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Abstract—Foreign Object Debris (FOD) detection has attracted increased attention 
in the area of machine learning and computer vision. However, a robust and 
publicly available image dataset for FOD has not been initialized. To this end, this 
paper introduces an image dataset of FOD, named FOD in Airports (FOD-A). FOD-
A object categories have been selected based on guidance from prior 
documentation and related research by the Federal Aviation Administration 
(FAA). In addition to the primary annotations of bounding boxes for object 
detection, FOD-A provides labeled environmental conditions. As such, each 
annotation instance is further categorized into three light level categories (bright, 
dim, and dark) and two weather categories (dry and wet). Currently, FOD-A has 
released 31 object categories and over 30,000 annotation instances. This paper 
presents the creation methodology, discusses the publicly available dataset 
extension process, and demonstrates the practicality of FOD-A with widely used 
machine learning models for object detection. 

Index Terms—Image Dataset, Foreign Object Debris, Com- puter Vision, 
Machine Learning 

 
I. INTRODUCTION 

Accidents caused by Foreign Object Debris (FOD) are responsible for severe 

injuries or death, and billions of dollars in damages to aircraft [1]. FOD is a critical safety 

hazard in airports, and machine learning and computer vision (MLCV) technology has 
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been shown as a potential solution in exploratory research [2]–[5]. In order to facilitate 

this application of MLCV, a dataset of FOD images and annotations is required to be 

utilized and organized for more sophisticated and robust models and algorithms. 

To foster future FOD-based MLCV work, we developed the novel dataset named 

Foreign Object Debris in Airports (FOD-A). FOD-A object categories are influenced by 

relevant FAA documents and previous research [1], [6]–[11]. These object categories 

are designed to cover several FOD types while including specific labels that are 

descriptive. Images are collected under varying light and weather conditions to ensure 

accurate simulation of typical airport environments. Varying conditions also ensure that 

the FOD-A dataset is challenging for modern MLCV algorithms. As a preview, FOD-A 

images with example bounding boxes are shown in Figure 1. Since FOD is a continually 

evolving datatype, it is important that a FOD dataset can be easily expanded. To 

enable extensibility, 

This work is partially funded by the NASA Nebraska Space Grant (Federal 

Award #NNX15AI09H). This work is also funded by Nebraska University (NU) 

Collaboration Initiative Grant. this dataset includes tools that allow the addition of 

new data with ease. Since extensibility and consistency may be contradictory traits, it 

will be important for several iterations of FOD-A to remain available. Once algorithms 

are compared using a consistent iteration of FOD-A, new algorithms can be 

implemented using the most current FOD-A data. This ensures all current FOD-A object 

categories are included in final detection algorithms. 

Currently, there are several well-known general datasets available that contain 

diverse categories of common objects, (e.g., bicycles, cars, desks, toasters) [12], [13]. 

Due to the location of the FOD datatype (i.e. airports), these datasets [12], [13] do not 

properly cover necessary categories of FOD (e.g., luggage items, aircraft parts, tools). 

Because of this, comparisons to datasets of general objects will only be briefly made in 

Section III-C. 

 



 
Fig. 1. FOD-A dataset images with bounding box annotation examples. 

 

The rest of this paper is organized as follows. The related work is reviewed in 

Section II. A description of dataset creation methodology, FOD-A statistics, and the 

extension process is provided in Section III. Section IV presents the initial 

experimentation and algorithmic results. Finally, Section V concludes the paper and 

discusses future work. As a summary, the major contributions of this work are as 

follows: 1) the initialization and creation of the novel and publicly availabledataset 

FOD-A; 2) the design and development of an efficient and abstractable method of 

image dataset creation; and 3) the implementation and evaluation of an initial 

algorithmic analysis of FOD-A. 

 

II. RELATED WORK 
The FAA published several documents [1], [6]–[11] pro- viding guidance on FOD 



detection and management. As the main resource for FOD information, the object 

categories in the FOD dataset are based off the FAA documentation [6], [7]. The details 

of the category selection process are described in Section III-A. 

 

A. Existing FOD Datasets 

A publicly accessible FOD dataset [4] does exist. How- ever, this dataset 

primarily focused on material recognition, including the following three object categories: 

metal, plastic, and concrete [4]. Using only these three object categories does not 

cover all common types of FOD according to the FAA’s [7] information. For example, 

these object categories cannot cover some types of tools, various common airport 

garbage (e.g., paper, soda cans), animals and other natural debris, some runway 

materials such as paint chips, and other common FOD [1], [7]. For comparison, FOD-A 

provides 31 object categories (see Figure 3). 

Furthermore, images contained in the material recognition dataset are in a 

zoomed-in format. It is likely that images collected during applied FOD detection tasks 

will not be zoomed into objects, so FOD-A provides images in a zoomed-out format with 

bounding boxes (see Figure 1). Also, the material recognition dataset contains about 

3000 object instances, while the FOD-A dataset contains over 30,000 object instances. 

In summary, the FOD-A dataset is more appropriate for FOD detection tasks because it 

contains forms of annotation better suited to the airport environment (i.e. bounding box 

annotation plus weather and light categorization annotation), several more object 

instances, and descriptive object categories. 

 

B. Related MLCV FOD Detection Methods 

FOD-focused MLCV research is becoming increasingly common [2]–[5]. Several 

papers have been published that implement algorithms to detect FOD. These papers 

have created their own private datasets and have generally kept these datasets small. 

The effectiveness of major datasets in several research tasks [12], [13] can partially be 

attributed to focused dataset development and publicly accessible versions. It is a much 

larger task to create a robust dataset [14] when also presenting new detection methods. 

Thus, FOD-A should enable researchers to focus on the improvement of FOD detection 



algorithms. 

P. Li and H. Li [3] did create their own small dataset for internal use. Their 

dataset consists of about 2000 images, with 100 images per object class [3]. Although 

their small and private dataset may be feasible for their proposed algorithms, it may not 

be suited to larger scale experiments. 

Having considered the shortcomings and benefits of prior works discussed 

above, we have developed FOD-A with three main advantages: 1) FOD-A provides a 

wide range of descriptive object categories selected by FAA documentation, and 

includes a large number of instances for each category; 2) FOD-A is publicly available 

with documented expansion processes; and 3) FOD-A considers realistic and 

challenging data samples in varying weather and light conditions. 

 

III. DATASET CONSTRUCTION 
This section presents FOD-A in more details, including the creation 

methodology, FOD-A statistics, and the extension process. 

 

A. Image Collection 

According to the FAA, FOD commonly includes the following: “aircraft and engine 

fasteners (nuts, bolts, washers, safety wire, etc.); aircraft parts (fuel caps, landing gear 

fragments, oil sticks, metal sheets, trapdoors, and tire fragments); mechanics’ tools; 

catering supplies; flight line items (nails, personnel badges, pens, pencils, luggage tags, 

soda cans, etc.); apron items (paper and plastic debris from catering and freight pal- 

lets, luggage parts, and debris from ramp equipment); runway and taxiway materials 

(concrete and asphalt chunks, rubber joint materials, and paint chips); construction 

debris (pieces of wood, stones, fasteners and miscellaneous metal objects); plastic 

and/or polyethylene materials; natural materials (plant fragments, wildlife and volcanic 

ash); and contaminants from winter conditions (snow, ice)” [6]. 

The FAA suggests that metal objects are the most common FOD (over 60 

percent of the materials found in a one-year airport study) [6]. We generalize the FAA 

description into categories suitable for MLCV applications with priority given to objects 

that have the highest potential to harm aircraft (i.e. become ingested and damage jet 



engines, shred tires, etc.). The resultant categories for this implementation of the FOD- 

A dataset can be found in Figure 3. 

In order to create a practical dataset that is applicable to airport FOD 

management, we collect images in diverse conditions. Weather and light conditions in 

airports vary, so a dataset of FOD objects must incorporate this fact into included data. 

Wet and dry environments provide weather variation for FOD-A image collection. For 

light variation, the image collection process incorporates bright, dim, and dark light 

conditions. Since each of these environmental variations could be easily abstracted to fit 

categorization tasks, FOD-A includes categorization labels for weather (dry and wet) 

and light-level (bright, dim, and dark). Example light-level categorization images are 

provided in Figure 2. Since snow is promptly cleared from the airport environment, it is 

unnecessary to include a snowy category. Any moisture that remains after snow is 

cleared should still fit into the wet category. FOD-A’s dry and wet weather categories 

should cover the majority of weather types applicable to airports. Remarkably, the 

weather and light-level catgorization annotations are in addition to the focus of the 

FOD-A, which is bounding box annotations for object detection. 

 

 

 

 

 

 

 

Fig. 2. Example images from various FOD-A light-level categories. Example bright 

image (left), an example dim image (middle), and an example dark image (right). 

 

Images of common FOD are collected in the video (mp4) format using both 

portable and unmanned aerial vehicle (UAV) cameras. UAV image collection allows 

variation in recording distances that could not be achieved with handheld portable 

cameras. The images gathered by the portable camera were closer to the object, and 

camera angles changed more drastically than the UAV camera. As a video is densely 



packed with images, the video format allows for large-scale image collection. However, 

utilizing the video format presented a few initial issues. Some videos do not have the 

target object(s) in each frame, and the empty frames could uselessly pollute the 

dataset. A video would have to be trimmed to proper intervals, and then each frame 

separated to an image format. Performing this task by hand is very time-consuming and 

prevents extensibility. We created a small command-line tool to solve a few of these 

issues. The benefits of this tool are as follows: 1) it allows for that dataset to be easily 

expanded using simple instructions; 2) it makes the image collection process more 

efficient; and 3) it normalizes the images. 

This tool takes a video file as an input, and then creates a folder structure, a 

trimmed version of the video, and the frames for the video. The trimmed video can 

then be used as input into Computer Vision Annotation Tool (CVAT) [15], which makes 

the annotation processes efficient. Further details of the annotation process are 

described in section III-B. Each folder structure, once the annotations are added, 

corresponds to the set of annotations and frames for one video. The folder structures 

are stored together; this forms the original FOD-A format. We provide the tools that can 

convert the FOD-A for- mat to the Pascal Visual Object Classes format (called Pascal 

VOC) [12] as commonly required by algorithmic processes. 

The expansion tool is designed to further edit the video by automatically reducing 

the FPS of each video to 15. The tool then generates the frames after the FPS 

reduction. Because the original FPS of each video was about 60 FPS, this is an 

effective method to prevent duplicate images. The output location for the folders and 

frames is stored in a settings file to allow efficient expansion. Based on different 

settings, the expansion tool can automatically apply to either create a new dataset (if 

targeting a new folder) or to expand an existing dataset (if targeting an existing 

directory). The abstract design of the tools can enable the process and format to fit any 

image datatype. 

Because each of the original videos include consistent light and weather 

conditions, the expansion tool automatically generates the categorization annotations 

once the weather and light conditions are specified. As the tool outputs each individual 

frame to the folder structure, it saves the correct categorization annotations along with a 



relative file path to the new image in a Comma-Separated Values (CSV) file. 

The produced images and annotations for FOD-A have been uploaded to the the 

GitHub repository in the original format and in the Pascal VOC format [12]. This GitHub 

page also contains the detailed dataset expansion instructions. These instructions can 

also be used to create new image datasets. Additional images can be added to the 

dataset by inputting more videos into the expansion tool. Required changes to the 

dataset, such as format extension and data preparation, are made automatically by 

the expansion tool after additions. Inserting annotations to the created folder structure is 

the only additional requirement for extension. This enables the dataset expansion 

process to be efficient. 

 

B. Image Annotation 

To create a robust dataset, it is best to include as many in- stances of FOD 

objects as possible. Therefore, an efficient and quality annotation process was 

implemented. Video data can be quickly and accurately annotated using the existing 

tracking algorithms for videos. The efficient annotation process was provided by the 

open source tool, CVAT [15]. Since the FOD- A expansion tool outputs a matching 

trimmed video as well as the video’s frames, the images are annotated as if they are 

still a video format. CVAT’s video annotation algorithm only requires every ten frames 

(an interval that can be modified) to be annotated, with manual adjustments as 

necessary. The annotations for other frames are generated mathematically using the 

two manually created annotations. The in-between frames still need to be validated to 

ensure accuracy, but we found that this only requires minor adjustments. We then 

export the annotations in a standard XML format (i.e., Pascal VOC) [12]. Once exported, 

we simply place annotations in the relevant folder created by the expansion tool. 

Once the annotation process was completed for the initial data, the size of the 

dataset was too cumbersome for typical object detection methods and for ease of 

storage. At this point, the images included sizes that varied anywhere from 2k to 4k 

resolution, and a total dataset size of over 100 gigabytes. To overcome this issue while 

producing an extensible dataset, we created a second command-line tool. This resizing 

tool targets all applicable folders within the target folder, so it can be utilized on a 



single annotation/image combo or on the entire dataset at once. Once the images and 

annotations are resized, the dataset storage size is drastically reduced (to about 5 

gigabytes in this case). 

This resizing tool scales all properly formatted XML and image data to the 

specified size, whether smaller or larger than current size. We resize the images and 

annotations to 400×400 resolution to facilitate unified-size modeling, while the original 

images are also made available. The resize tool can optionally display all the images 

with their bounding boxes and labels. 

Fig. 3. Instances per category in the FOD-A dataset. 

 

The images displayed in Figure 1 are an example output of this tool. This simply 

allows images to be visually inspected as the dataset is resized. Some major annotation 

errors in famous datasets been found [16]. This visual inspection process allows 

additional validation of annotations as FOD-A expands, which aids in the prevention of 

similar errors [16]. 

 

C. Dataset Statistics 

After the initialization of the FOD-A dataset, there are a total of 31 object 

categories and over 30,000 annotation instances. Figure 3 shows instances per 

category for the bounding box annotations and Table I shows the statistics for the light-

level and weather categories. 

TABLE I 

CATEGORIZATION STATISTICS 

Weather Light-Level 
Dry Wet Dark Dim Bright 

26647 7216 4387 12464 17012 



The material recognition dataset discussed in Section II [4], contained a total of 3 

object categories and 3, 440 annotation instances. As such, the potential applications of 

FOD-A and the materials recognition dataset [4] may differ greatly. A few datasets may 

be considered when analysing FOD-A, such as the Pascal VOC [12] and the Microsoft 

COCO [13] datasets. However, the object categories contained in these datasets are of 

everyday objects and have a more general application scope than FOD-A. Image 

datasets of debris in airports should contain FOD specific object categories. For this 

reason, datasets of everyday objects are not directly comparable to FOD-A. 

 

IV. ALGORITHMIC ANALYSIS 
To validate dataset functionality in abstract scenarios, it is necessary to 

implement FOD-A in several common MLCV algorithms. As mentioned previously, this 

dataset focuses on bounding-box based object detection functionality, but the potential 

of FOD-A is expanded by including categorization annotations. The categorization 

annotations are tested using a simple binary classification model described later in this 

section. The viability of the bounding box annotations are tested using the two famous 

algorithms: You Only Look Once Version 3 (YOLOv3) [17] and Single-Shot Multi-box 

detector (SSD) [18]. Existing implementations of SSD [19] and YOLOv3 [20] are used. 

The categorization accuracy and mean intersection over union [21] (IOU) metrics 

are used to compare results between the algorithms. Both metrics are calculated using 

predictions on the validation dataset. 

Accuracy is computed as the number of correct categorization predictions over 

the total number of predictions. To calculate the mean IOU [21], the IOU value of 

predictions in true positive categorization cases are averaged. IOU values from only 

true positive categorization cases facilitates separation from accuracy results. 

The initial experimentation began using YOLOv3. As shown in Figure 4(b), the 

loss reaches a value of about 7.05. For this implementation [20], the loss is calculated 

using the method presented in the original YOLOv3 paper [17]. In this experimentation, 

YOLOv3 produces categorization accuracy of 12.42% and a mean IOU of 47.58% on 

FOD-A validation data. As the accuracy and mean IOU metrics suggest, the 

YOLOv3 algorithm commonly predicts an incorrect categorization label, but regularly 



produces correct bounding boxes.  

As shown in Figure 4(a), SSD loss reaches a value of about 6.51; the loss result 

approaches convergence after about 140 epochs. The loss in this implementation [19] is 

calculated using the method defined in the original SSD paper [18]. SSD provides 

categorization accuracy of 71.81% and a mean IOU of 68.05%. 

In this experimentation, SSD produced better results than YOLOv3. However, the 

scope of this paper is mostly restricted to the presentation of the FOD-A dataset, as 

algorithm optimization for FOD-A is future work. As intended, FOD-A proved to be 

difficult for the modern YOLOv3 and SSD algorithms. This provides room for future 

algorithmic enhancement, in both efficiency and accuracy. 

Since FOD-A also includes categorization annotations, we examine this 

functionality with a binary categorization model using transfer learning. With the output 

layer removed and substituted for both a max pooling and a fully-connected layer with 

two output neurons, this binary classification model was built using the MobileNetv2 [22] 

architecture with weights pretrained on ImageNet [23]. FOD-A includes weather and 

light categorization annotations. To test the functionality of the categorization 

annotations, we conducted experiments using the two weather annotations, wet and 

dry. The binary categorization model quickly became skillful, and was able to effectively 

distinguish between a wet and dry background in FOD-A images. The accuracy quickly 

improved to the maxi- mum percentage on validation data. The model is capable of 

correctly categorizing most images, but there were still some outlier predictions on the 

testing data. Although the weather classification alone can be solved quickly, the 

combination of the categorization and bounding box detection prove difficult for 

modern algorithms. Additionally, the weather and light annotations could prove useful 

in future practical work. 

 
Fig. 4. Loss curve from SSD and YOLO experiments. 



V. CONCLUSION 
MLCV has produced promising results for various tasks in FOD. However, to 

the best of our knowledge, a proper publicly available dataset of FOD has not been 

initialized prior to the proposed work. This paper introduces FOD-A and proposes an 

abstractable method of image dataset creation. As discussed previously, FOD-A object 

categories have been selected based on prior FAA documentation and research. This 

enables comprehensive coverage of common FOD. Moreover, we have developed an 

efficient and publicly documented expansion process and intend to make several 

extensions of FOD-A available on the GitHub repository. An efficient expansion process 

is important since FOD is a continually evolving datatype. To simulate airport 

environments, images in FOD-A contain varying light and weather conditions. In 

addition to the bounding box annotation, we provide these weather and light conditions 

as categorization labels. We also validate these approaches for both the object 

detection and the categorization functionalities of FOD-A on different algorithms. The 

experimental results demonstrate FOD-A’s practicality and difficulty. 

There are several research paths that could be followed to build on this work. 

One direction for future work is to develop more efficient and accurate object detection 

techniques for the FOD datatype. Once detection algorithms are improved, fur- ther 

works could explore practical experimentation in airports. 

VI. RESOURCES 
GitHub: https://github.com/FOD-UNOmaha/FOD-data 
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