, such as the implicit Runge–Kutta (IRK) methods and DG methods with higher polynomial order. Despite the popularity 
of high-order IRK methods for integrating systems of ODEs, we choose the DG method because of the following advantages: 
(i) it is A-stable, (ii) it is locally conservative, and (iii) it exhibits strong superconvergence that can be used to estimate 
the discretization error. Furthermore, it is very natural to construct high-order DG methods and, for future developments, 
we can apply the well-known adaptive DG techniques for changing the polynomial degree as well as the length of the 
time intervals. Finally, if we use space–time DG methods for the discretization of evolution PDEs, we would have a uniform 
variational approach in space and time which may provide a useful tool for the future analysis of the fully discrete problem 
and the construction of simultaneous space–time adaptive methods.

The DG method considered here is a class of finite element methods using completely discontinuous piecewise polyno-
mials for the numerical solution and the test functions. DG method combines many attractive features of the classical finite 
element and finite volume methods. It is a powerful tool for approximating some differential equations which model prob-
lems in physics, especially in fluid dynamics or electrodynamics. Comparing with the standard finite element method, the 
DG method has a compact formulation, i.e., the solution within each element is weakly connected to neighboring elements. 
DG method was initially introduced by Reed and Hill in 1973 as a technique to solve neutron transport problems [36]. In 
1974, Lesaint and Raviart [33] presented the first numerical analysis of the method for a linear advection equation. Since 
then, DG methods have been used to solve ODEs [6,19,32,33], hyperbolic [15–18,23,24,35,29,31,20,45,34,2,3,12,5] and dif-
fusion and convection–diffusion [13,14,43,25] PDEs. The proceedings of Cockburn et al. [22] and Shu [39] contain a more 
complete and current survey of the DG method and its applications.

In recent years, the study of superconvergence and a posteriori error estimates of DG methods has been an active research 
field in numerical analysis, see the monographs by Verfürth [41], Wahlbin [42], and Babuška and Strouboulis [9]. A knowl-
edge of superconvergence properties can be used to (i) construct simple and asymptotically exact a posteriori estimates of 
discretization errors and (ii) help detect discontinuities to find elements needing limiting, stabilization and/or refinement. 
A posteriori error estimates play an essential role in assessing the reliability of numerical solutions and in developing efficient 
adaptive algorithms. Typically, a posteriori error estimators employ the known numerical solution to derive estimates of the 
actual solution errors. They are also used to steer adaptive schemes where either the mesh is locally refined (h-refinement) 
or the polynomial degree is raised (p-refinement). For an introduction to the subject of a posteriori error estimation see 
the monograph of Ainsworth and Oden [8]. Superconvergence properties for finite element and DG methods for ordinary 
differential equations have been studied in [6,7,27,33,44,40]. The first superconvergence result for standard DG solutions of 
hyperbolic PDEs appeared in Adjerid et al. [6]. The authors presented numerical results that show that standard DG solu-
tions of one-dimensional linear and nonlinear hyperbolic problems using p-degree polynomial approximations exhibit an 
O(hp+2) superconvergence rate at the roots of (p +1)-degree Radau polynomial. They further established a strong O(h2p+1)

superconvergence at the downwind end of every element.
Related theoretical results in the literature including superconvergence results and error estimates of the DG meth-

ods for ODEs are given in [33,27,26,32,30]. In particular, Lesaint and Raviart [33] studied the numerical solution of the 
initial value problem (1.1) by a DG method. Their scheme is equivalent to some implicit Runge–Kutta method, strongly 
A-stable one-step method. Delfour et al. [27] analyzed a class of Galerkin methods derived from discontinuous piecewise 
polynomial spaces. These schemes generalize the method proposed by Lesaint and Raviart [33]. In their DG method, the 
approximated solution at t j , a point of discontinuity in the approximating polynomial uh , is taken as an average across 
the jump: α juh(t−

j ) + (1 − α j)uh(t+
j ). The cases α j = 0, 0.5, 1 correspond, respectively, to Euler’s explicit, improved, and 

implicit schemes. Later, Delfour and Dubeau [26] studied the approximation of the solution of the nonlinear ODEs by dis-
continuous piecewise polynomials. They introduced a more general theory of one-step (such as implicit Runge–Kutta and 
Crank–Nicholson schemes), hybrid and multistep methods (such as Adams–Bashforth and Adams–Moulton schemes). Also, 
we mention the work of Johnson [32] in which a priori error estimates for a class of implicit one-step methods generated 
by the DG time discretization are proven. Estep [30] analyzed a finite element method for the integration of IVPs in ODEs. 
The author obtained quasi-optimal a priori and a posterior error bounds. They used these results to construct a rigorous and 
robust theory of global error control. The author also derived an asymptotic error estimate that is used in a discussion of the 
behavior of the error. Recently, Deng and Xiong [28] introduced and analyzed a DG finite element method with interpolated 
coefficients for an IVP of nonlinear ODE. They used the finite element projection for an auxiliary linear problem as compar-
ison function and proved an optimal superconvergence results. Subsequently, Adjerid and Baccouch [4,11,10] investigated 
the global convergence of the implicit residual-based a posteriori error estimates of Adjerid et al. [6]. They proved that, for 
smooth solutions, these a posteriori error estimates at a fixed time t converge to the true spatial errors in the L2-norm under 
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mesh refinement. More recently, the author [10] presented and analyzed new a posteriori error estimates for a DG formula-
tion applied to nonlinear scalar conservation laws in one space dimension. We used the superconvergence result of Meng 
et al. [34] to prove that the DG discretization error estimates converge to the true spatial errors under mesh refinement 
at O(hp+3/2) rate. Finally, we proved that the global effectivity index in the L2-norm converges to unity at O(h1/2) rate. 
Let us emphasize that these convergence rates are not optimal since the order of superconvergence proved in [34] is not 
optimal. Our computational results indicated that the observed numerical convergence rates are higher than the theoretical 
rates. However, there is no theoretical justification of these results so far.

In this work, we construct and analyze an implicit residual-based a posteriori error estimate of the discretization errors for 
the DG method for first-order initial-value problems. We prove that the p-degree DG solution exhibits an optimal O(hp+1)

convergence rate in the L2-norm for general nonlinear ODEs with a Lipschitz-continuous right-hand side. We further prove 
that the p-degree DG solution is O(h2p+1) superconvergent at the end of each step. We use these results to prove that the 
p-degree DG solution is O(hp+2) super close to a particular projection of the exact solution. Our numerical experiments 
demonstrate optimal rates of convergence. Superconvergence towards the particular projection of the exact solution allows 
us to show that the leading error term on each element is proportional to a (p + 1)-degree right Radau polynomial. We 
use the superconvergence at Radau points to construct asymptotically exact a posteriori error estimates and prove that, for 
smooth solutions, these a posteriori DG error estimates converge to the true errors at O(hp+2) rate in the L2-norm. Finally, 
we prove that the global effectivity indices in the L2-norm converge to unity at O(h) rate. Our proofs are valid for arbitrary 
regular meshes and for P p polynomials with p ≥ 1. To the best knowledge of the author, this is the first proof of the 
a posteriori error estimates for the nonlinear ODEs. In [4], we used similar techniques to prove the global convergence of the 
residual-based a posteriori error estimates in the L2-norm for the DG method applied to one-dimensional linear convection 
problems.

This paper is organized as follows: In section 2, we present the discrete DG method for solving the nonlinear ODE and we 
introduce some notation and definitions. We also present a few preliminary results which will be needed in our a posteriori
error analysis. In section 3, we present the DG error analysis and prove our main superconvergence results. In section 4, we 
present the a posteriori error estimation procedure and prove that these error estimates converge to the true errors under 
mesh refinement in L2-norm. In section 5, we present several numerical examples to validate our theoretical results. We 
also propose an adaptive algorithm based on the local a posteriori error estimates. We conclude and discuss our results in 
section 6.

2. The DG scheme

The error analysis of nonlinear scalar and vector IVPs having smooth solutions is similar. For this, we restrict our the-
oretical discussion to the scalar case; extension to systems follows the same lines. Without loss of generality, we consider 
the following nonlinear scalar IVP:

u′ = f (t, u), t ∈ [0, T ], u(0) = u0, (2.1)

where f (t, u) : [0, T ] × R → R and u0 ∈ R are given. In our analysis, we assume that f (t, u) is sufficiently smooth with 
respect to the variables t and u. In particular, we always assume that | fu(t, u)| ≤ M1 on the set D = [0, T ] ×R ⊂R

2, where 
M1 is a positive constant. We note that the assumption | fu(t, u)| ≤ M1 is sufficient to guarantee that the function f (t, u)

satisfies a Lipschitz condition in the variable u on the set D with Lipschitz constant M1, i.e.,

| f (t, u) − f (t, v)| ≤ M1|u − v|, whenever (t, u) and (t, v) ∈ D. (2.2)

First, we present the discrete DG scheme for the problem (2.1). We adopt the usual notation of the DG method. We divide 
the interval � = [0, T ] into N subintervals I j = [t j−1, t j], j = 1, . . . , N , where 0 = t0 < t1 < · · · < tN = T . We denote the 
length of I j by h j = t j − t j−1. We also denote h = max

1≤ j≤N
h j and hmin = min

1≤ j≤N
h j as the length of the largest and smallest 

subinterval, respectively. Here, we consider regular meshes, that is h
hmin

≤ λ, where λ ≥ 1 is a constant (independent of h) 
during mesh refinement. If λ = 1, then the mesh is uniformly distributed. In this case, the nodes and mesh size are defined 
by t j = j h, j = 0, 1, . . . , N , h = T /N .

Throughout this paper, we define v(t−
j ) and v(t+

j ) to be the left limit and the right limit of the function v at the 
discontinuity point t j , i.e., v(t−

j ) = lim
s→0− v(t j + s) and v(t+

j ) = lim
s→0+ v(t j + s). We also use [v](t j) to denote the jump of v

at t j , i.e., [v](t j) = v(t+
j ) − v(t−

j ).
The weak DG formulation is obtained by multiplying (2.1) by a smooth test function v and integrating over an arbitrary 

element I j . After integrating by parts we obtain the following weak formulation:∫
I j

v ′udt +
∫
I j

f (t, u)vdt − u(t j)v(t j) + u(t j−1)v(t j−1) = 0. (2.3)

We define the piecewise-polynomial space V p
h as the space of polynomials of degree at most p in each subinterval I j , i.e.,

V p
h = {v : v|I j ∈ P p(I j), j = 1, . . . , N},
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where P p(I j) is the space of polynomials of degree at most p on I j . Note that polynomials in the space V p
h are allowed to 

have discontinuities across element boundaries.
Next, we approximate the exact solution u(t) by a piecewise polynomial uh(t) ∈ V p

h . We note that uh is not necessarily 
continuous at the endpoints of I j . The discrete formulation consists of finding uh ∈ V p

h such that: ∀ v ∈ V p
h and j = 1, . . . , N ,∫

I j

v ′uhdt +
∫
I j

f (t, uh)vdt − ûh(t j)v(t−
j ) + ûh(t j−1)v(t+

j−1) = 0, (2.4a)

where the numerical flux ûh(t j) is the discrete approximation to the trace of u at the node t = t j .
In order to complete the definition of the discrete DG method we need to select ûh on the boundaries of I j . In this 

paper, we take the classical upwind numerical flux:

ûh(t0) = u0, ûh(t j) = uh(t
−
j ), j = 1, . . . , N. (2.4b)

Implementation: We note that the approximate solution uh(t) can be efficiently computed in an element-by-element fash-
ion. Specifically, we can obtain the DG solution uh(t) in the following ordering: first we can easily obtain uh(t) in I1 using 
(2.4) with j = 1 since uh(t−

0 ) = u0 is given. We then obtain uh(t) in I2 since uh(t) in I1 is already available. This process 
can be repeated to obtain uh(t) in I3, . . . , IN . In practice, uh(t) can be computed locally for each I j as follows: Expressing 
uh(t) as a linear combination of orthogonal basis Li, j(t), i = 0, . . . , p, where Li, j is the ith-degree Legendre polynomial on 
I j , i.e., uh(t) =∑p

i=0 ci, j Li, j(t), t ∈ I j , where {Li, j(t)}i=p
i=0 is a local basis of P p(I j), and choosing the test functions v = Lk, j(t), 

k = 0, . . . , p, we obtain a small system of nonlinear algebraic equations on each I j . The resulting system can be solved for 
the unknown coefficients c0, j, . . . , cp, j using e.g., the classical Newton–Raphson method. Once we compute the DG solution 
on each element I j , j = 1, . . . , N , we obtain an approximate solution (piecewise discontinuous polynomial functions of de-
gree ≤ p) to our original IVP (2.1). For complete details of the DG methods for ODEs as well as their properties, we refer 
the readers to [27,32,33].

Notation and definitions: We begin by defining some norms that will be used throughout the paper. We define the L2 inner 
product of two integrable functions, u and v , on the interval I j = [t j−1, t j] as (u, v)I j = ∫

I j
u(t)v(t)dt . Denote ‖u‖0,I j

=
(u, u)

1/2
I j

to be the standard L2-norm of u on I j . Moreover, the standard L∞-norm of u on I j is defined by ‖u‖∞,I j
=

sup
t∈I j

|u(t)|. Let Hs(I j), where s = 0, 1, . . . , denote the standard Sobolev space of square integrable functions on I j with all 

derivatives u(k) , k = 0, 1, . . . , s being square integrable on I j , i.e.,

Hs(I j) =

⎧⎪⎨
⎪⎩u :

∫
I j

|u(k)(t)|2dt < ∞, 0 ≤ k ≤ s

⎫⎪⎬
⎪⎭ ,

and equipped with the norm

‖u‖s,I j
=
(

s∑
k=0

∥∥∥u(k)
∥∥∥2

0,I j

)1/2

.

The Hs(I j)-seminorm of a function u on I j is given by |u|s,I j
= ∥∥u(s)

∥∥
0,I j

.

We also define the norms on the whole computational domain � as follows:

‖u‖0,� =
⎛
⎝ N∑

j=1

‖u‖2
0,I j

⎞
⎠

1/2

, ‖u‖∞,� = max
1≤ j≤N

‖u‖∞,I j
, ‖u‖s,� =

⎛
⎝ N∑

j=1

‖u‖2
s,I j

⎞
⎠

1/2

.

The seminorm on the whole computational domain � is defined as follows

|u|s,� =
⎛
⎝ N∑

j=1

|u|2s,I j

⎞
⎠

1/2

.

We note that if u ∈ Hs(�), s = 1, 2, . . . , the norm ‖u‖s,� on the whole computational domain is the standard Sobolev norm (∑s
k=0

∥∥u(k)
∥∥2

0,�

)1/2
. For convenience, we use ‖u‖I j

and ‖u‖ to denote ‖u‖0,I j
and ‖u‖0,� , respectively.

In our analysis we need the pth-degree Legendre polynomial which can be defined by Rodrigues formula [1]

L̃ p(ξ) = 1

2p p!
dp

dξ p

(
(ξ2 − 1)p

)
, −1 ≤ ξ ≤ 1.
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The Legendre polynomial satisfies the following important properties:

L̃ p(1) = 1, L̃ p(−1) = (−1)p, (2.5a)
1∫

−1

L̃ p(ξ)L̃q(ξ)dξ = 2

2p + 1
δpq, where δpq is the Kronecker symbol. (2.5b)

We note that the (p + 1)-degree Legendre polynomial on [−1, 1] can be written as

L̃ p+1(ξ) = (2p + 2)!
2p+1((p + 1)!)2

ξ p+1 + q̃p(ξ), where q̃p ∈ P p([−1,1]).

Next, we define the (p + 1)-degree right Radau polynomial on [−1, 1] as

R̃ p+1(ξ) = L̃ p+1(ξ) − L̃ p(ξ), −1 ≤ ξ ≤ 1, (2.6)

which has p + 1 real distinct roots, −1 < ξ0 < · · · < ξp = 1.
Mapping the physical element I j into a reference element [−1, 1] by the standard affine mapping

t = t j + t j−1

2
+ h j

2
ξ, (2.7)

we obtain the shifted Legendre and Radau polynomials on I j :

Lp+1, j(t) = L̃ p+1

(
2t − t j − t j−1

h j

)
, R p+1, j(t) = R̃ p+1

(
2t − t j − t j−1

h j

)
.

Next, we define the monic Radau polynomial, ψp+1, j(t), on I j as

ψp+1, j(t) = hp+1
j [(p + 1)!]2

(2p + 2)! R p+1, j(t) = cphp+1
j R p+1, j(t), where cp = ((p + 1)!)2

(2p + 2)! . (2.8)

Throughout this paper the roots of R p+1, j(t) are denoted by t j,i = t j+t j−1
2 + h j

2 ξi , i = 0, 1, . . . , p.
In the next lemma, we state and prove the following results which will be needed in our a posteriori error analysis.

Lemma 2.1. The polynomials Lp, j and ψp+1, j satisfy the following properties

∥∥Lp, j
∥∥2

I j
= h j

2p + 1
, (2.9a)∫

I j

ψ ′
p+1, jψp+1, jdt = −k1h2p+2

j , (2.9b)

∥∥ψp+1, j
∥∥2

I j
= (2p + 2)k2h2p+3

j , (2.9c)

where k1 = 2c2
p , k2 = k1

(2p+1)(2p+3)
, and cp = ((p+1)!)2

(2p+2)! .

Proof. In order to prove (2.9a), we use the mapping (2.7) and the orthogonality relation (2.5b) to obtain

∥∥Lp, j
∥∥2

I j
=
∫
I j

L2
p, j(t)dt = h j

2

1∫
−1

L̃2
p(ξ)dξ = h j

2

2

2p + 1
= h j

2p + 1
. (2.10)

Next, we will prove (2.9b). By the property of the Legendre polynomial (2.5a), we have

R̃ p+1(1) = R p+1, j(t j) = ψp+1, j(t j) = 0, R̃ p+1(−1) = R p+1, j(t j−1) = 2(−1)p+1. (2.11)

Therefore,∫
I j

ψ ′
p+1, jψp+1, jdt = 1

2
ψ2

p+1, j(t j) − 1

2
ψ2

p+1, j(t j−1) = −1

2
ψ2

p+1, j(t j−1)

= −1

2

(
cphp+1

j R p+1, j(t j−1)
)2 = −2c2

ph2p+2
j = −k1h2p+2

j , where k1 = 2c2
p .
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Using (2.8) and the orthogonality relation (2.5b), we write

∥∥ψp+1, j
∥∥2

I j
= c2

ph2p+2
j

∫
I j

R2
p+1, j(t)dt = c2

ph2p+3
j

2

1∫
−1

R̃2
p+1(ξ)dξ = c2

ph2p+3
j

2

1∫
−1

(
L̃ p+1(ξ) − L̃ p(ξ)

)2
dξ

= c2
ph2p+3

j

2

1∫
−1

(L̃2
p+1(ξ) + L̃2

p(ξ))dξ = (2p + 2)k2h2p+3
j , where k2 = k1

(2p + 1)(2p + 3)
. �

For p ≥ 1, we consider two special projection operators, P±
h , which are defined as follows: For any smooth function u, 

the restrictions of P+
h u and P−

h u to I j are polynomials in P p(I j) satisfying∫
I j

(P−
h u − u)vdt = 0, ∀ v ∈ P p−1(I j), and (P−

h u − u)(t−
j ) = 0, (2.12a)

∫
I j

(P+
h u − u)vdt = 0, ∀ v ∈ P p−1(I j), and (P+

h u − u)(t+
j−1) = 0. (2.12b)

These special projections are used in the error estimates of the DG methods to derive optimal L2 error bounds in the 
literature, e.g., in [20]. They are mainly used to eliminate the jump terms at the element boundaries in the error estimates 
in order to prove the optimal L2 error estimates.

In our analysis, we need the following well-known projection results. Their proofs can be found in [21]: For any u ∈
H p+1(I j) with j = 1, . . . , N , there exists a constant C independent of the mesh size h such that∥∥u − P±

h u
∥∥

I j
≤ Chp+1

j |u|p+1,I j
,
∥∥(u − P±

h u)′
∥∥

I j
≤ Chp

j |u|p,I j
. (2.13)

Moreover, we recall the inverse properties of the finite element space V p
h that will be used in our error analysis: For any 

vh ∈ V p
h , there exists a positive constant C independent of vh and h, such that, ∀ j = 1, . . . , N ,∥∥∥v(k)

h

∥∥∥
I j

≤ Ch−k
j ||vh||I j , k ≥ 1, (2.14a)∣∣∣vh(t

+
j−1)

∣∣∣+ ∣∣∣vh(t
−
j )

∣∣∣≤ Ch−1/2
j ||vh||I j . (2.14b)

From now on, the notation C , C1, C2, etc. will be used to denote positive constants that are independent of the discretization 
parameters, but which may depend upon the exact smooth solution of the ODE (2.1) and its derivatives. Furthermore, all 
the constants will be generic, i.e., they may represent different constant quantities in different occurrences.

Throughout this paper, e = u − uh will be used to the error between the exact solution of (2.1) and the numerical 
solutions defined in (2.4). Let the projection error be defined as ε = u − P−

h u and the error between the numerical solution 
and the projection of the exact solution be defined as ē = P−

h u − uh . We note that the true error can be split as e =
(u − P−

h u) + (P−
h u − uh) = ε + ē.

3. Superconvergence error analysis

In this section, we investigate the superconvergence properties of the DG method. We first prove optimal L2 error 
estimate for the DG solution. Then, we prove that the DG solution is O(h2p+1) superconvergent at the downwind point of 
each element. We use these results to prove that the DG solution is O(hp+2) super close to the special projection of the 
exact solution P−

h u. Finally, we prove superconvergence at Radau points. In order to prove these results, we need to derive 
some error equations.

Subtracting (2.4a) from (2.3) with v ∈ V p
h and using the numerical flux (2.4b), we obtain the DG orthogonality condition 

for the error e on I j :∫
I j

v ′edt +
∫
I j

( f (t, u) − f (t, uh))vdt − e(t−
j )v(t−

j ) + e(t−
j−1)v(t+

j−1) = 0, ∀ v ∈ V p
h , (3.1)

which, after using a simple integration by parts on the first term, is equivalent to∫
I j

(
e′ − f (t, u) + f (t, uh)

)
vdt + [e](t j−1)v(t+

j−1) = 0. (3.2)
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Using the classical Taylor’s series with integral remainder in the variable u, we write

f (t, u) − f (t, uh) = θ(u − uh) = θe, where θ =
1∫

0

fu(t, u + s(uh − u))ds =
1∫

0

fu(t, u − se)ds, (3.3)

since u − uh = e. Substituting (3.3) into (3.2) yields∫
I j

(
e′ − θe

)
vdt + [e](t j−1)v(t+

j−1) = 0, ∀ v ∈ V p
h . (3.4)

For convenience, we define the operator A j(e; V ) as

A j(e; V ) =
∫
I j

(e′ − θe)V dt + [e](t j−1)V (t+
j−1). (3.5)

We note that (3.4) can be written as

A j(e; v) = 0, ∀ v ∈ V p
h . (3.6)

On the one hand, after a simple integration by parts, A j(e; V ) can be written as

A j(e; V ) =
∫
I j

(−V ′ − θ V )edt + e(t−
j )V (t−

j ) − e(t−
j−1)V (t+

j−1). (3.7)

On the other hand, adding and subtracting P+
h V to V , we write (3.5) as

A j(e; V ) = A j(e; V − P+
h V ) +A j(e; P+

h V ). (3.8)

Combining (3.8) and (3.6) with v = P+
h V ∈ P p(I j) and using the property of the projection P+

h , i.e., (V − P+
h V )(t+

j−1) = 0, 
we obtain

A j(e; V ) =
∫
I j

(e′ − θe)(V − P+
h V )dt + [e](t j−1)(V − P+

h V )(t+
j−1) =

∫
I j

(e′ − θe)(V − P+
h V )dt. (3.9)

By the property of the projection P+
h , we have∫

I j

v ′(V − P+
h V )dt = 0, ∀ v ∈ P p(I j), (3.10)

since v is a polynomial of degree at most p and thus v ′ is a polynomial of degree at most p − 1.
Substituting e = ε + ē into (3.9) and using (3.10) with v = ē, we get

A j(e; V ) =
∫
I j

(ε′ − θe)(V − P+
h V )dt +

∫
I j

ē′(V − P+
h V )dt =

∫
I j

(ε′ − θe)(V − P+
h V )dt. (3.11)

Next, we state and prove optimal L2 error estimate for ‖e‖.

Theorem 3.1. Let u be the exact solution of (2.1), which is assumed to be sufficiently smooth with bounded derivatives, i.e., ‖u‖p+1,�

is bounded. We further assume that | fu(t, u)| ≤ M1 on the set D = [0, T ] ×R. Let p ≥ 0 and uh be the DG solution of (2.4), then, for 
sufficiently small h, there exists a positive constant C independent of h such that,

‖e‖ ≤ Chp+1. (3.12)

Proof. The main idea behind the proof is to construct the following adjoint problem: find a function ϕ such that

−ϕ′ − θϕ = e, t ∈ [0, T ) subject to ϕ(T ) = 0, (3.13)

where θ = θ(t) = ∫ 1
0 fu(t, u(t) − se(t))ds. This problem has the following exact solution

ϕ(t) = 1

�(t)

T∫
t

�(y)e(y)dy, where �(t) = exp

⎛
⎝−

T∫
t

θ(s)ds

⎞
⎠ . (3.14)
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First, we prove some regular estimates needed in our error analysis. We note that the assumption | fu(t, u)| ≤ M1 is sufficient 
to guarantee that the function θ(t), t ∈ [0, T ] is bounded by M1 since

∣∣θ(t)
∣∣≤

1∫
0

∣∣ fu(t, u(t) − se(t))
∣∣ds ≤

1∫
0

M1ds = M1, ∀ t ∈ [0, T ]. (3.15a)

From the definition of � and the estimate (3.15a), we have

0 ≤ �(t) ≤ exp

⎛
⎝ T∫

0

|θ(s)|ds

⎞
⎠≤ exp

⎛
⎝ T∫

0

M1ds

⎞
⎠= exp (M1T ) = C1. (3.15b)

Similarly, we estimate 1
�(t) as follows

0 ≤ 1

�(t)
= exp

⎛
⎝ T∫

t

θ(s)ds

⎞
⎠≤ exp

⎛
⎝ T∫

0

|θ(s)|ds

⎞
⎠≤ exp

⎛
⎝ T∫

0

M1ds

⎞
⎠= exp (M1T ) = C1. (3.15c)

Using the definition of ϕ , applying the estimates (3.15b)–(3.15c) and the Cauchy–Schwarz inequality, we obtain

|ϕ(t)| ≤ 1

�(t)

T∫
t

�(y)|e(y)|dy ≤ C1

T∫
t

C1|e(y)|dy ≤ C2
1

T∫
0

|e(y)|dy ≤ C2
1 T 1/2 ‖e‖ , t ∈ [0, T ],

which, after squaring both sides and intergrading over �, yields

‖ϕ‖2 ≤ C4
1 T 2 ‖e‖2 = C2 ‖e‖2 . (3.16a)

We also need to estimate |ϕ|1,� . Using (3.13) and (3.15a), we get∣∣ϕ′∣∣= ∣∣θϕ + e
∣∣≤ M1

∣∣ϕ∣∣+ ∣∣e∣∣, t ∈ [0, T ].
Squaring both sides, using the inequality (a + b)2 ≤ 2a2 + 2b2, intergrading over �, and applying (3.16a), we arrive at

|ϕ|21,� =
T∫

0

∣∣ϕ′∣∣2dt ≤ 2M2
1 ‖ϕ‖2 + 2‖e‖2 ≤ (2M2

1C2 + 2)‖e‖2 = C3 ‖e‖2 . (3.16b)

Finally, using the well-known projection result and the estimate (3.16b), we obtain∥∥ϕ − P+
h ϕ
∥∥≤ C4h |ϕ|1,� ≤ C5h ‖e‖ . (3.16c)

Now, we are ready to prove (3.12). On the one hand, using (3.7) with V = ϕ and (3.13), we have

A j(e;ϕ) =
∫
I j

(−ϕ′ − θϕ)edt + e(t−
j )ϕ(t j) − e(t−

j−1)ϕ(t j−1) =
∫
I j

e2dt + e(t−
j )ϕ(t j) − e(t−

j−1)ϕ(t j−1),

which, after summing over the elements and using the fact that ϕ(T ) = e(t−
0 ) = 0, gives

N∑
j=1

A j(e;ϕ) = ‖e‖2 + e(T −)ϕ(T −) − e(t−
0 )ϕ(t−

0 ) = ‖e‖2 . (3.17)

On the other hand, taking V = ϕ in (3.11), we obtain

A j(e;ϕ) =
∫
I j

(ε′ − θe)(ϕ − P+
h ϕ)dt. (3.18)

Summing over all elements and applying the Cauchy–Schwarz inequality yields

N∑
j=1

A j(e;ϕ) ≤ (
∥∥ε′∥∥+ M1 ‖e‖)∥∥ϕ − P+

h ϕ
∥∥ .
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Applying the estimate (3.16c), we get

N∑
j=1

A j(e;ϕ) ≤ (C0hp |u|p+1,� + M1 ‖e‖)C1h ‖e‖ ≤ C(hp+1 + h ‖e‖)‖e‖ . (3.19)

Combining the two formulas (3.17) and (3.19) yields

‖e‖ ≤ Chp+1 + Ch ‖e‖ . (3.20)

Consequently, (1 − Ch) ‖e‖ ≤ Chp+1, where C is a constant independent of h. Hence, for sufficiently small h, e.g., h ≤ 1
2C , we 

have 1
2 ‖e‖ ≤ (1 − Ch) ‖e‖ ≤ Chp+1, which gives ‖e‖ ≤ 2Chp+1 for small h. This completes the proof of (3.12). �

In the next theorem, we prove that the DG solution is O(h2p+1) superconvergent at the downwind points. We further 
prove that the DG solution is O(hp+2) super close to P−

h u.

Theorem 3.2. Assume that the assumptions of Theorem 3.1 are satisfied. In addition, we assume that fu is sufficiently smooth with 
respect to the variables t and u (for example, the function h(t) = fu(t, u(t)) ∈ C p([0, T ]) is enough). Then there exists a positive 
constant C such that∣∣e(t−

k )
∣∣≤ Ch2p+1, k = 1, . . . , N. (3.21)∣∣ē(t−

k )
∣∣≤ Ch2p+1, k = 1, . . . , N. (3.22)∥∥ē′∥∥≤ Chp+1. (3.23)

‖ē‖ ≤ Chp+2. (3.24)

Proof. In order to prove global superconvergence of DG solutions at the mesh points we proceed by the duality argument. 
Let W be the solution of the following auxiliary problem:

W ′ + θW = 0, t ∈ [0, tk) subject to W (tk) = 1, (3.25)

where θ = θ(t) = ∫ 1
0 fu(t, u(t) − se(t))ds and 1 ≤ k ≤ N . The exact solution is given by W (t) = exp

(∫ tk
t θ(s)ds

)
, t ∈ �k =

[0, tk]. We note that the estimate (3.15a) and the assumption h(t) = fu(t, u(t)) ∈ C p([0, T ]) indicated that there exists a 
constant C such that

‖W ‖p+1,�k
≤ C . (3.26)

By (3.7) and (3.25), we have

A j(e; W ) =
∫
I j

(−W ′ − θW )edt + e(t−
j )W (t j) − e(t−

j−1)W (t j−1) = e(t−
j )W (t j) − e(t−

j−1)W (t j−1).

Summing over the elements I j , j = 1, . . . , k and using W (tk) = 1 and e(t−
0 ) = 0, we get

k∑
j=1

A j(e; W ) = e(t−
k )W (tk) − e(t−

0 )W (t0) = e(t−
k ). (3.27)

On the other hand, choosing V = W in (3.11), we get

A j(e; W ) =
∫
I j

(ε′ − θe)(W − P+
h W )dt.

Summing over the elements I j , j = 1, . . . , k with 1 ≤ k ≤ N and using (3.27), we obtain

e(t−
k ) =

k∑
j=1

∫
I j

(ε′ − θe)(W − P+
h W )dt.

Applying (3.15a) and the Cauchy–Schwarz inequality, we obtain∣∣e(t−
k )
∣∣≤ (

∥∥ε′∥∥
0,�k

+ M1 ‖e‖0,�k
)
∥∥W − P+

h W
∥∥

0,�k
≤ (
∥∥ε′∥∥+ M1 ‖e‖)∥∥W − P+

h W
∥∥

0,�k
.
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Applying (3.12), (2.13), and (3.26), we get∣∣e(t−
k )
∣∣≤ (C0hp |u|p+1,� + M1C1hp+1)C2hp+1 |W |p+1,�k

≤ C(hp + hp+1)hp+1 = O(h2p+1), (3.28)

for all k = 1, . . . , N , which completes the proof of (3.21).
In order to show (3.22) we use the relation e = ē + ε , the property of the projection P−

h , i.e., ε(t−
k ) = 0, and the estimate 

(3.21) to get∣∣ē(t−
k )
∣∣= ∣∣e(t−

k ) − ε(t−
k )
∣∣= ∣∣e(t−

k )
∣∣= O(h2p+1).

Next, we will estimate 
∥∥ē′∥∥. By the property of the projection P−

h , we have∫
I j

εv ′dt = 0, ∀ v ∈ P p(I j), and ε(t−
j ) = 0, j = 1, . . . , N, (3.29)

since v is a polynomial of degree at most p and thus v ′ is a polynomial of degree at most p − 1.
Substituting e = ε + ē into (3.1) and applying (3.29) yields∫

I j

v ′ēdt +
∫
I j

( f (t, u) − f (t, uh))vdt − ē(t−
j )v(t−

j ) + ē(t−
j−1)v(t+

j−1) = 0,

which, after using a simple integration by parts on the first term, is equivalent to∫
I j

(
ē′ − f (t, u) + f (t, uh)

)
vdt + [ē](t j−1)v(t+

j−1) = 0. (3.30)

Taking v(t) = ē′(t) − (−1)pē′(t+
j−1)Lp, j(t) ∈ P p(I j) in (3.30), we have, by the property L̃ p(−1) = (−1)p and the orthogonality 

relation (2.5b), v(t+
j−1) = 0 and∫

I j

(ē′)2dt = (−1)pē′(t+
j−1)

∫
I j

Lp, j ē
′dt +

∫
I j

( f (t, u) − f (t, uh))(ē′ − (−1)pē′(t+
j−1)Lp, j)dt

=
∫
I j

( f (t, u) − f (t, uh))(ē′ − (−1)pē′(t+
j−1)Lp, j)dt. (3.31)

Using the Lipschitz condition (2.2) and applying the Cauchy–Schwarz inequality yields∥∥ē′∥∥2
I j

≤
∫
I j

| f (t, u) − f (t, uh)|
(∣∣ē′∣∣+ ∣∣∣ē′(t+

j−1)

∣∣∣ ∣∣Lp, j
∣∣)dt ≤ M1

∫
I j

|e|
(∣∣ē′∣∣+ ∣∣∣ē′(t+

j−1)

∣∣∣ ∣∣Lp, j
∣∣)dt

≤ M1 ‖e‖I j

(∥∥ē′∥∥
I j

+
∣∣∣ē′(t+

j−1)

∣∣∣ ∥∥Lp, j
∥∥

I j

)
. (3.32)

Combining (3.32) with (2.14b) and (2.9a), we obtain

∥∥ē′∥∥2
I j

≤ M1 ‖e‖I j

⎛
⎝∥∥ē′∥∥

I j
+ C1h−1/2

j

∥∥ē′∥∥
I j

h1/2
j

(2p + 1)1/2

⎞
⎠≤ C ‖e‖I j

∥∥ē′∥∥
I j

.

Therefore, 
∥∥ē′∥∥

I j
≤ C ‖e‖I j

. Squaring both sides, summing over all elements, and applying (3.12), we get

∥∥ē′∥∥2 ≤ C ‖e‖2 ≤ Ch2p+2. (3.33)

Finally, we will estimate ‖ē‖. By the Fundamental Theorem of Calculus, we have

∣∣ē(t)∣∣= ∣∣∣∣ē(t−
j ) +

t∫
t j

ē′(s)ds

∣∣∣∣≤ ∣∣ē(t−
j )
∣∣+ ∫

I j

∣∣ē′(s)
∣∣ds, ∀ t ∈ I j.

Squaring both sides, using (a + b)2 ≤ 2a2 + 2b2 and applying the Cauchy–Schwartz inequality, we obtain

∣∣ē(t)∣∣2 ≤ 2
∣∣ē(t−

j )
∣∣2 + 2

⎛
⎜⎝∫

I j

∣∣ē′(s)
∣∣ds

⎞
⎟⎠

2

≤ 2
∣∣ē(t−

j )
∣∣2 + 2h j

∫
I j

∣∣ē′(s)
∣∣2ds = 2

∣∣ē(t−
j )
∣∣2 + 2h j

∥∥ē′∥∥2
I j

.
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Integrating this inequality with respect to t and using the estimate (3.22), we get

‖ē‖2
I j

≤ 2h j
∣∣ē(t−

j )
∣∣2 + 2h2

j

∥∥ē′∥∥2
I j

≤ 2Ch4p+3
j + 2h2

j

∥∥ē′∥∥2
I j

.

Summing over all elements and using the estimate (3.23) and the fact that h = max h j , we obtain

‖ē‖2 ≤ C1h4p+2 + 2h2
∥∥ē′∥∥2 ≤ C1h4p+2 + 2C2h2p+4 = O(h2p+4), (3.34)

since 4p + 2 ≥ 2p + 4 for p ≥ 1. Thus, we have completed the proof of the theorem. �
Thus, the numerical solution uh is closer to P−

h u than to the exact solution u. Next, we use the results of Theorem 3.2
to show that the true error e can be divided into a significant part and a less significant part. The significant part is 
proportional to the (p + 1)-degree right Radau polynomial and the less significant part converges at O(hp+2) rate in the 
L2-norm. We first define two interpolation operators π and π̂ . The operator π is defined as follows: For any function 
u = u(t), πu

∣∣
I j

∈ P p(I j) and interpolates u at the roots t j,i , i = 0, 1, . . . , p, of the (p + 1)-degree right Radau polynomial 

shifted to I j . Next, the operator π̂ is such that π̂u
∣∣

I j
∈ P p+1(I j) and is defined as follows: π̂u

∣∣
I j

interpolates u at t j,i , 
i = 0, 1, . . . , p, and at an additional point t̄ j in I j with t̄ j �= t j,i , i = 0, 1, . . . , p.

For the sake of completeness, we include the following results from [4] which will be needed in our error analysis. In 
particular, we show that the interpolation error can be divided into significant and less significant parts.

Lemma 3.1. Let u ∈ H p+2(I j) and P−
h and π as defined above. Then

u − πu = φ j + γ j, on I j, (3.35a)

where

φ j(t) = α jψp+1, j(t), ψp+1, j(t) =
p∏

i=0

(t − t j,i), γ j = u − π̂u, (3.35b)

and α j is the coefficient of t p+1 in the (p + 1)-degree polynomial π̂u. Furthermore,∥∥φ j
∥∥

s,I j
≤ Chp+1−s

j ‖u‖p+1,I j
, s = 0, . . . , p, (3.35c)∥∥γ j

∥∥
s,I j

≤ Chp+2−s
j ‖u‖p+2,I j

, s = 0, . . . , p + 1. (3.35d)

Finally,∥∥πu − P−
h u
∥∥

I j
≤ Chp+2

j ‖u‖p+2,I j
. (3.36)

Proof. The proof of these results can be found in the paper by Adjerid and Baccouch [4]. More precisely in its Lemma 2.1. �
Now, we are ready to state and prove the main global superconvergence result.

Theorem 3.3. Under the assumptions of Theorem 3.2, there exists a positive constant C independent of h such that

‖uh − πu‖ ≤ Chp+2. (3.37)

Moreover, the true error can be divided into a significant part and a less significant part as

e(t) = α jψp+1, j(t) + ω j(t), on I j, (3.38a)

where

ω j = γ j + πu − uh, (3.38b)

and

N∑
j=1

∥∥ω j
∥∥2

I j
≤ Ch2(p+2),

N∑
j=1

∥∥∥ω′
j

∥∥∥2

I j

≤ Ch2(p+1). (3.38c)

Finally,

N∑
j=1

∥∥e′∥∥2
I j

≤ Ch2p and ‖e‖1,� ≤ Chp. (3.39)
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Proof. Adding and subtracting P−
h u to uh − πu, we write

uh − πu = uh − P−
h u + P−

h u − πu = −ē + P−
h u − πu.

Taking the L2-norm and applying the triangle inequality, we obtain

‖uh − πu‖ ≤ ‖ē‖ + ∥∥P−
h u − πu

∥∥ .

Using the estimates (3.24) and (3.36), we establish (3.37).
Next, we add and subtract πu to e, we have

e = u − πu + πu − uh. (3.40)

Furthermore, one can split the interpolation errors u − πu on I j as in (3.35a) to obtain

e = φ j + γ j + πu − uh = φ j + ω j, where ω j = γ j + πu − uh. (3.41)

Next, we use the Cauchy–Schwarz inequality and the inequality |ab| ≤ 1
2 (a2 + b2) to write∥∥ω j

∥∥2
I j

= (γ j + πu − uh, γ j + πu − uh
)

I j
= ∥∥γ j

∥∥2
I j

+ 2
(
γ j,πu − uh

)
I j

+ ‖πu − uh‖2
I j

≤ 2
(∥∥γ j

∥∥2
I j

+ ‖πu − uh‖2
I j

)
.

Summing over all elements and applying (3.35d) with s = 0 and (3.37) yields the first estimate in (3.38c).
Using the Cauchy–Schwarz inequality and the inequality |ab| ≤ 1

2 (a2 + b2), we write∥∥∥ω′
j

∥∥∥2

I j

=
(
γ ′

j + (πu − uh)
′, γ ′

j + (πu − uh)
′)

I j

≤ 2

(∥∥∥γ ′
j

∥∥∥2

I j

+ ∥∥(πu − uh)
′∥∥2

I j

)
. (3.42)

Using the inverse inequality (2.14a), i.e., 
∥∥(πu − uh)′

∥∥
I j

≤ Ch−1 ‖(πu − uh)‖I j
, we obtain the estimate

∥∥∥ω′
j

∥∥∥2

I j

≤ C

(∥∥∥γ ′
j

∥∥∥2

I j

+ h−2 ‖πu − uh‖2
I j

)
.

Summing over all elements and applying (3.37) and the estimate (3.35d) with s = 1, we establish the second estimate in 
(3.38c).

In order to show (3.39), we note that

‖e‖2
1,� = ‖e‖2 +

N∑
j=1

∥∥e′∥∥2
I j

. (3.43)

Differentiating (3.41) with respect to t , taking the L2-norm, and applying the Cauchy–Schwarz inequality and the inequality 
|ab| ≤ 1

2 (a2 + b2), we get

∥∥e′∥∥2
I j

=
(
φ′

j + ω′
j, φ

′
j + ω′

j

)
I j

≤ 2

(∥∥∥φ′
j

∥∥∥2

I j

+
∥∥∥ω′

j

∥∥∥2

I j

)
.

Summing over all elements and applying (3.35c) and (3.38c), we obtain

N∑
j=1

∥∥e′∥∥2
I j

≤ Ch2p. (3.44)

Finally, substituting (3.12) and (3.44) into (3.43) establishes (3.39). �
4. A posteriori error estimation

In this section, we present a technique to compute asymptotically correct a posteriori estimates of the DG errors for the 
nonlinear IVP (2.1). These estimates are computed by solving a local problem with no boundary condition on each element. 
We further prove that the DG discretization error estimates converge to the true spatial errors in the L2-norm as h → 0. 
Next, we present the weak finite element formulation to compute a posteriori error estimate for the nonlinear IVP (2.1).

Multiplying (2.1) by arbitrary smooth function v and integrating over an arbitrary element I j , we get∫
I j

u′vdt =
∫
I j

f (t, u)vdt. (4.1)
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Replacing u by uh + e and choosing v = ψp+1, j(t), we obtain∫
I j

e′ψp+1, jdt =
∫
I j

(
f (t, uh + e) − u′

h

)
ψp+1, jdt. (4.2)

Substituting (3.38a), i.e., e(t) = α jψp+1, j(t) + ω j(t), into the left-hand side of (4.2) yields

α j

∫
I j

ψ ′
p+1, jψp+1, jdt =

∫
I j

(
f (t, uh + e) − u′

h − ω′
j

)
ψp+1, jdt. (4.3)

Using (2.9b) and solving for α j , we obtain

α j = − 1

k1h2p+2
j

∫
I j

(
f (t, uh + e) − u′

h − ω′
j

)
ψp+1, jdt. (4.4)

Our error estimate procedure consists of approximating the true error on each element I j by the leading term as

e(t) ≈ E(t) = a jψp+1, j(t), t ∈ I j, (4.5a)

where the coefficient of the leading term of the error, a j , is obtained from the coefficient α j defined in (4.4) by neglecting 
the terms ω j and e, i.e.,

a j = − 1

k1h2p+2
j

∫
I j

(
f (t, uh) − u′

h

)
ψp+1, jdt. (4.5b)

We note that our error estimates are obtained by solving local problems with no boundary conditions.
An accepted efficiency measure of a posteriori error estimates is the effectivity index. In this paper, we use the global 

effectivity index

σ = ‖E‖
‖e‖ ,

and is used to appraise the accuracy of the error estimate. Ideally, the global effectivity index should stay close to one and 
should converge to one under mesh refinement.

Next, we will show that the error estimate E converges to the exact error e in the L2-norm as h → 0. Furthermore, we 
will prove the convergence to unity of the global effectivity index σ under mesh refinement.

Before stating our main result we state and prove the following preliminary results.

Theorem 4.1. Suppose that the assumptions of Theorem 3.2 are satisfied. If α j and a j are given by (4.4) and (4.5b), respectively, then 
there exists a positive constant C independent of h such that

N∑
j=1

(
a j − α j

)2 ∥∥ψp+1, j
∥∥2

I j
≤ Ch2p+4. (4.6)

N∑
j=1

(
a2

j + α2
j

)∥∥ψp+1, j
∥∥2

I j
≤ Ch2p+2. (4.7)

N∑
j=1

∣∣∣a2
j − α2

j

∣∣∣ ∥∥ψp+1, j
∥∥2

I j
≤ Ch2p+3. (4.8)

Proof. Subtracting (4.4) from (4.5b), we obtain

a j − α j = 1

k1h2p+2
j

∫
I j

(
f (t, uh + e) − f (t, uh) − ω′

j

)
ψp+1, jdt. (4.9)

Thus,

∣∣a j − α j
∣∣≤ 1

k1h2p+2
j

∫
I j

(
| f (t, uh + e) − f (t, uh)| +

∣∣∣ω′
j

∣∣∣) ∣∣ψp+1, j
∣∣dt. (4.10)



JID:APNUM AID:3011 /FLA [m3G; v1.175; Prn:7/04/2016; 16:57] P.14 (1-25)

14 M. Baccouch / Applied Numerical Mathematics ••• (••••) •••–•••

Using the Lipschitz condition (2.2) and applying the Cauchy–Schwarz inequality yields

∣∣a j − α j
∣∣≤ 1

k1h2p+2
j

∫
I j

(
M1 |e| +

∣∣∣ω′
j

∣∣∣) ∣∣ψp+1, j
∣∣dt ≤

∥∥ψp+1, j
∥∥

I j

k1h2p+2
j

(
M1 ‖e‖I j

+
∥∥∥ω′

j

∥∥∥
I j

)
. (4.11)

Applying the inequality (a + b)2 ≤ 2(a2 + b2), we obtain

(a j − α j)
2 ≤

2
∥∥ψp+1, j

∥∥2
I j

k2
1h4p+4

j

(
M2

1 ‖e‖2
I j

+
∥∥∥ω′

j

∥∥∥2

I j

)
. (4.12)

Multiplying by 
∥∥ψp+1, j

∥∥2
I j

and using (2.9c), i.e., 
∥∥ψp+1, j

∥∥2
I j

= (2p + 2)k2h2p+3
j yields

(a j − α j)
2
∥∥ψp+1, j

∥∥2
I j

≤
2
∥∥ψp+1, j

∥∥4
I j

k2
1h4p+4

j

(
M2

1 ‖e‖2
I j

+
∥∥∥ω′

j

∥∥∥2

I j

)
≤ k3h2

j

(
‖e‖2

I j
+
∥∥∥ω′

j

∥∥∥2

I j

)
, (4.13a)

where k3 is a constant independent of the mesh size given by

k3 = 2(2p + 2)2k2
2

k2
1

max(M2
1,1). (4.13b)

Summing over all elements and using h = max
1≤ j≤N

h j , we arrive at

N∑
j=1

(a j − α j)
2
∥∥ψp+1, j

∥∥2
I j

≤ k3h2

⎡
⎣‖e‖2 +

N∑
j=1

∥∥∥ω′
j

∥∥∥2

I j

⎤
⎦ .

Combining this estimate with (3.12) and (3.38c), we establish (4.6).
Next, we will prove (4.7). Since uh = u − e and u′ = f (t, u), we have

a j = − 1

k1h2p+2
j

∫
I j

(
f (t, u − e) − f (t, u) + e′)ψp+1, jdt. (4.14)

Using the Lipschitz condition (2.2) and applying the Cauchy–Schwarz inequality, we get∣∣a j
∣∣≤ 1

k1h2p+2
j

∫
I j

(| f (t, u − e) − f (t, u)| + ∣∣e′∣∣) ∣∣ψp+1, j
∣∣dt

≤ 1

k1h2p+2
j

∫
I j

(
M1 |e| + ∣∣e′∣∣) ∣∣ψp+1, j

∣∣dt ≤
∥∥ψp+1, j

∥∥
I j

k1h2p+2
j

(
M1 ‖e‖I j

+ ∥∥e′∥∥
I j

)
. (4.15)

Applying the inequality (a + b)2 ≤ 2(a2 + b2), we get

a2
j ≤

2
∥∥ψp+1, j

∥∥2
I j

k2
1h4p+4

j

(
M2

1 ‖e‖2
I j

+ ∥∥e′∥∥2
I j

)
. (4.16)

Multiplying both sides by 
∥∥ψp+1, j

∥∥2
I j

= (2p + 2)k2h2p+3
j , we obtain

a2
j

∥∥ψp+1, j
∥∥2

I j
≤

2
∥∥ψp+1, j

∥∥4
I j

k2
1h4p+4

j

(
M2

1 ‖e‖2
I j

+ ∥∥e′∥∥2
I j

)
= 2(2p + 2)2k2

2

k2
1

h2
j

(
M2

1 ‖e‖2
I j

+ ∥∥e′∥∥2
I j

)

≤ k3h2
j

(
‖e‖2

I j
+ ∥∥e′∥∥2

I j

)
,

where k3 is defined in (4.13b). Summing over all elements and using h = max
1≤ j≤N

h j and the estimates (3.12) and (3.39), we 

obtain

N∑
j=1

a2
j

∥∥ψp+1, j
∥∥2

I j
≤ k3h2

[
‖e‖2 + ∥∥e′∥∥2

]
≤ C1h2p+2. (4.17)
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On the other hand, taking the L2 inner product of ψp+1, j and φ j = α jψp+1, j , defined in (3.35b), and applying the Cauchy–
Schwarz inequality, we write

|α j|
∥∥ψp+1, j

∥∥2
I j

= ∣∣(φ j,ψp+1, j)I j

∣∣≤ ∥∥ψp+1, j
∥∥

I j

∥∥φ j
∥∥

I j
. (4.18)

Hence, we have

α2
j

∥∥ψp+1, j
∥∥2

I j
≤ ∥∥φ j

∥∥2
I j

.

Summing over all elements and applying (3.35c), we obtain

N∑
j=1

α2
j

∥∥ψp+1, j
∥∥2

I j
≤

N∑
j=1

∥∥φ j
∥∥2

I j
≤ C2h2p+2. (4.19)

Adding (4.17) and (4.19) yields (4.7).
Finally, we will prove (4.8). Using the Cauchy–Schwarz inequality, the inequality (a + b)2 ≤ 2a2 + 2b2, and applying the 

estimates (4.6) and (4.7), we obtain

N∑
j=1

|α2
j − a2

j |
∥∥ψp+1, j

∥∥2
I j

=
N∑

j=1

(
|α j − a j|

∥∥ψp+1, j
∥∥

I j

)(
|α j + a j|

∥∥ψp+1, j
∥∥

I j

)

≤
⎛
⎝ N∑

j=1

(α j − a j)
2
∥∥ψp+1, j

∥∥2
I j

⎞
⎠

1/2⎛
⎝ N∑

j=1

(α j + a j)
2
∥∥ψp+1, j

∥∥2
I j

⎞
⎠

1/2

≤ √
2

⎛
⎝ N∑

j=1

(α j − a j)
2
∥∥ψp+1, j

∥∥2
I j

⎞
⎠

1/2⎛
⎝ N∑

j=1

(α2
j + a2

j )
∥∥ψp+1, j

∥∥2
I j

⎞
⎠

1/2

≤ √
2
(

Ch2p+4
)1/2 (

Ch2p+2
)1/2 = O(h2p+3). �

The main results of this section are stated in the following theorem. In particular, we state and prove asymptotic results 
of our a posteriori error estimates.

Theorem 4.2. Suppose that the assumptions of Theorem 3.2 are satisfied. If E(t) = a jψp+1, j(t), t ∈ I j , where a j , j = 1, . . . , N, are 
given by (4.5b), then there exists a positive constant C independent of h such that

‖e − E‖2 ≤ Ch2p+4. (4.20)

As a consequence, the DG method combined with the a posteriori error estimation procedure yields O(hp+2) superconvergent solution 
i.e.,

‖u − (uh + E)‖2 =
N∑

j=1

∥∥u − (uh + a jψp+1, j)
∥∥2

I j
≤ Ch2p+4. (4.21)

Furthermore,

‖e‖2 = ‖E‖2 + ε̂ =
N∑

j=1

a2
j

∥∥ψp+1, j
∥∥2

I j
+ ε̂, where |ε̂| ≤ Ch2p+3. (4.22)

Finally, if there exists a constant C = C(u) > 0 independent of h such that

‖e‖ ≥ Chp+1, (4.23)

then the global effectivity index in the L2 norm, which is defined as σ = ‖E‖
‖e‖ , converges to unity at O(h) rate, i.e.,

σ = 1 +O(h). (4.24)

Proof. First, we will prove (4.20) and (4.21). Since e = α jψp+1, j + ω j and E = a jψp+1, j on I j , we have

‖e − E‖2
I j

= ∥∥(α j − a j)ψp+1, j + ω j
∥∥2

I j
≤ 2(α j − a j)

2
∥∥ψp+1, j

∥∥2
I j

+ 2
∥∥ω j

∥∥2
I j

,
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where we used the inequality (a + b)2 ≤ 2a2 + 2b2. Summing over all elements and applying the estimates (3.38c) and (4.6)
yields

‖e − E‖2 =
N∑

j=1

‖e − E‖2
I j

≤ 2
N∑

j=1

(α j − a j)
2
∥∥ψp+1, j

∥∥2
I j

+ 2
N∑

j=1

∥∥ω j
∥∥2

I j
≤ 2C1h2p+4 + 2C2h2p+4 = Ch2p+4.

Using the relation e = u − uh and the estimate (4.20), we obtain

N∑
j=1

∥∥u − (uh + a jψp+1, j)
∥∥2

I j
= ‖u − (uh + E)‖2 = ‖e − E‖2 ≤ Ch2p+4.

Next, we will prove (4.22). From (3.38a) the DG error can be split as e = φ j + ω j , on I j . Taking the L2 norm of e and using 
(3.35b) we have

‖e‖2
I j

= ∥∥φ j
∥∥2

I j
+ 2(φ j,ω j)I j + ∥∥ω j

∥∥2
I j

= α2
j

∥∥ψp+1, j
∥∥2

I j
+ ε j, (4.25a)

where

ε j = 2(φ j,ω j)I j + ∥∥ω j
∥∥2

I j
. (4.25b)

Summing over all elements, we obtain

‖e‖2 =
N∑

j=1

α2
j

∥∥ψp+1, j
∥∥2

I j
+ ε̃, where ε̃ =

N∑
j=1

ε j . (4.26)

Next, we write the DG error as

‖e‖2 =
N∑

j=1

a2
j

∥∥ψp+1, j
∥∥2

I j
+ ε̂, where ε̂ =

N∑
j=1

(α2
j − a2

j )
∥∥ψp+1, j

∥∥2
I j

+ ε̃. (4.27)

On the one hand, applying the estimate (4.8), we get

|ε̂| ≤
N∑

j=1

|α2
j − a2

j |
∥∥ψp+1, j

∥∥2
I j

+ |ε̃| ≤ Ch2p+3 + |ε̃|. (4.28)

On the other hand, from (4.25b), we apply the Cauchy–Schwarz inequality to obtain

|ε̃| ≤
N∑

j=1

|ε j| ≤ 2
N∑

j=1

∥∥φ j
∥∥

I j

∥∥ω j
∥∥

I j
+

N∑
j=1

∥∥ω j
∥∥2

I j
. (4.29)

Applying the Cauchy–Schwarz inequality and using the estimates (3.35c) and (3.38c), we get

|ε̃| ≤ 2

⎛
⎝ N∑

j=1

∥∥φ j
∥∥2

I j

⎞
⎠

1/2⎛
⎝ N∑

j=1

∥∥ω j
∥∥2

I j

⎞
⎠

1/2

+
N∑

j=1

∥∥ω j
∥∥2

I j
≤ C1h2p+3. (4.30)

Finally, combining (4.28) and (4.30) we complete the proof of (4.22).
In order to show (4.24), we use the triangle inequality to have∣∣‖E‖ − ‖e‖ ∣∣≤ ‖E − e‖ ,

which, after dividing by ‖e‖, yields∣∣∣∣‖E‖
‖e‖ − 1

∣∣∣∣≤ ‖E − e‖
‖e‖ . (4.31)

Applying the estimate (4.20) and the inverse estimate (4.23), we arrive at∣∣∣∣‖E‖
‖e‖ − 1

∣∣∣∣≤ Ch.

Therefore, ‖E‖
‖e‖ = 1 +O(h), which establishes (4.24). �

In the previous theorem, we proved that the global a posteriori error estimates converge to the true spatial errors at 
O(hp+2) rate. We further proved that the global effectivity index in the L2-norm converges to unity at O(h) rate.
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Remark 4.1. We note that the computable quantity uh + E converge to the exact solution u at O(hp+2) rate. This accuracy 
enhancement is simply achieved by adding the error estimate E to the approximate solution uh . Finally, we note that our 
DG error estimates are obtained by solving a local problem with no boundary conditions on each element. This leads to 
very efficient computations of the post-processed approximation uh + E .

Remark 4.2. The performance of an error estimator is commonly measured by the effectivity index which is the ratio 
of the estimated error to the actual error. In particular, we say that the error estimator is asymptotically exact if the 
effectivity index approaches unity as the mesh size goes to zero. Thus, (4.24) indicated that our a posteriori error estimator 
is asymptotically exact. We note that E is a computable quantity since it only depends on the numerical solution uh and 
the f . It provides an asymptotically exact a posteriori estimator on the actual error ‖e‖. We would like to emphasize that 
our DG error estimate is computationally simple which make it useful in adaptive computations.

Remark 4.3. We note that, from (3.34), if p = 0 then ‖ē‖ = O(h) which is the same as ‖e‖. Thus, when p = 0, there is no 
superconvergence for global errors. Also, our error estimate procedure does not apply.

Remark 4.4. The assumption (4.23) implies that terms of order O(hp+1) are present in the error. If this were not the case, 
the error estimate E might not be such a good approximation of the error e. Even though the proof of (4.24) is valid under 
the assumption (4.23), our computational results given in the next section demonstrate that the global effectivity index in 
the L2-norm converge to unity at O(h) rate. Thus, the proposed error estimation technique is an excellent measure of the 
error.

We note that the a priori estimate (3.12) is optimal in the sense that the exponent of h is the largest possible. In fact, 
one may show that provided that the (p + 1)st-order derivatives of the exact solution u do not vanish identically over the 
domain (u /∈ V p

h ), then an inverse estimate of the form (4.23) is valid [8,37,38] for some positive constant C which depends 
on u but not on h. Combining (3.12) with (4.23), we show that uh approximates u to O(hp+1) in the L2 norm.

5. Computational results

In this section, we numerically validate our theoretical results. We compute the maximum DG error at shifted roots of 
(p + 1)-degree right-Radau polynomial on each element I j and then take the maximum over all elements. We also compute 
the DG error at the downwind point of each element and then take the maximum over all elements I j , j = 1, . . . , N . For 
simplicity, we denote

‖e‖∗ = max
1≤ j≤N

(
max

0≤i≤p
|e(t−

j,i)|
)

, |e|∗ = max
1≤ j≤N

|e(t−
j )|,

where t j,i are the roots of R p+1, j(t). We also define δe and δσ as

δe = ∣∣‖e‖ − ‖E‖ ∣∣, δσ = ∣∣σ − 1
∣∣.

Example 5.1. We consider the following nonlinear IVP

u′ = −u − u2, t ∈ [0,1], u(0) = 1.

The exact solution is given by u(t) = 1
2et−1 .

We solve this problem using the DG method on uniform meshes obtained by partitioning the domain [0, 1] into N
subintervals with N = 5, 10, 20, 30, 40, 50 and using the spaces P p with p = 0–4.

In Fig. 1 we plot, in log–log scale, the L2 errors ||e|| and ||ē|| versus h. For each P p space, we fit, in a least-squares sense, 
the data sets with a linear function and then calculate from the fitting result the slopes of the fitting lines. The slopes of the 
fitting lines are shown on the graph. We observe that ||e|| =O(hp+1) and ||ē|| =O(hp+2). We observe that the DG solution 
is O(hp+2) super close to the projection P−

h u except for p = 0, where there is no superconvergence for global errors. We 
note that the observed numerical convergence rate is optimal for p ≥ 1.

We present the zero-level curves of the true error e in Fig. 2 using N = 10 and for p ranging from 1 to 4. The Radau 
points of degree p + 1 are shown on each element as × signs. We observe that the errors vanish at points close to the 
Radau points for all solutions except the one with p = 0, where there is no superconvergence for global errors and, thus, 
the error estimation procedure does not apply. The maximum errors ‖e‖∗ , |e|∗ , and their orders of convergence shown in 
Fig. 3 indicate that the DG error e is O(hp+2) superconvergent at the roots of (p + 1)-degree right Radau polynomial and 
O(h2p+1) at the end of each step. Thus, globally, the DG solution converges at an O(h2p+1) rate at the downwind end of 
each subinterval and at an O(hp+2) rate at the remainder of the Radau points. This is in full agreement with the theory.

On each element, we apply the error estimation procedure (4.5) to compute the error estimate for the DG solution. In 
Fig. 4, we present the convergence rates for the global errors ||e − E|| using the spaces P p with p = 1–4. These results 
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Fig. 1. Log–log plots of ||e|| (left) and ||ē|| (right) versus mesh sizes h for Example 5.1 on uniform meshes having N = 5, 10, 20, 30, 40, 50 elements using P p , 
p = 0 to 4.

Fig. 2. Zero-level curves of e for Example 5.1 using P p , p = 1–4 (upper left to lower right) on uniform meshes having N = 10 elements.

indicate that ||e − E|| =O(hp+2). This is in full agreement with the theory. This example demonstrates that the convergence 
rate proved in this paper is optimal. We note that

||e − E|| = ||u − (uh + E)|| = O(hp+2).

Thus, the computable quantities uh + E converge to the exact solution u at O(hp+2) rate. We note that this accuracy 
enhancement is achieved by adding the error estimate E to the DG solution only once at the end of the computation. This 
leads to a very efficient computation of the post-processed approximation uh + E .

The true L2 errors and the global effectivity indices shown in Table 1 indicate that our a posteriori error estimates 
converge to the true errors under both h- and p-refinements.
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Fig. 3. (Left) Log–log plots of ||e||∗ versus h for Example 5.1 using N = 5, 10, 20, 30, 40, 50 and P p , p = 0 to 4. (Right) Log–log plots of |e|∗ versus h using 
N = 5, 10, 20, 30 elements using P p , p = 0 to 3.

Fig. 4. Convergence rates of ||e − E|| for Example 5.1 on uniform meshes having N = 5,10,20,30,40,50 elements using P p , p = 1 to 4.

Table 1
L2 errors and global effectivity indices for Example 5.1 on uniform meshes having N = 5, 10, 20, 30, 40, 50 elements using P p , p = 1 to 4.

N p = 1 p = 2 p = 3 p = 4

||e|| σ ||e|| σ ||e|| σ ||e|| σ

5 4.7637e−3 1.0362 2.7867e−4 1.0531 1.6847e−5 1.0637 1.0386e−6 1.0705
10 1.2750e−3 1.0179 3.7805e−5 1.0271 1.1742e−6 1.0326 3.7481e−8 1.0363
20 3.2849e−4 1.0089 4.8747e−6 1.0136 7.6227e−8 1.0164 1.2290e−9 1.0182
30 1.4736e−4 1.0059 1.4568e−6 1.0090 1.5201e−8 1.0109 1.6369e−10 1.0122
40 8.3262e−5 1.0044 6.1698e−7 1.0068 4.8296e−9 1.0082 3.9026e−11 1.0091
50 5.3429e−5 1.0035 3.1660e−7 1.0054 1.9827e−9 1.0066 1.2820e−11 1.0073

The results shown in Fig. 5 indicate that the numerical convergence rates for δe and δσ are O(hp+2) and O(h), respec-
tively. We note that the observed convergence rate for the global effectivity index is optimal. We note that the effectivity 
indices converge under h- and p-refinements. Numerical results further indicate that the error estimates converge to the 
true errors with decreasing mesh size and increasing polynomial degree p.

A posteriori error estimates are traditionally used to guide adaptive enrichment by h-refinement and to provide a mea-
sure of solution reliability. Adaptive methods based on a posteriori error estimates have become a common procedure for 
obtaining more accurate numerical solutions. In the next examples, we use our a posteriori errors estimates to construct 
efficient adaptive high-order DG method. Such adaptive DG method consists of successive loops of the cycle

SOLVE → ESTIMATE → MARK → REFINE.
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Fig. 5. Convergence rates for δe (left) and δσ (right) for Example 5.1 on uniform meshes having N = 5,10,20,30,40,50 elements using P p , p = 1 to 4.

The local a posteriori errors estimate of section 4 is used to mark elements for refinement. The adaptive mesh refinement 
(AMR) refines the mesh according to the local a posteriori error indicator. Typically, an adaptive algorithm adds extra nodes 
to an existing mesh to refine the mesh where the error is large, for example near singularities or discontinuities.

In this paper, we propose a simple adaptive strategy which consists of solving the IVP (2.1) on a variable grid whose 
elements are denoted I j , j = 1, . . . , N . The local error estimate (4.5) is used to compute the local errors ‖E‖I j

, j = 1, . . . , N

and the global error ‖E‖ =
(∑N

j=1 ‖E‖2
I j

)1/2
. Given a user tolerance Tol > 0, our adaptive refinement strategy consists of the 

following steps:

1. Set a tolerance Tol and a maximum bound on the number of nodes Nmax = 1000. Set ‖E‖ = 1.
2. Create a coarse mesh with N + 1 nodes. Here we choose a uniform mesh with N = 2 elements.
3. While N + 1 ≤ Nmax and ‖E‖ ≥ Tol do

(a) Find the DG solution uh as described in section 2.
(b) Compute the L2-norm of the local error estimates ‖E‖I j

, j = 1, . . . , N as described in section 4 and the global error 

estimate ‖E‖ =
(∑N

j=1 ‖E‖2
I j

)1/2
.

(c) For all elements I j

i. if ‖E‖I j
< λ max

j=1,...,N
‖E‖I j

then we accept the DG solution on I j . Here 0 ≤ λ ≤ 1 is a parameter which must be 

chosen by the user. Note that λ = 0 gives a uniform refinement, while λ = 1 gives no refinement at all.
ii. else, we reject the DG solution on I j and subdivide I j into 2 uniform elements. Thus, we add the coordinate of 

the midpoint of the element I j to the nodes.
4. endwhile

Remark 5.1. There are different possibilities for selecting the elements to be refined given the local errors ‖E‖I j
. In the 

above algorithm, we refine the element I j if ‖E‖I j
> λ max

j=1,...,N
‖E‖I j

. Similarly, there are other stopping criteria which can 

be used to determine when the adaptive algorithm should stop.

In the next examples, we propose and test the above adaptive algorithm for the selection of the mesh.

Example 5.2. To test the adaptive algorithm, we consider the following linear problem

u′ = βu, t ∈ [0,5], u(0) = 1.

The exact solution is u(t) = eβt . We apply our adaptive algorithm using β = 1 (unstable), β = −1 (stable), and β = −20
(stiff). In Figs. 6–8, we show the DG solutions and the sequence of meshes obtained by applying the above adaptive algo-
rithm with Tol = 10−2 for p = 1–4 using β = 1, β = −1, and β = −20, respectively. We observe that the adaptive procedure 
refines elements in which the a posteriori error estimator is large. From these results, we can see that, when λ is closer to 0, 
we get more uniform refinement near the portion with high approximation error. When λ is closer to 1, we get less uniform 
refinement near the portion with high approximation error. This example shows that our error estimates are efficient and 
accurate under adaptive mesh refinement.
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Fig. 6. DG solutions, exact solution, and final meshes for Example 5.2 with β = 1 using P p , p = 1 to 4, and Tol = 10−2.

Fig. 7. DG solutions, exact solution, and final meshes for Example 5.2 with β = −1 using P p , p = 1 to 4, and Tol = 10−2.

Example 5.3. In this example, we apply our adaptive algorithm to the following linear problem

u′ + u = f (t), t ∈ [0,1], u(0) = u0.

We select f (t) and u0 such that the exact solution is u(t) = e−1000(x−0.5)2 + 1. In Fig. 9, we show the DG solutions and the 
sequence of meshes obtained by applying our adaptive algorithm with Tol = 10−3 for p = 1–4. We observe that the adaptive 
procedure refines elements in which the a posteriori error estimator is large.

Example 5.4. As a final test, we consider the following IVP

u′ + u = f (t), t ∈ [0,1], u(0) = 1.

We select f (t) such that the exact solution is u(t) = 1 + 10−5t(1 − t)e15t , which is smooth function but it has a steep 
front and gradient near t = 1. We solve this problem using the DG method described in section 2. We start with a uniform 
meshes having N = 2 elements and using the space P p with p = 1–4. Fig. 10 shows the DG solutions and the final mesh 
which is constructed through a sequence of successively refined meshes where elements for which the L2 norm of the 
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Fig. 8. DG solutions, exact solution, and final meshes for Example 5.2 with β = −20 using P p , p = 1 to 4, and Tol = 10−2.

Fig. 9. DG solutions, exact solution, and final meshes for Example 5.3 using P p , p = 1 to 4, and Tol = 10−3.

local error estimate ‖Eu‖I j
on each element is larger than Tol = 10−3 are refined. We observe that the number of elements 

needed to achieve the error tolerance Tol = 10−3 decreases under p-refinement. In Fig. 11, we show the DG solutions and 
the sequence of meshes obtained by applying our adaptive algorithm with Tol = 10−5 for p = 1–4. We observe from our 
experiments that the local adaptive procedure is able to capture the steep front and gradient by refining the elements in 
the neighborhood of the point t = 1. These computational results indicate that our estimators are accurate on adaptively 
refined meshes and further suggest that they converge to the true error under adaptive mesh refinement.

6. Concluding remarks

In this paper, we analyzed the original discontinuous Galerkin (DG) finite element method for the approximation of 
initial-value problems for ordinary differential equations. We proved that the DG solution exhibits an optimal O(hp+1)

convergence rate in the L2-norm when p-degree piecewise polynomials are used. We further proved that the p-degree 
DG solution is O(hp+2) super close to a special projection of the exact solution. We used these results to show that the 
significant part of the discretization error for the DG solution is proportional to the (p + 1)-degree right Radau polynomial. 
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Fig. 10. DG solutions, exact solution, and final meshes for Example 5.4 using P p , p = 1 to 4, and Tol = 10−3.

Fig. 11. DG solutions, exact solution, and final meshes for Example 5.4 using P p , p = 1 to 4, and Tol = 10−5.

These results are used to construct asymptotically correct a posteriori error estimates of spatial discretization errors. We 
proved that the DG discretization error estimates converge to the true spatial errors under mesh refinement in the L2-norm. 
The order of convergence is proved to be of order p + 2. We further proved that the global effectivity index in the L2-norm 
converges to unity at O(h) rate. Our proofs are valid for arbitrary regular meshes and for P p polynomials with p ≥ 1. The 
extension of our proofs for nonlinear vector IVPs is straight forward. We are currently investigating the superconvergence 
properties and the a posteriori error analysis of the DG method applied to boundary-value problems.
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