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Abstract: Advanced digital data-driven applications have evolved and significantly impacted the
transportation sector in recent years. This systematic review examines natural language processing
(NLP) approaches applied to aviation safety-related domains. The authors use Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) to conduct this review, and three
databases (Web of Science, Scopus, and Transportation Research International Documentation) are
screened. Academic articles from the period 2010–2022 are reviewed after applying two rounds of
filtering criteria. The sub-domains, including aviation incident/accident reports analysis and air
traffic control (ATC) communications, are investigated. The specific NLP approaches, related machine
learning algorithms, additional causality models, and the corresponding performance are identified
and summarized. In addition, the challenges and limitations of current NLP applications in aviation,
such as ambiguity, limited training data, lack of multilingual support, are discussed. Finally, this
review uncovers future opportunities to leverage NLP models to facilitate the safety and efficiency of
the aviation system.

Keywords: aviation safety; natural language processing; human factors; aircraft accident investigation

1. Introduction

With the rapid development of digital data storing and transmission in the aviation
industry, large contextual data such as incident/accident reports [1,2], air traffic commu-
nication transcripts [3], passengers’ and customers’ reviews [4], and manufacturer and
maintenance domain-language-based documents [5] have played substantial roles in en-
suring safe and efficient operations [6]. However, the analysis of such textual-based data
usually requires significant human resource investment [7]. Considerable efforts in terms
of time and money are needed for work, such as voice recognition [8], text mining and
identification [9,10], topic categorization [11,12], and semantic reasoning [13]. Therefore,
automatic and practical analytic approaches are needed to overcome these labor-intensive
challenges. Along with the increasing computation power, artificial intelligence (AI)-based
NLP approaches have captured industry and academia’s attention in recent years [11].

A typical procedure to develop a basic NLP model includes several steps, as detailed
here. (1) Data cleaning and tokenization. They are essential processes in NLP that involve
cleaning and processing textual data to enable further analysis. Data cleaning typically
involves removing stop words, lowering the case, and reducing words into a single form.
This process aims to standardize words with the same meaning but slightly different
representations and unify them for easier grouping such as “Bag-of-Words (BoW)” [9,10].
Following data cleaning, the words are split into phrases or smaller units for more precise
analysis. (2) Vectorization (or word embedding). Computers are not human beings that
can understand and process strings directly; instead, they require numerical inputs. There-
fore, individual strings must be mapped or labeled into real numbers to enable computer
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processing [9]. (3) Model training. It is commonly completed through deep learning,
specifically through recurrent neural networks (RNN) and long short-term memory (LSTM)
networks [7,14]. RNN is a type of deep learning artificial neural network (ANN) with recur-
rent connections on the hidden state that ensures sequential information is captured. This
is particularly important in understanding human languages, which involves capturing se-
quential information presented in the input data, i.e., the dependencies between the words
in the text while making predictions. During RNN constructions, information of a node is
passed back to immediate previous nodes, unlike in ANN, where it is only forwarded.

Academia has been at the forefront of developing and testing NLP-based solutions
for improving aviation safety and efficiency. Researchers have developed related theoret-
ical frameworks and algorithms that analyze pilot reports [15], air traffic control (ATC)
communications [16,17], and other aviation-related textual data [14,18–20] to identify pat-
terns and trends related to human error. These algorithms can also be used to develop
predictive models that anticipate potential human errors and provide real-time feedback
to pilots and air traffic controllers. The industry has also recognized the potential of NLP
applications, with companies investing in new NLP tools and systems [21]. By providing
insights into the root causes of human error, these tools can help aviation professionals
take proactive measures to prevent future incidents/accidents [22,23]. NLP-based chatbots
and virtual assistants can provide pilots and ATC real-time assistance, reducing workload
and enhancing situational awareness [24]. By leveraging NLP techniques, academia can
provide valuable insights into the cause of human errors in aviation and develop innovative
solutions to address these issues.

Regulators are also taking notice of the potential of NLP in aviation safety, with agen-
cies such as the International Civil Aviation Organization (ICAO), U.S. Federal Aviation
Administration (FAA), National Transportation Safety Board (NTSB), and the National
Aeronautics and Space Administration (NASA) exploring the use of NLP-based applica-
tions to address safety issues in the aviation industry [25–28]. There exists an urgent need
for aviation stakeholders to understand the status of these state-of-the-art research and
applications in the aviation industry.

A previous work indicates that there is a need for an in-depth review of NLP appli-
cations in aviation safety [6]. Therefore, the authors performed a systematic review to
understand the following research questions:

1. What is the performance of NLP applications on aviation safety-related subdomains?
2. What are the challenges and limitations of these NLP applications?

This systematic literature review examines the worldwide NLP applications in analyz-
ing incident/accident safety reports and air traffic communication data from the period
2010–2022. The specific NLP approaches, AI training methods, and model performance are
summarized. The limitations and challenges of each study are discussed. A list of used
terminologies is included in Table 1.

Table 1. Abbreviation list.

Acronym Full Name Acronym Full Name

ADS-B Automatic Dependent Surveillance-Broadcast LDA Latent Dirichlet Allocation

AM Acoustic model LM Language model

ANN Artificial neural networks LoS Losses of separation

ASR Automatic speech recognition LSA Latent semantic analysis

ASRS Aviation Safety Reporting System LSTM Long short-term memory

ATC Air traffic control MCNN Multiscale CNN

BERT Bidirectional Encoder Representations MLP Multilayer perceptron

BLSTM Bidirectional long short-term memory NASA National Aeronautics and Space Administration

CAAC Civil Aviation Administration of China NB Naïve Bayes
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Table 1. Cont.

Acronym Full Name Acronym Full Name

CER Character error rate NER Name entity recognition

CFR Code of Federal Regulations NTSB National Transportation Safety Board

CNN Convolutional neural networks OC-POS Occurrence position

CRF Conditional random field PCA Principle component analysis

CTC Connectionist temporal classification PM Pronunciation model

DGAC Directorate General for Civil Aviation ResNet Residual network

EASA European Union Aviation Safety Agency RNN Recurrent neural network

FAA Federal Aviation Administration RTF Real-time factor

FC Fully connected layers SMEs Subject matter experts

GAU Gated attention unit SRL Semantic role labeling

GMM Gaussian mixture model STM Structural topic modeling

HFACS Human factors analysis and classification system SVD Singular vector decomposition

HMI Human–machine interface SVM Support vector machine

HMM Hidden Markov models TF-IDF Term frequency and inverse document frequency

IATA International Air Transport Association t-SNE T-distributed stochastic neighbor embedding

ICAO International Civil Aviation Organization UAS Unmanned aerial system

k-NN K-nearest neighbors algorithm WER Word error rate

LAN Label attention network

2. Materials and Methods

The study followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) method to identify related literature [29,30]. Three databases were
searched: Scopus, Web of Science (WoS), and Transport Research International Documen-
tation (TRID). These databases provide diverse sources to facilitate the identification of
studies across multiple interdisciplinary domains. In addition, a limit of publication date
from the period 2010–2022 was used as one of the applied search strategies.

2.1. Study Selection

The search keywords in this study were drawn from two categories: natural lan-
guage processing (NLP) and aviation (and its sub-domains). NLP techniques were drawn
from a recent systematic review of NLP methods by Pons et al. [31], Kreimeyer et al. [32],
and Dreisbash et al. [33]. Aviation (and its sub-domains) are drawn from the review by
Ginieis et al. [34]. The search syntax used in each search engine and database followed
the expression:

(NLP techniques) AND (Aviation sub-domains),

where specific search syntax listed inside of each parenthetical phrase was selected using an
“OR” Boolean operator. Table 2 presents all NLP techniques and aviation sub-domains found
in the literature above and used to construct the search syntax for this PRIMSA-based study.

Table 2. Search terms for studies applying natural language processing in aviation safety.

Natural Language Processing Techniques Aviation (and Its Sub-Domains)

Variable Acronym Variable Acronym

Natural language processing NLP Air transportation -

Text mining - Air transport -

Text classification - Air traffic control ATC

Latent semantic analysis LSA Aerospace -
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Table 2. Cont.

Natural Language Processing Techniques Aviation (and Its Sub-Domains)

Variable Acronym Variable Acronym

- Airport -

- Airline -

Airplane -

Aircraft -

An initial screening was done to assemble all potential studies based on their titles,
keywords, and abstracts. RefWorks executed the removal of duplicate studies in the first
round, and the authors still identified several duplicates that existed and needed to be
removed manually during the second round (Figure 1). After removing duplications, two
reviewers independently screened all papers’ titles, keywords, and abstracts, resulting
in 30 articles being selected for full-text review. The inclusion criteria for the full-text
review are:

1. At least one NLP technology is applied;
2. At least one sub-domain of aviation is related;
3. Study must be related to safety;
4. Study must be published in a peer-reviewed journal.

Following the full-text review criteria, 30 articles were included in the final list.

Figure 1. PRISMA process used to identify and select relevant studies. PRISMA = Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses; TRID = Transport Research International
Documentation [29,30].
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2.2. Reported Factors

For this systematic review, the following information was extracted from each article:

1. Objective;
2. The target database and language;
3. Sample size;
4. Model(s), including the NLP model(s) and any additional model(s);
5. Performance of model(s).

3. Results

A total of 30 papers satisfied our inclusion criteria and were included in the final review.
Based on the research questions of this study, the papers are categorized based on the sub-
domains of aviation. Overall, 20 out of 30 articles relate to aviation incident/accident safety
report analysis, while the rest of the included studies relate to air traffic control (ATC)
communication. Therefore, the following part of this section contains a detailed synthesis
of each group.

3.1. NLP Applications on Incident/Accident Reports

A total of 20 papers analyzing aviation incident/accident safety reports are included
in this section. Table 3 summarizes reviewed studies’ detailed information such as author,
year of publication, objective of study, data source, sample size, and language of data
source. A total of 13 out of 20 studies are based on the U.S. National Aeronautics and Space
Administration (NASA) Aviation Safety Reporting System (ASRS) database. Two studies
are based on the U.S. National Transportation Safety Board (NTSB) safety records [2,14]. In
addition to 18 studies that primarily focused on English textural content, one study [9] is
based on Chinese accident reports, and another study [20] used a French database.

Table 3. Summary of NLP Applications in Incident/Accident Report Analysis.

Authors, Year Objective(s) Data Source Sample Size Language

Abedin et al., 2010 [35] Identify the potential causes of aviation incidents. Aviation Safety
Reporting System (ASRS) 1333 English

Shi et al., 2018 [13] Identify risk factors in safety
management systems. ASRS 168,227 English

Andrzejczak et al., 2014 [15] Identify human factors contributing to anomalies. ASRS 127,776 English

Ahadh et al., 2021 [36] Identify the stage of flight
when an aviation accident occurs. ASRS 37,681 English

Zhang and Mahadevan, 2019 [12]
Quantify the risk relating to the

consequences of hazardous events
for aviation incident risk prediction.

ASRS 64,573 English

Perboli et al., 2021 [37] Identify human factors in the
causes of aviation accidents. Deloitte experts’ reports 24 English

Jiao et al., 2022 [9] Identify and classify causes in
Chinese civil aviation incident reports. Chinese accident reports 20,000 Chinese

Robinson, 2019 [23] Identify the temporal trends of factors affecting
safety in commercial airline operations. ASRS 64,776 English

Tanguy et al., 2016 [20] Identify tendencies of abnormality
during a civil air flight.

ASRS and French
DGAC *’s database 136,861 English

and French

Dong et al., 2021 [7]
Identify the primary factor and multiple

contributing factors of each incident
from six most causal factors.

ASRS 181,651 English

Kuhn, 2018 [11] Identify latent topics and
trends in incident reports. ASRS 01/2010 to

04/2015 English

Zhang et al., 2021 [14] Automate the prognosis
of aviation safety accidents. NTSB 1673 English
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Table 3. Cont.

Authors, Year Objective(s) Data Source Sample Size Language

Andrzejczak et al., 2012 [38] Identify human factors
of self-reported anomalies. ASRS Not

indicated English

Miyamoto et al., 2022 [10]
Identify inefficient operational patterns

that cause flight delays and cancellations
(from a safety perspective).

ASRS 4195 English

Robinson et al., 2015 [39] Map primary causal factors in
self-reported safety narratives. ASRS 4497 English

Irwin et al., 2017 [22] Visualize human errors for detailed
analysis of text-based narratives. ASRS 4547 English

Rose et al., 2022 [2] Identify themes within technical datasets. ASRS and NTSB
13,336

(ASRS) and
386 (NTSB)

English

Koteeswaran et al., 2019 [18] Predict the topmost causes from
an aircraft accident database.

Aviation Accident
Dataset (AAD) 1379 English

Rose et al., 2020 [1] Extract underlying trends from narratives. ASRS 13,336 English

Madeira et al., 2021 [19] Identify and classify human factors
from aviation incident reports. ASN database 1674 English

* Direction générale de l’aviation civile.

3.1.1. NLP Models

As mentioned in the Introduction section, text pre-processing is the first stage for most
NLP studies, which intends to clean the raw textual data and resolve the abbreviations
inconsistency issues. As presented in Table 4, common methods include tokenization [1],
lower-casing [1], stop-word removal [10], stemming or lemmatization [2], and Bag-of-
Words (BoW) and term frequency–inverse document frequency (TF-IDF) matrices [10].
Four studies [1,7,10,14] used the Python library Natural Language Toolkit (NLTK) to
facilitate these pre-processing tasks. An unsupervised, domain-independent, and language-
independent keywords extraction method, Yet Another Keyword Extraction (YAKE), was
used to identify keywords by Ahadh et al. [36]. Abedin et al. [35] applied two approaches to
identify causes based on a semantic lexicon, which is automatically constructed via Thelen
and Riloff’s Basilisk framework, and both methods outperformed the baseline system
significantly. Tanguy et al. [20] used a custom rule-based normalizer, which CFH/Safety
Data developed in this stage. Madeira et al. [19] tested two feature extraction models
Word2Vec and Doc2Vec, concluding that they were superior to the TF-IDF.

Several topic modeling approaches have been proposed in the reviewed articles, and
one popular method is Latent Dirichlet Allocation (LDA). In general, LDA is based on
the assumption that each document is composed of topics, and each topic is, in turn,
composed of different words. Five out of twenty studies applied LDA-based methods
to model the topics. Ahadh et al. [36] proposed GuidedLDA techniques to overcome the
drawback that topics generated are not human-interpretable due to the randomness of
the initial assignment of words to topics. As a generalization of more commonly used
LDA and correlated topic models, structural topic modeling (STM) has gained prominence
in relatively recent years [11]. STM further extends the LDA framework to allow for
covariates to be incorporated while selecting more prevalent topics in specific documents [2].
Kuhn [11] and Rose et al. [2] applied STM and demonstrated the feasibility of an STM-based
method for classifying aviation safety narratives.

Support vector machine (SVM) is one of the most common approaches to classifying
factors [12,35]. Zhang and Mahadevan [12] use a hybrid SVM and DNN model to quantify
the risks associated with the consequence of each hazardous cause, yielding an average
score of 81% in precision, 3% higher than the scores of SVM, and 6% higher than DNN
ensemble models. The recall rate and F1 score also indicated that the hybrid model
outperformed the rest of the models.
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Table 4. Detail on NLP applications in incident/accident report analysis.

AUTHORS, YEAR
Models

Evaluation
NLP Model(s) Reasoning Model(s)

Abedin et al., 2010 [35] Weakly supervised lexicon
learning with SVMs Not Applicable • F-score is 53.7%

Shi et al., 2018 [13] Latent semantic analysis
with NB, VFDT, and OBA Not Applicable

OBA yields the best performance in all four
scenarios with mean accuracies of 76.5%, 76.8%,

77.0% (human factor classifier), and 88.3%, 87.0%,
88.45, and 88.55 (aircraft classifier), respectively.

Andrzejczak et al., 2014 [15] IBM SPSS Modeler 13:
Text Analytics HFACS This method reveals the relationship between

human factors and reported anomalies.

Ahadh et al., 2021 [36] GuideLDA Not Applicable The weighted average accuracy is 77%.

Zhang and Mahadevan, 2019 [12] A hybrid SVM
and DNN model

A risk-based
event outcome
categorization

The hybrid model yields better performance in
precision, with an average score of 0.81, which is

3% higher than the SVM and 6% higher than DNN.

Perboli et al., 2021 [37] Word2vec and Doc2vec SHEL TFw2v_model has the best performance
with a total precision of 88.89%.

Jiao et al., 2022 [9]

TF-IDF, Word2vec, and
OC-POS withLR, L-SVM,
KNN, DT, NB, SVM, RF,

AdaBoost, GBoost,
and XGBoost

A rule-based
system to identify
the related factors

XGBoost classifier and OC-POS methods have the
best performance, where F1-score is above 0.90

when identifying 25 causes from the target dataset.

Robinson, 2019 [23] LDA Subject matter
experts (SMEs)

All three SMEs were able to identify
a cohesive theme from each topic.

Tanguy et al., 2016 [20] LDA with SVMs Not Applicable Result: 85.96% precision for ten iterations in the
DGAC corpus and 46.49% in the ASRS corpus.

Dong et al., 2022 [7]
Averaged Stochastic Gradient

Descent Weight-Dropped
(AWD) LSTM

Not Applicable
The proposed model yields an average accuracy
of 82% on the six common factors and about 89%

on the two most common factors on average.

Kuhn, 2018 [11] LDA with STM Not Applicable The results need to be verified by SMEs.

Zhang et al., 2021 [14] LSTM Damage and
injury level

The accident vs. incident model has an
accuracy of 73% on validation data, while the

sensitivity and specificity of the trained
model are 75% and 72.14%, respectively.

Andrzejczak et al., 2012 [38] Diffusion Maps (DM) Not Applicable
The proposed model yields an average accuracy
of 82% on the six common factors and about 89%

on the two most common factors on average.

Miyamoto et al., 2022 [10] BoW with TF-IDF t-SNE and
K-Means Clustering

The present work shows the ability
to identify high-level causes and the
circumstances in which delays occur.

Robinson et al., 2015 [39] LSA with SVD Not Applicable
An unsupervised categorization accuracy

of 44% for primary cause within the
existing taxonomy based on a small sample.

Irwin et al., 2017 [22] LSA Isometric Mapping
and GIS

The present study confirms that the
proposed approach is useful for reducing,

interpreting, and organizing narrative data.

Rose et al., 2022 [2] LDA with STM Not Applicable
This study demonstrates the feasibility

of an STM-based approach for
classifying aviation safety narratives.

Koteeswaran et al., 2019 [18]

Improved oscillated
correlation feature selection

(IOCFS) withNB, SVM,
ANN, k-NN, and J48

Not Applicable k-NN yields the best performance
(accuracy of 99.03%), with the value of k = 5

Rose et al., 2020 [1] BoW with TF-IDF t-SNE and
K-Means Clustering

The method identified
10 major clusters and 31 sub-clusters.

Madeira et al., 2021 [19]
Word2Vec and

Doc2Vec_Models with SVM
and Bayesian optimization

HFACS The best predictive models achieved
a Micro F-score of 90%, 77.9%, and 87.5%.



Aerospace 2023, 10, 600 8 of 20

3.1.2. Latent Factor Reasoning and Labeling

Among NLP applications in aviation incident/accident report analysis, latent factor
reasoning and labeling are significant characteristics. In the reviewed studies, different
causality models are carried out to facilitate the automatic identification and classification
process [9,12,15,19,37]. Two out of twenty studies used the Human Factor and Classifi-
cation System (HFACS) model to classify self-reported anomalies based on ASRS pilot
reports [15,19]. Andrzejzak et al. [15] found that only 4% of the examined ASRS reports
were identified as ‘violation-related,’ which is inconsistent with Wiegamann and Shappell’s
statement that 25% of aviation accidents contained some violation [40]. The anonymity
and confidentiality of the reporting mechanism might help shed light on pilots’ hesi-
tation in reporting their violations [15]. A novel HFACS-ML framework proposed by
Madeira et al. [19] showed that favorable predicting performance can be achieved. Ac-
cording to a study by Perboli et al. [37] that identifies human factors in aviation accident
causes, NLP techniques are adapted to the Software–Hardware–Environment–Liveware
(SHEL) standard accident causality model on field tests, yielding a precision of over 86%
and a practical manner cost and time reduction of 30% for the whole investigation process.
Zhang and Mahadevan [12] categorized all the events into five groups based on the level of
risk and its consequence in their hybrid model, yielding an effective means of quantifying
the risk relating to the consequences of hazardous events. Based on the type of incidents,
Jiao et al. [9] labeled Chinese aviation incident reports into eleven categories, resulting in an
F1-score above 0.90 when identifying 25 causes from the target database. Zhang et al. [14]
adopted types of incidents/accidents, aircraft damage levels, and types of fatality to label
events from NTSB reports, demonstrating their approach with an accuracy of 70% on
validation data.

In addition, Rose et al. [1] and Miyamoto et al. [10] developed and tested a framework
combining a k-means clustering and a 2D mapping with t-Distributed Stochastic Neighbor
Embedding (t-SNE) was created to categorize and visualize the narratives.

3.1.3. Performance Comparison Based on Application Scenarios

The reviewed application scenarios in incident/accident reports could be catego-
rized as the (1) identification and classification of causal factors in incident/accident
reports [7,12–14,18,19,35,37,38] and the (2) identification of trends/latent topics of incidents/
accidents [1,2,9–11,15,18,20,22,23,36,39].

Among the studies focused on the identification and classification of causal factors,
Andrzejczak et al. [15] reported the frequencies of each identified factor that contributed
to self-reported civil aviation anomalies, while the numerical performance metrics are
unavailable in the study. Shi et al. [13] tested three different NLP models and concluded that
the OBA model yields the best performance (in terms of accuracy) when targeting on human
factors (76.5%) and aircraft classification (88.3%) in ASRS, while Dong et al. [7] concluded
their proposed LSTM models yield better performance on both human factors (84.8%) and
aircraft classification (85.1%) but also have a greater coverage with six topics. Regarding the
LSTM application in NTSB accident report analysis, Zhang et al. [14] concluded that one
(accident vs. incident based on narratives) of their models yields a rate of 77.9%, 79.7%, and
78.0% in precision, accuracy, and F1-score, respectively. Tanguy et al. [20] indicated that
the performance of their proposed SVM-based model varied depending on the topics and
language of corpus. For example, a precision rate of 85.96% and an F1-score of 87.59% were
achieved in ‘bird strikes’ (DGAC corpus), while it was only 46.49% and 47.49%, respectively,
in “confusion” (ASRS corpus).

Regarding the studies on identifying trends and latent topics, one study by Robinson et al. [39]
pointed out that the coding results were different due to the significantly different back-
grounds of SMEs. Therefore, they suggested a further investigation, on evaluating the
consistency of LSA cosine values when compared to a qualitative coding process, is needed.
In another study by Robinson [23], SMEs were able to independently identify themes when
providing LDA-modeled topics in a structured manner. In addition, the SMEs were able to
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identify the reporter’s qualification as well as other factors (environment and regulatory)
consistent with observed temporal trends of topic usage. Four of the five topics examined
correlated significantly based on the numerical results. Kuhn [11] used STM to identify
latent topics and trends from ASRS and suggested that verification by SMEs is needed for
future work.

In addition, five out of twenty also visualize causal factors/topics from incident/accident
reports [1,2,10,22,39]. As mentioned in Section 3.1.2, a combination of k-means cluster-
ing and t-SNE are the common tools in visualizing causal factors in incident/accident
reports [10]. For instance, Miyamoto et al. [10] identified 7 major categories and a total
of 23 more-detailed topics resulting in flight delays or cancellations, which indicated that
ASRS narratives could be potentially leveraged to provide a safety perspective to identify
causes of delays. Another visualization method is using a latent semantic analysis-based
projection of narrative data into a geographic information system (GIS) [22,39].

3.2. NLP Applications on ATC

Air traffic control is another field where applications of NLP have been studied often to
improve flight safety by preventing communication mistakes [6]. A total of 10 publications
were identified based on the selection criteria illustrated in Section 2. A summary of the
included studies is shown in Table 5.

Table 5. Summary of NLP applications on air traffic communication.

Authors, Year Objectives NLP Models Data Sources Sample Size Language

Badrinath &
Balakrishnan, 2022 [8]

ASR for ATC
communication

• Mozilla’s implementation
of Deep Speech (RNN),

• Python library—Spacy
(NER),

• N-gram language model

Transcripts of ATC
communications from
the U.S. and Europe

84 h of audio
transcription English

Zhang et al., 2022 [3] Mandarin speech
recognition for ATC

• ResNet34
• GAU
• CTC

The Aishell
open-source Mandarin

corpus and ATC
voice recordings

178 h of Aishell
corpus and 67 h
of ATC corpus

Chinese

Lin et al., 2021 [41]
Multilingual speech

recognition in
ATC systems

• MCNN
• BLSTM
• CTC

Raw ATC speech
recorded at Chengdu,

Shanghai, and
Kunming Airports

in China

1148 h of
Chinese speech

And 281 h of
English speech

Chinese,
English

Sun & Tang, 2021 [42]

Automated ATC
communication

error detection to
prevent loss of

separation (LoS)

• ASR to extract features
(IBM Watson Speech
to Text)

• Communication errors
characterizing (LinguaKit
and Cortical.io)

• Bayesian Network (BN)
modeling to predict
communication errors
and LoS

ATC communication
from simulated

approach control
scenarios

75 min simulation
(234 clearances) English

Jia et al., 2017 [16]
Aviation

radiotelephony read-
back verification

• LSTM-RNN

Experimental
civil aviation

radiotelephony corpus
built from original ATC

communication
recordings and

books for training

800 pairs of
instruction

and readback
Chinese

Wang et al., 2021 [43] Trajectory
prediction • BiLSTM-LAN-CRF

The Mandarin-
based 5000

control instructions
N/A Chinese
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Table 5. Cont.

Authors, Year Objectives NLP Models Data Sources Sample Size Language

Lin et al., 2019 [44]

ATC ASR and
CIU-based method
to convert speech

into ATC-
related elements

• Two-dimensional
convolution and
average-pooling layers

• An encoder–decoder
architecture-based
neural network

• BLSTM-based CIU
joint model

Raw ATC speech
from ZUUU in China

578 h ATC speech
for modeling training

(481 h Chinese and
97 h English)

Chinese,
English

Lin et al., 2020 [17]

Automatic Speech
Recognition as
a component of
the ATC safety

monitoring system

• CNN
• RNN
• BLSTM
• FC

ATC communication
speech recorded at civil

airports in China

342 h of Chinese
speech and 47 h

of English speech

Chinese,
English

Vukoic et al., 2021 [45]

Cognitive load
estimation from

speech using
spectral features

• CNN
Recorded speech from

human–machine
interaction experiment

4.8 h of speech English

Tan et al., 2022 [46]
Speech emotion
recognition for

autonomous vehicle

• Multi-model combining
Spectrogram and
Text (BERT)

Interactive Emotional
Dyadic Motion Capture

(IEMOCAP) data set
N/A English

Across the ten studies identified from the literature screening process, machine learn-
ing techniques were most used, mainly neural networks-based algorithms, in over half of
all studies. The use of proprietary software packages (Mozilla Deep Speech, IBM Watson,
LinguaKit, and Cortical.io) was also mentioned in two studies as NLP tools. Concerning
the field data, 9 out of 10 studies were developed on actual ATC communication recordings,
and one study collected audio information from an experimental environment. English
and Chinese Mandarin were the languages observed in the selected studies relating to ATC
applications; studies in other languages were excluded because of irrelevance to ATC or
not being published in English. It is noticeable that studies relating to NLP applications on
ATC generally include two components—methods of automatic speech recognition (ASR)
and strategies of extracting information from communication for further use in aviation
operations. For example, the first three studies in Table 5 are examples of studies focusing
on strategies of ASR for ATC communication. In contrast, the rest of the studies consider
both ASR and the additional use of ASR, such as error detection, trajectory prediction, and
cognitive load estimation. The findings were summarized by the two aspects of automatic
speech recognition and the additional use of data from communication.

3.2.1. Automatic Speech Recognition

Automatic speech recognition (ASR) has been widely studied in non-aviation fields.
However, given the special characteristics of aviation radiotelephony procedures, such as
jargon and short sentences, different language and dialects, readback, and background
noise, additional studies are necessary and conducted for ASR in aviation. All identified
studies include ASR as a study component for English, Chinese Mandarin, and multilingual
communication in ATC, while five studies include the ASR method as a primary study
objective. Descriptions of ASR in each study are summarized in Table 6.
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Table 6. Detailed models on NLP applications in air traffic communication.

Authors, Year
ASR as a
Primary

Objective

Information
Extraction

Models

Evaluation
ASR Information

Extraction

Badrinath &
Balakrishnan,

2022 [8]
×

Call sign
and runway

number

• Mozilla’s
implementation of
Deep Speech (an
end-to-end speech
recognition model
with an RNN for
acoustic model)

• N-gram
language model

• Name entity
recognition
(NER) from
a Python
Library-Spacy
for call-sign
extraction

• A rule-based
grammar for
runway number
extraction

• A word error rate (WER) of
0.17 was obtained for the ASR.

• A real-time factor (RTF)
of 0.3 was achieved.

• NER yields an F1 score of 0.95
on the actual transcript and
0.69 on the ASR-generated
transcript for call-sign
extraction; rule-based
grammar yields an F1 score
of 1 on the actual transcript
and 0.95 on ASR generated
transcript for runway
number extraction

Zhang et al.,
2022 [3] ×

• ResNet-GAU-CTC
framework (an
end-to-end speech
recognition model)

• ResNet (a deep
residual network)

• GAU (a gated
attention unit)

• CTC (connectionist
temporal classification)

The proposed model’s
character error rate (CER) was
11.1% on the expanded Aishell

corpus and 8% on the ATC corpus.

Lin et al.,
2021 [41] ×

• CNN
• RNN
• CTC
• MCNN

A 3.95% label error rate (LER)
on Chinese characters and

English words

Sun & Tang,
2021 [42]

Communication
features and

communication
errors

• ASR to extract features
(IBM Watson Speech to
Text)

• Communication
errors
Characterizing
(LinguaKit and
Cortical.io)

• Bayesian
Network (BN)
modeling
to predict
communication
errors and LoS

No evaluation of ASR; study
findings indicate a high correlation
between read-back errors and LoS.

Jia et al.,
2017 [16]

Semantic
characteristics

of ATC
instructions

and pilot
readback

• Manual transcription
by professional ATC

• LSTM-RNN
for semantic
information
extraction

The proposed semantic consistency
verification scheme with K-nearest

neighbors (k-NN) and random
forest (RF) as classifiers is more

stable and accurate (83.8% and 83%)

Wang et al.,
2021 [43]

Semantic
characteristics

of ATC
instruction

BiLSTM-LAN-CRF
(a deep neural
network-based
algorithm) to

extract the entities
of ATC instruction

The percentage of wrong tags
was used as metrics for
performance evaluation;

BiLSTM-LAN-CRF yields the best
result over the other three models.

Lin et al.,
2019 [44] ×

Controlling
intent and
parameters

• Two-dimensional
convolutional
operation (CNN +
BLSTM + CTC-based
neural network
and average
pooling layers)

• An encoder-decoder
architecture-based
neural network

An RNN-based joint
model for detecting

the controlling intent
and labeling the

controlling parameters

A 4% WER with an average
of 0.147 RTF was achieved.
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Table 6. Cont.

Authors, Year
ASR as a
Primary

Objective

Information
Extraction

Models

Evaluation
ASR Information

Extraction

Lin et al.,
2020 [17] ×

Repetition
check, flight
confirmation
verification,
and conflict

detection

• CNN + BLSTM +
FC + CTC (an
end-to-end model)

• DNN

The proposed model decoding
with the RNN-based language

model yields the best result
with a 5.07% and 5.99% WER

for Chinese and English.

Vukoic et al.,
2021 [45] Cognitive load • CNN

The method yields 83.7% accuracy
with CNN classifiers, which

outperformed SVM and k-NN
by 13.2% and 10.5%, respectively.

Tan et al.,
2022 [46]

Speech
emotion

• AlexNet
network model

• BERT model
• SoftMax

classifier

The proposed method yields the
best result over other methods,
with a 74% weighted accuracy

and 65.4% unweighted accuracy.

The selected articles show that the end-to-end speech recognition framework is a
study trend for better ASR strategies over traditional HMM-based models, especially given
the challenges of multilingual recognition, special use of language, and high speech rate.
Among the five articles which include ASR for aviation as a primary research objective,
three articles adopted an end-to-end framework [3,8,17]. Neural networks-based methods
are also widely used in ASR. All ten articles used or proposed new neural networks-based
methods for ASR, and in particular the combined uses of different neural networks were
commonly studied. The integration of the convolutional neural networks (CNN), recurrent
neural networks (RNN), connectionist temporal classification (CTC), and bidirectional
long short-term memory (BLSTM) are examples. Recent ASR-related studies indicate that
RNN and LSTM can effectively model the long-range temporal dependencies in the audio
sequences, and CTC shows advantages in automatic alignment and fast convergence.

From the findings of the studied articles, the integrative use of those methods yielded
superior results in aviation applications too. The word error rate (WER) and character
error rate (CER) were commonly used to evaluate the ASR accuracy in five of the ten
papers. The real-time factor (RTF) is another parameter for evaluating ASR efficiency.
From the findings of studies, the WER/CER of ASR ranges from 4% to 17%. Lin et al. [44]
achieved the lowest WER of 4% and the highest RTF of 0.147 s of an ASR strategy for
a real-time controlling dynamic in air traffic systems. Two-dimensional convolutional
operation (Conv2D), average-pooling layers (APL), and BLSTM were adopted in their
work [44].

3.2.2. Operational Information Extraction

In the overall process of applying NLP in ATC, ASR serves as the critical first step
to converting aviation communication speech into textual data. Operational information
extraction from communication text creates great value for various practical purposes
such as communication error detection, pilot readback check, traffic conflict detection,
and cognitive load estimation. Eight of the ten studies include information extraction
from different perspectives, such as aircraft call signs, runway numbers, ATC controlling
intent, and semantics of speech. Descriptions of information extraction in each study are
summarized in Table 6.

For operational information extraction for ATC, machine learning-based methods
dominate the selected studies, particularly neural networks-based methods, which were
widely used in six out of eight relevant papers [16,17,43–46].

The combined uses of LSTM, RNN, CNN, and DNN were explored in different studies;
the bidirectional encoder representation from transformers (BERT) model was adopted
by one study to check speech emotion [46]. In addition, name entity recognition, rule-
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based grammar, and Bayesian networks were also used [8,42]. In terms of evaluation, no
common method is observed from selected studies, potentially because of the diversity
of applications. However, the F score was used to assess the accuracy of aircraft call-sign
extraction and runway number extraction [8]. An important observation from this study [8]
is that the F-scores decrease because of the errors from ASR, which reemphasized the
importance of ASR accuracy when integrating ASR and information extraction in the same
system. Other evaluation methods adopted comparisons with different classifiers, such as
support vector machine (SVM), k-nearest neighbors (k-NN), and random forest (RF) [16,45].

4. Discussion
4.1. Challenges and Limitations

While NLP has many potential applications in aviation, several challenges and limi-
tations also need to be addressed. Based on this systematic review, the authors list NLP
approaches’ main challenges and limitations when applying them to text analysis in avia-
tion safety-related domains.

4.1.1. Ambiguity and Context

NLP struggles to understand the context and meaning of words and phrases, especially
in aviation-specific jargon. For example, the term “runway” can refer to both the physical
runway and the takeoff/landing procedures associated with it.

Reviewing NLP-based studies on incident/accident report analysis, Rose et al. [2]
highlighted that there are more easily identifiable topic labels in NTSB reports, which can be
clearly differentiated from another, than in ASRS reports. Hence, a structural topic modeling
(STM) approach performs better when applied to NTSB reports [2]. NTSB aviation accident
reports have non-standard abbreviations that add noise to the model-learning process [3,14].
Similar issues also exist in non-English databases, such as a study on Chinese civil aviation
incident reports from the period 2007–2021 by Jiao et al. [9] indicates that the experiment
was interfered with due to invalid information, such as inconsistent writing norms and
standards from different airlines. One way to improve the training model performance is
to develop a specialized corpus for handling aviation accident reports only [3,14].

Automatic speech recognition (ASR) is one of the essential elements for NLP applica-
tions in aviation communication. It attempts to transcribe voice information into textual
data for relevant analyses and knowledge discovery. However, aviation communication
differs from many other daily dialogues with its uniqueness and a variety of specifici-
ties; ambiguity, high speech rate, and jargon are examples of those challenges [3,44,47].
Relevant studies explored support vector machines (SVM)-based methods, conditional
random fields, and maximum entropy Markov models-based algorithms to extract ATC
controlling intent and parameters [48–50]. Cordoba et al. [51] also proposed an ASR system
for cross-task and adapting speaking features of air traffic controllers. This systematic
review of recent studies also finds that many existing well-developed ASR models for
non-aviation fields fail to solve those issues with acceptable performance; ASR and NLP
for aviation communication should be specifically investigated. Recent studies show that
deep learning-based models, such as LSTM-based, CNN-based, and RNN-based architec-
tures, appear superior in modeling and understanding aviation language and could be the
direction for future studies [17,41,44,52–54].

4.1.2. Multilingual Support

Aviation involves passengers and crew from different parts of the world speaking
diverse languages. NLP must support multiple languages and dialects to be helpful in this
industry.

A study [9] on a Chinese dataset used different preprocessing steps and text analy-
sis since word embedding and TF-IDF cannot capture important information from long
texts [9]. In conclusion, Jiao et al. [9] indicated that a rule-based approach coupled with
human intervention is a powerful tool to explore in future studies.
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Multilingualism appears more challenging in ASR for air traffic communication [41,43,44].
Though international flights are required to maintain English communication, the diverse
accents of English communication create significant challenges for developing an effective
ASR for air traffic communication. Domestic flights in many non-English speaking countries
still use the corresponding native language. From the literature review, we found that
English and Chinese were two primary languages studied separately or for multilingual
ASR strategies, and deep learning-based end-to-end ASR shows good performance for
English and Chinese [3,8,16,17,41,43,44]. To develop a generic framework for different
languages, Lin et al. [17,41,44] proposed a multilingual framework to integrate ASR with a
subsystem-controlling intent inference (CII) to recognize and organize textual information
into a predefined data structure for further uses. Provided the training data in different
languages, this framework is expected to be applied in the corresponding environment.

Although recent studies significantly improve the accuracy of new ASR models by
innovatively integrating machine learning techniques into end-to-end ASR models, a ded-
icated ASR model is still needed for each language; few studies are observed to explore
a single ASR model that is capable of interpreting multiple languages for air traffic com-
munication. Further studies on this aspect may promote better field applications of such
technology in a multilingual aviation operation environment.

4.1.3. Noise and Background Sounds

Background noise and distractions are common in aviation communication. This can
make it difficult for NLP systems to interpret spoken commands or queries accurately.

Background noise is a particular factor affecting the accuracy of ASR in air traffic
communications. The VHF (very high frequency) radio transmission commonly contains
noise caused by static, radio frequency interference, or thermal noise; inferior speech
quality is considered one of the main challenges for implementing ASR in air traffic control
(ATC) operations [3,44]. Reviewing the previous studies, neural network-based strategies
were explored to address the noise problem; for instance, the CNNs were used to improve
the encoder architecture to reduce the impact of background noise [55], and the average
pooling layer was adopted to filter the noise based on the analysis of ATC speech [17,41,44].

However, challenges from diverse and complicated noise in different application
scenes still exist and should be considered and addressed in future studies. To develop an
accurate ASR strategy for field applications, future efforts must be taken to eliminate the
impact of background noise.

4.1.4. Limited Training Data

Training NLP models requires large amounts of data, but the aviation industry may
have limited data available due to privacy concerns and safety regulations.

Thirteen out of twenty studies in the first group only investigated NLP applications
on ASRS, given the accessibility and richness of ASRS data [6]. However, the limitations of
ASRS data should not be ignored when compared to NTSB aviation accident reports:

1. It is usually considered an incomprehensive report regarding the whole process of an
incident/accident [12] and is considered less formal than the NTSB reports, including
official investigation results;

2. Objectiveness is hindered due to the nature (anonymity and confidentiality) of the
reporting procedure [15].

It would be beneficial to leverage more comprehensive reports on severe accidents in
NTSB to shed light on pattern identification and risk mitigation solutions [12].

The reviewed NLP-based studies demonstrate the potential to classify the causes
of incident/accident textual data. However, since evaluating the subject matter experts
(SMEs) is essential in training models, human resource limitations lead to the training
dataset’s limited sample size [7,14,19,22,35,38]. One solution to overcome the limited
training dataset is to propose a better deep-learning architecture that requires fewer data
or a data-augmentation model [7]. Several augmentation models are proposed, such as
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Google N-gram [35]. Perboli et al. [37] also proposed to leverage the increasing knowledge
base where every new report is processed as a more structured training dataset.

The accuracy of ASR depends on the amount of available labeled data for model train-
ing. However, the amount of publicly available transcribed air traffic communication voice
data is limited compared with other regular dialogues [3,8,44]. Reviewing previous studies,
a cross-lingual knowledge transfer learning method and a semi-hidden layer cross-lingual
DNN architecture were proposed to overcome the small sample caused problems [56],
and a combination of unsupervised pre-training and supervised transfer learning was
also proposed [57]. A combination of unsupervised pre-training and supervised transfer
learning was also proposed [57]. In addition, semi-supervised learning [58], context-aware
ASR models [59], and integrating standard ATC phraseology were explored to overcome
those limitations [60], but the overall performance in terms of word error rate needs more
significant improvements in the domain of ATC communication. In general, end-to-end
ASR architectures with deep neural networks were studied. They seemed promising to
improve ASR accuracy under the impact of limited training data, which might be further
explored. Above all, the development of a large, publicly available, and multilingual
annotated air traffic communication data repository seems necessary for further studies.

4.1.5. Safety-Critical Systems

ASR shows great potential in developing automatic safety-critical systems in aviation
operations, such as the detection of communication incurred by human errors, deviations
from voice instructions, and operator status monitoring [61]. Six out of ten selected studies
explored ASR and NLP for safety support from different perspectives; automated ATC
communication error detection to prevent loss of separation, aviation radiotelephony
readback verification, operator cognitive functions load estimation, and speech emotion
recognition are examples [16,17,42,43,45,46]. Many other safety-supporting functions could
be explored in further studies by leveraging the fast-developing ASR/NLP strategies.
However, many challenges still need to be overcome for safety-supporting applications in
aviation, such as the accuracy of ASR and information extraction, processing speed, and
multilingual recognition [17]. The use of fast-developing deep learning-based techniques
seems promising for practical solutions to those challenges.

The current NLP techniques might not entirely replace safety-critical systems that
require high accuracy and reliability, such as air traffic control or collision avoidance
systems. However, NLP appears promising and effective to be utilized as a support tool
for decision-makers [62].

4.1.6. Real-Time Processing

Decisions must be made quickly in air traffic management and control scenarios. NLP
systems might need help to process information fast enough to keep up with the pace of
aviation operations.

ASR could be time sensitive for certain types of applications in air traffic communica-
tions, for example, real-time air traffic control safety monitoring, air traffic communication
feedback verification, and air traffic conflict detection. Those tasks require real-time process-
ing capability for ASR solutions with high accuracy. For the popular neural networks-based
ASR models in recent studies, one of the primary factors determining the computational
time is the number of hidden layers and neurons in each layer of a large neural network
model. In contrast, a large neural network model usually yields better accuracy. The find-
ings from this literature review project indicate that a few studies have practically achieved
the level of real-time ASR and data processing with the fastest real-time factor (RTF) of
0.147 s [8,44]. For future research and applications, the trade-off between processing time
and accuracy might be of interest.
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4.1.7. Cost

Developing and implementing NLP systems in the aviation industry can be expensive,
which may limit the adoption of these technologies.

The reviewed studies mainly focused on forecasting the final adverse event outcomes,
while the intermediate event propagation process is ignored [14]. As a potential improve-
ment, a more sophisticated end-to-end model might need to investigate the evolution
process of aviation incidents/accidents [14].

4.2. Future Opportunities

Near the end of this review, several new NLP applications in the aviation field have
caught researchers’ attention, which are discussed in this section.

Several new studies were published to extend NLP applications in aviation by adopt-
ing the Bidirectional Encoder Representations from Transformers, also known as BERT.
BERT is developed to pre-train deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right contexts in all layers [63]. BERT is a “transformer-
based” large language model, which is openly available but can be adapted to domain-
specific tasks such as aviation. In 2020, Kierszbaum and Lapasset [64] first employed
BERT to extract information from ASRS to answer the following question, “When did
the incident happen?”, and they yielded roughly 70% correct answers. More applications
such as aeroBERT-Classifer [65], Aviation-BERT [62,66], and SafeAeroBERT [67] have been
proposed and tested in up-to-date studies regarding the analysis of aviation text corpora.
Based on the findings of those new studies, BERT-based techniques can generally help yield
better accuracy in aviation natural language data analysis.

As a trend in the NLP field, ChatGPT/GPT4 has succeeded in several domains as an
up-to-date AI language model. GPT also has the potential to improve safety and efficiency
in aviation safety-related domains in the following ways: First, similarly to other NLP
tools, GPT can analyze and understand human language in aviation-related texts such as
incident/accident reports, safety notices, technical manuals, and pilot reports to identify
patterns and trends in human error, providing valuable insights into the root causes of
aviation incidents/accidents. A recent study indicated that NLP has successfully identified
and classified NOTAM reports [68]. Second, GPT can be used to develop predictive models
that anticipate potential human errors and provide real-time feedback to pilots and air
traffic controllers. Third, GPT can automatically identify subtle changes in language or
communication patterns that may imply an increased risk of human error, allowing aviation
professionals to take proactive measures to prevent accidents. Finally, GPT can develop
chatbots and virtual assistants to provide pilots and ATC real-time assistance, reducing
workload and enhancing situational awareness. These chatbots and virtual assistants can
help aviation professionals make informed decisions and respond quickly to changing
conditions, ultimately improving the safety and efficiency of operations.

On the other hand, there is still plenty of work to be done before such NLP applications
can be used in aviation. As this review discussed earlier in this section, a specific domain-
based Corpus is required to train the language model better since the aviation industry
uses many professional acronyms and abbreviations. In addition, redundancy is needed
when applying NLP applications to safety-critical systems such as ATC communications.
Such applications should support the human-in-the-loop (HITL) decision-making process
rather than entirely taking over human tasks. Addressing these challenges and limitations
is essential for successfully implementing NLP in aviation safety-related domains. With
continued research and development in AI software and hardware, NLP can improve safety
and efficiency in the aviation industry. Future directions include further investigation into
how NLP can be applied to the operations of other aviation stakeholders, such as airports,
airlines, and manufacturers.
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5. Conclusions

From academia to industry to regulators, there is a growing recognition of the value of
NLP-based solutions in enhancing situational awareness, reducing workload, and improv-
ing decision capabilities in aviation. This systematic review took steps toward bridging the
research gap related to synthesizing knowledge on how NLP techniques impact aviation
safety domains. It presents a systematic review of NLP applications in aviation safety-
related domains. Specifically, the reviewed studies were grouped into incident/accident
safety report analysis and ATC communications. Important factors such as the NLP model
and its corresponding performance, targeted database, and applied language were summa-
rized. Finally, the authors discussed challenges and limitations such as ambiguity, lack of
multilingual support, limited training data, etc. Finally, the corresponding opportunities
and future directions were included. In summary, as AI technology continues to advance,
it is expected that NLP will play an increasingly substantial role in improving the safety
and efficiency of the aviation system.
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