
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Interdisciplinary Informatics Faculty
Proceedings & Presentations School of Interdisciplinary Informatics

2015

FBWatch: Extracting, Analyzing and Visualizing Public Facebook FBWatch: Extracting, Analyzing and Visualizing Public Facebook

Profiles Profiles

Lukas Brückner
Kyto GmbH

Simon Caton
National College of Ireland

Margeret A. Hall
University of Nebraska at Omaha, mahall@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc

 Part of the Communication Technology and New Media Commons, and the Social Media Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Brückner, Lukas; Caton, Simon; and Hall, Margeret A., "FBWatch: Extracting, Analyzing and Visualizing
Public Facebook Profiles" (2015). Interdisciplinary Informatics Faculty Proceedings & Presentations. 8.
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc/8

This Conference Proceeding is brought to you for free
and open access by the School of Interdisciplinary
Informatics at DigitalCommons@UNO. It has been
accepted for inclusion in Interdisciplinary Informatics
Faculty Proceedings & Presentations by an authorized
administrator of DigitalCommons@UNO. For more
information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc
https://digitalcommons.unomaha.edu/interdiscipinformatics
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/327?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1249?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacproc/8?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacproc%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

FBWatch: Extracting, Analyzing and Visualizing Public
Facebook Profiles
Lukas Brückner, lukas@lukas-brueckner.de, Kyto GmbH

Simon Caton, Simon.Caton@ncirl.ie, National College of Ireland

Margeret Hall, hall@kit.edu, Karlsruhe Service Research Institute

An ever-increasing volume of social media data facilitates studies into behavior patterns, consumption habits,

and B2B exchanges, so called Big Data. Whilst many tools exist for platforms such as Twitter, there is a notice-

able absence of tools for Facebook-based studies that are both scalable and accessible to social scientists. In this

paper, we present FBWatch, an open source web application providing the core functionality to fetch public

Facebook profiles en masse in their entirety and analyse relationships between profiles both online and offline.

We argue that FBWatch is a robust interface for social researchers and business analysts to identify analyze and

visualize relationships, discourse and interactions between public Facebook entities and their audiences.

1 Big Data Challenges in the Social Sciences
The vision of a Social Observatory is a low latency method for the observation and measurement of social

indicators. It is a computer-mediated research method at the intersection of computer science and the social

sciences. The term Social Observatory is used in its original context (Lasswell 1967; Hackenberg 1970); the

framework is the archetypal formalization of interdisciplinary approaches in computational social science. The

essence of a Social Observatory is characterized by (Lasswell 1967) as follows:

“The computer revolution has suddenly removed age-old limitations on the processing of information [...] But

the social sciences are data starved [...] One reason for it is reluctance to commit funds to long-term projects;

another [...] is the hope for achieving quick success by ‘new theoretical breakthroughs’ [...] It is as though we

were astronomers who were supposed to draw celestial designs and to neglect our telescopes. The social sciences

have been denied social observatories and told to get on with dreams”

This is also in line with the approach of the American National Science Foundation’s call for a network of Social

Observatories:

“Needed is a new national framework, or platform, for social, behavioral and economic research that is both

scalable and flexible; that permits new questions to be addressed; that allows for rapid response and adaptation to

local shocks […]; and that facilitates understanding local manifestations of national phenomena such as econom-

ic volatility.”

https://www.researchgate.net/publication/222751939_The_Social_Observatory_Time_Series_Data_for_Health_and_Behavioral_Research?el=1_x_8&enrichId=rgreq-09e99f5b16a048d147ece8f311e9420c-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg3MDMyNTtBUzoyODUxNjI2NDM0NDM3MTNAMTQ0NDk5OTQ4MDg5Mw==

Today, the notion of a Social Observatory lends itself towards social media platforms, as digital mediators of

social exchange, discourse and representation. This, as demonstrated by the COSMOS project (Burnap et al.

2014), becomes especially valuable when combined with government data streams. However, empowering

social scientists to access data from social media platforms (even in the singular) is non-trivial.

Figure 1 illustrates a general architecture of a modern Social Observatory entailing three processes; namely 1)

Data Acquisition; 2) Data Analysis; and 3) Interpretation. Whilst it is apparent that a Social Observatory captures

multiple sources of data, currently few scientific papers or services report this ability in a way easily replicable

by social scientists (Cioffi-Revilla 2014). This is despite prevalent availability of Application Programming

Interfaces (APIs), and an almost endless supply of papers and studies that focus on specific platforms (Russell

2013).

Figure 1. A General Architecture for a Social Observatory

Data Acquisition is well supported by most social media platforms via REST or streaming APIs, which are

underpinned by lightweight data interchange formats like JSON. User authentication and access authorization is

handled by technologies such as OAuth. There are also an ever-increasing number of software libraries available,

reducing the implementation effort to extract data.

The challenges instead lie in data volume, velocity, and variety, access rights, and cross-platform differences in

curating data. The big data aspects of social media data are well known: producing 2,200 Tweets (at around 58kb

each) per second, Twitter is a clear demonstrator of data volume and velocity. Variety is best shown using a

Facebook post as an example: version 1 of Facebook’s Graph API contained at least 15 categories for a user post

and this discounts other social actions like tagging, commenting, poking etc., as well as the diverse content range

of a Facebook user’s profile. Lastly, the method of data curation is not without its ambivalence. Twitter data

curation tends to be proactive; by accessing future Tweets that fulfil a specific set of user-driven attributes (e.g.,

hashtags or geolocation). Facebook is retrospective; given a Facebook entity (e.g. a person, or page) access their

posts, profile, likes etc. From the perspective of analyzing social data, this subtle difference significantly alters

the effort and planning needed to curate a data set (González-Bailón, Wang, Rivero, & Borge-Holthoefer, 2014).

The technical challenges also differ significantly from receiving a continuous stream of data (i.e., tweets) vs.

Facebook’s paginated results. The latter incites large numbers of API calls, which are not limitless. On a side

note, the validity period of an access token is also not infinite and must be refreshed periodically.

(Mixed Method) Analysis as illustrated in Figure 1, is inherently iterative and interdisciplinary. Foreseeable is

repeated interaction with the social media adapters and apps. Whilst approaches from computer science and

computational social science are becoming more prevalent, the question of research methodology is often a

poignant discussion point and challenge that cannot be overlooked. Computer scientists and social scientists

speak very different languages. Therefore, the realization of a Social Observatory needs to accommodate a vast

array of (interdisciplinary) methodological approaches.

Irrespective of methodology, an important feature of a Social Observatory is the ability to view a community at a

variety of resolutions; starting from an individual micro layer, and progressively zooming out via ego-centric

networks, social groups, communities, and demographic (sub) groups, up to the macro layer: community. This

ability is of significant importance for understanding a community as a whole; different granularities present

differentiated views of the setting. Interpretation is hence domain specific in nature, and should be decided

according to the proposed research questions. The architecture supports both inductive and deductive research.

Necessary to address at this point are the ethical boundaries of an unobtrusive approach of Big Data analyses of

social data. Both Twitter and Facebook have terms and conditions allowing for the anonymized assessment of

data which the use has indicated to be public. Specifically Facebook has argued that this is tantamount to in-

formed consent, and this is a common position across social media platforms. This study agrees that when

information is placed in public fora and domains, it is subject to public review. This is in line with the ethical

guidelines of (Markham & Buchanan, 2012). In the case of obtrusive design (i.e., greedy apps), informed con-

sent must continue to be in place as the standards of human subject research demand. A further ethical (and

security) concern is that the provide architecture can also be used irresponsibly. In the case of public-facing data,

this is of a lesser concern. Obtrusively-designed architectures still require user consent (e.g., downloading an

app), as such research works are neither the work of hacking nor ‘Trojan horses,’ thus guaranteeing a moderately

informed subject base.

1.1 Implementation: a Facebook Social Observatory Adapter

The first step towards a Social Observatory focuses on a Facebook social adapter for several reasons. Firstly,

Facebook lends itself to the case study, especially due to the large number of “open” Facebook entities; where

Facebook pages are a prime example. Secondly, when extracting data from Facebook, the researcher receives

near complete datasets. Finally, there is lack of general-purpose Facebook data acquisition tools available.

Those that are available tend to rely either on crawling techniques, which cannot fully acquire paginated Face-

book data, or data extraction via the Graph API that typically focus on the logged-in user or do not return data in

full. Whilst such approaches are useful, especially in classroom settings, they do not provide mechanisms to

curate research worthy datasets. This chapter presents a general and extensible Facebook data acquisition and

analysis tool: FBWatch.

The objective is simple: an interface-based tool allowing social as well as computational scientists to access

complete Facebook profiles irrespective of programming ability or data size, as no such tool is available. In

extracting data from Facebook, the researcher first needs to define what is accessed: an entity that has a unique

Facebook identifier. FBWatch is implemented such that it can access any Facebook entity that is public, or for

which it has received user permissions.

FBWatch is implemented using the Ruby on Rails framework, and consists of five top-level components and

modules: 1) Sync is the module responsible for fetching data from Facebook. It executes Graph API calls,

converts graph data to the internal data structures and stores it in the database.b2) Metrics are the analysis com-

ponents of FBWatch and responsible for analyzing fetched data. They contain parameters used for case studies

and data structures for storing results. A metric can therefore be any result of an analysis (see Section 4). 3)

Tasks are an abstraction for running Sync and Metric jobs as background processes. 4) A relational database for

storing Facebook resource data, and running more complex queries regarding connections between Facebook

entities. Any SQL-Server can be used provided that it supports UTF-8 encoding, as this is needed for handling

foreign languages. MySQL and PostgreSQL both proved adequate. 5) A web front-end as an access point and

controller for FBWatch. Here the user can request the retrieval of new Facebook entities, refresh previously

fetched entities, group entities together for comparative analysis, execute metric calculations, visualize metrics

as well as the social network of individual or grouped entities, and download datasets for use in third party

analysis tools (see Section 3).

Figure 2. Workflow illustrating the steps to acquire, analyses, and interpret Facebook

Figure 2 shows the architecture of FBWatch, and highlights a typical request involving either the data fetching,

or the metrics calculation. Upon a request, the controller triggers a background worker class and returns an

appropriate view to the user who is notified that a task was started. The worker then performs one of two tasks,

depending on whether Facebook data is to be retrieved, or retrieved data is to be analyzed.

The first step in the process flow the user providing the Facebook URL of one or more entities of interest, which

are parsed for their username or Facebook ID. To synchronize the data of Facebook resources, a background

sync task is started by FBWatch. The user can check the status and progress of the task, as required. Depending

on the size and number of entities, synchronization can take several hours, and can also encounter several errors

that need to be handled manually. Once synchronization has successfully completed, this will be visible and the

user informed of how many feed entries have been retrieved. If errors were encountered that could not be han-

dled this will also be displayed.

To access data, Koala, a lightweight and flexible Ruby library for Facebook, is used. It provides a simple user

interface to the Graph API and the Facebook Query Language. As the Graph API returns the data in JSON

format, Koala automatically parses the resulting string and converts it into the appropriate data structure using

Arrays and Hashes and aligns the primitive data types into Ruby’s data types. Furthermore, the library supports

the use of the OAuth protocol to authenticate within Facebook through the use of the OmniAuth Ruby library. A

valid, i.e. Facebook authenticated, instance of Koala is generated on a per-session basis and stored in the session

context. At this time this is also the only real authentication the application performs directly. To mitigate expos-

ing all data fetched by FBWatch, HTTP authentication is enforced on the server.

Synchronizing a Facebook resource is done in a two-step process. First, any basic information of that resource is

pulled by calling the Graph API link facebook-id. Basic information contains the information visible at the top

of a Facebook page and in the about section, like first and last names, website, the number of likes etc. Second,

the actual feed data is retrieved.

This is not trivial. First of all, not all data will and can be received at once, as Facebook limits the number of

results per query; 25 per default. Increasing this limit drastically reduces the number of Graph API calls, and

thus, speeds up the data gathering process. By default FBWatch uses a limit of 900, increasing speed and manag-

ing scalability. Facebook also only returns a subset of the comments and likes of a feed item; four by default.

The resulting data contains a paging feature, similar to the one of the feed itself in a single feed item. Comments

as well as like arrays have to be fetched using multiple API calls, dramatically increasing runtime. The

UserDataGatherer module automatically navigates the paging system until it receives an empty data array.

FBWatch also stores the link representing the first response from Facebook. This allows FBWatch to easily

update a resource at some point in the future. If, however, a problem occurs, the last feed query is stored to

enable the future continuation of a sync task.

The second part of the Sync module stores fetched data via the UserDataSaver. Aside from transforming Face-

book JSON into internal data models, data entry needs to be optimized such that it scales. In order to decrease

runtime, multiple INSERT and UPDATE statements are grouped into transactions. However, not all statements

can be executed in one transaction due to interdependencies between data models. Thus, saving the data in the

correct order is important. In order to take into account all possible dependencies, four transactions are used: 1)

resources and their basic data are updated as well as all new Facebook entities that posted or interacted on the

feed at the root level. 2) Feed entries. 3) Resources which interacted at a lower level, i.e. with a comment, like or

tag. 4) The comments, likes and tags.

Once an entity has been fetched, it can at any time be resynchronized to retrieve any new feed items and their

properties or continue to fetch all historic data if the synchronization was not successfully completed before. If a

resource is no longer available on Facebook or no longer relevant for the analysis it also can be disabled or

removed. Apart from the ability to traverse Facebook data automatically using the provided paging mechanism,

the other main feature of the UserDataGatherer is error handling. The Facebook API is not reliable all the time,

and is badly documented. Therefore, flexible error handling is required. The most pertinent hurdle is a limit to

the amount of calls a single application can execute for a given access token in a certain time frame from the

same IP address. While it is not officially documented, as per Facebook, apps tend to be limited to 600 calls

every 10 minutes. For large resources, this limit is hit multiple times. FBWatch handles this by pausing the sync

task, and retrying periodically (every five minutes) to resume it. This can require up to 30 minutes. FBWatch

also handles when a resource cannot be queried, be it that it was deleted or disabled, when a username has been

changed, and other miscellaneous errors.

1.2 Data Model

The data models representing social network data is loosely based on the Facebook Graph API format. A re-

source model corresponds to one Facebook entity but also constitutes the most important object in FBWatch. All

overlapping properties of the different types of Facebook resources are saved in this data model: the free text

name, the unique Facebook ID, the unique username and the full link to the resource on the Facebook system.

Additional data relevant for the application is saved in this data model as well: a flag indicating whether or not a

resource is active, i.e. if it should be synchronized, and the date of the last synchronization.

Other information returned by Facebook differs greatly for different entity types and is thus stored as an array of

key-value pairs. Here, information such as the number of likes for pages, a website URL or the first and last

names of real users, their gender and email address is represented. Furthermore, configuration data of the appli-

cation is stored: information of the last synchronization so that it can be resumed more easily and no duplicates

are retrieved. The value of stores the URL of the first link of the paging feature of the first feed page, i.e. where

at the moment of synchronization newer data would be available. A property is called ‘last link’ stores the link to

the last feed page unsuccessfully queried if an error occurred.

The core data structure is the feed (or timeline); a set of feed items. A feed item is modeled such that any type of

textual activity can be represented, i.e. posts, comments and stories. Obviously, stories play an important role in

user feeds. Note, however, that stories often appear right next to the actual activity, especially for comments;

therefore, the content will be duplicated without care. So as to not lose too much information when handling

different types of feed entries, a few additional properties are needed to the standard Facebook set. In order to

simplify the data model differences in the available post types are mostly ignored. Post types are links, photos,

statuses, comments, videos, swfs (flash objects) and check-ins as well as the corresponding stories. After analyz-

ing the properties of these entries, the following attributes were selected: the unique facebook ID, timestamps

representing when the entry was created and when it was last updated, the originator of the entry, optionally also

the receiver of the entry and the comment and like count if present.

The originator and receiver are represented as separate resources, hence, only their unique IDs are stored here.

The count of comments and likes are taken from the comments and likes properties of the Facebook format if

present. A normal post has an attribute message which holds the text the user posted. A story, however, does not

have a message, but rather a story property. The different sub-types of a post additionally have attributes contain-

ing the link, photo URL, etc. Each of these properties are mapped onto a single property. In order to distinguish

between different types of feed items this property can be any of message, story or comment. The attribute then

holds either story or comment for these two data types and the concrete post type for messages. A foreign key to

the resource which this feed item belongs to, i.e. on which timeline it is posted. Last, to link comments to their

respective post, a parent property is included, which is null for top-level posts.

1.3 Summary

The developed artifact demonstrated a first prototype of forming a general service that is capable of facilitating

Big Data analyses based on Facebook data. The resulting software was designed to be modular enough to be

extended in many different possible ways in order to support a multitude of research questions. As an endeavor

like this is a large project only a first foundation was implemented. Nevertheless, as a first exploratory work in

that direction the feasibility of a larger service was demonstrated. The aim of targeting software towards non-

computer scientists is met for the main workflow. For this main workflow the other usability requirement of

response times of less than ten seconds is met. Clearing data or loading the deep details of a resource can take

more than ten seconds. For future applications to be performed on a different set of resources, the application

provides a simple workflow without the need to adjust any source code. Modifying the scoring or adding new

metrics requires programming knowledge, but is feasible.

In order to facilitate different analyses, the metric system was modularly defined. By providing a general base

class where all specific metric classes can register themselves, it can be easily extended. Should external systems

be required to perform additional analyses, the fetched data can be exported into a JSON format and put to other

software. The structure of the JSON format was designed to be close to the one Facebook provides itself. Since

not all returned data is saved and some parts are stored differently, the JSON feed of Facebook and FBWatch are

not a one-to-one match. Only small differences exist, though, and any Facebook format parser should be adapted

easily to the artifact’s format. In general, the data input is extensible.

In summary, it can be said that the contribution of this research is twofold. First, it provides an exploratory social

network observatory. Essential information and challenges were discovered and a robust error handling intro-

duced. Second, a comprehensive solution for retrieving a new market perspective from the customer point of

view was presented focusing on Facebook data. Additionally, the information contained within should provide

guidelines and a solid base for conducting further social network research and for creating further social observa-

tories. With internet services and online social network services developing at a rapid pace and more and more

services being created the possibilities of facilitating the data which they collect stays an interesting topic of

research. It remains to be seen whether or not more services will open up their platforms and provide access to at

least some part of their data warehouses giving academic researchers and in particular social scientists new ways

of studying people’s behavior and get a new perspective on markets.

2 References
Burnap, P. et al., 2014. COSMOS : Towards an integrated and scalable service for analysing social media on

demand. International Journal of Parallel, emergent and Distributed Computing, pp.37–41.
Cioffi-Revilla, C., 2014. Introduction to Computational Social Science, Berlin: Springer Texts in Computer

Science.
Hackenberg, R., 1970. The Social Observatory : Time series data for health and behavioral research. Social

Science and Medicine, 4, pp.343–357.
Lasswell, H.D., 1967. Do We Need Social Observatories? The Saturday Review, pp.49–52.

https://www.researchgate.net/publication/222751939_The_Social_Observatory_Time_Series_Data_for_Health_and_Behavioral_Research?el=1_x_8&enrichId=rgreq-09e99f5b16a048d147ece8f311e9420c-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg3MDMyNTtBUzoyODUxNjI2NDM0NDM3MTNAMTQ0NDk5OTQ4MDg5Mw==
https://www.researchgate.net/publication/222751939_The_Social_Observatory_Time_Series_Data_for_Health_and_Behavioral_Research?el=1_x_8&enrichId=rgreq-09e99f5b16a048d147ece8f311e9420c-XXX&enrichSource=Y292ZXJQYWdlOzI4Mjg3MDMyNTtBUzoyODUxNjI2NDM0NDM3MTNAMTQ0NDk5OTQ4MDg5Mw==

	FBWatch: Extracting, Analyzing and Visualizing Public Facebook Profiles
	Recommended Citation

	/var/tmp/StampPDF/rKrKklBxO8/tmp.1478639799.pdf.2h673

