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SEMIOTICS:  NOTES ON ENGLISH TO MATHEMATICAL 

LANGUAGE TRANSLATION 

 
 

Elliott Ostler 

University of Nebraska at Omaha 
 

 

Abstract: The manuscript at hand is a presentation relating the processes and notation of 

mathematics to the processes and notation of standard written English. Semiotics is introduced as 

a way to describe the similarities in the processes and goals of both systems as methods of 

communication. The discussion of semiotics falls within three categories: 1) examining the 

parallel structures of written language and mathematics, 2) defining the language based nature of 

mathematical symbols, notation, and processes, and 3) exploring misconceptions between 

mathematical versus standard written vocabulary and notation. 

 

 

Introduction 
 

Mathematics is the purest, most concise, and most comprehensive language system known to humankind. 

Mathematics not only subsumes the formal structure, notation, and use of all written and spoken language under its 

own paradigm, it is, itself, the most precise mechanism we have for describing the universe and all it contains. From 

the complex vocal sounds by which we transmit our individual thoughts and feelings, to the various permutations of 

the alphabetic symbols used to make words and sentences, to the geometric translations of sign language into 

meaning; all forms of language are, and must naturally be, mathematically structured. Thoughtful consideration on a 

much broader scale even suggests that if we ever receive a message from intelligent life outside our own solar 

system, it will likely be a mathematical one. Yet with all of its elegant communication potential, mathematics is 

typically only utilized as a language by mathematicians and scientists, despite the obvious parallels to how our 

written language is structured and used by non-mathematicians. 

The unfortunate fact is that most of us experience only the most trivial facets of mathematics from our 

earliest exposure to the subject; and very little of this exposure involves recognizing the language aspects of 

mathematics. This is not to say that opportunities for more communication based applications are not available in 

the instruction of mathematics, but rather that the concept of mathematics as a language is overshadowed by the 

procedural fluency aspects of the discipline as we learn about it. This fact is ironic considering that procedural 

fluency is actually a component of mathematical communication but is rarely described as such. 

The narrative provided hereafter will make the case that secondary school mathematics curriculum would 

benefit from a moderate transition away from a computational and procedural fluency focus and more toward 

defining mathematical procedures and notation as communication tools aimed at better leveraging concepts in the 

sciences, engineering, and technology. This argument will be made in the context of semiotics which is defined in 

various ways, but can be generally understood as the study of symbols and their interpretation. The appropriateness 

of studying mathematics as a communication protocol within the context of semiotics will be made evident through 

the following discussions:  examining the parallel structures of written language and mathematics, defining the 

language based nature of mathematical symbols, notation, and processes, and finally, exploring the innate 

misconceptions of mathematical versus standard written vocabulary.  

 

 

The Parallel Structures in Written Language and Mathematics 
 

The statements from the previous section are not merely suggestions that if we look hard enough, we can 

find subtle connections between written language and mathematics, but rather that communication itself exists 

within the structure of mathematics and that mathematics is primarily a communication based discipline. To 

demonstrate this idea, let us examine some structural and operational similarities between written language and 

mathematics. We can do this by comparing a few basic postulates that are common in all written systems of 
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language to the processes and symbols mathematicians use. In mathematics, a postulate (or axiom) is a statement 

that is assumed to be true without the burden of formal proof, usually because these assumptions are necessary for 

defining a starting point for the mathematical system, and also because they are often self-evident. For example, the 

ancient mathematician Euclid built an entire system of two-dimensional geometry, which is still studied and taught 

worldwide, based on five simple postulates (see Euclid's Elements). We might now generate some basic postulates 

to define our system of language, which can be directly compared to the numeric processes and notation with which 

we are already familiar.  Note that the same mathematical structures could be applied to any syntactic system, but 

also that the structure does not automatically carry over to issues of semantics. There is, however, a unique semantic 

aspect of mathematics that applies to the development of mathematical proofs, which will be discussed later. The 

following postulates for language will be used to demonstrate that written language exists within a system that is 

very similar to how mathematical notation is structured: 

 

1. Postulate 1: Written language uses permutations of a finite set of alphabetic symbols (letters), which exist 

in a hierarchical form to express meaning (words and sentences).  Mathematics uses permutations of a 

finite set of numeric symbols (digits) that exist in a hierarchical form to express quantity (place value and 

exponential notation). The permutation (or rearrangement) of symbols is critical to the operation of both 

systems. For example, the letters in the word "cat" give us a completely different meaning when rearranged 

as "act" or no identifiable meaning when arranged as "tca" because a specific meaning has not been 

universally defined for the arrangement "tca." Likewise, the arrangement of the digits 123 give us a 

different value than if we rearrange them as 231, or no identifiable value if rearranged as 132 because 

exponential notation within a number has not been universally defined. 

2. Postulate 2: The symbols of written language include a specific set of delimiters (punctuation) to organize 

thoughts into manageable subsections and provide nuance to ideas.  The symbols of mathematics include a 

specific set of delimiters (mathematical operators) to organize expressions and provide nuance to 

quantities.  For example, there is an old joke about how a comma can save a life: "Let's eat Grandma." 

versus "Let's eat, Grandma." One small delimiter changes the meaning of an otherwise identical 

permutation of letters. The mathematical system is a bit more obvious. For example, it is clear that 314 is 

different than 3.14. Again a small delimiter completely changes the value of an otherwise identical 

permutation of digits. 

3. Postulate 3: Written language uses different symbol combinations (e.g. words or phrases) that exhibit a 

degree of congruence or equality to other words or phrases. These equivalent word and phrase 

combinations can be substituted for one another to simplify communication or clarify meaning.  

Mathematics uses different symbol combinations (called expressions) that may exhibit congruence or 

equality and can be substituted for one another to simplify communication or clarify meaning. For example, 

we might substitute the phrase, "Those shoes stink." for the phrase, "Those shoes smell bad." We may do 

this to make the phrase more efficient (four words to represent the idea versus three words for the same 

idea) or to emphasize an aspect of our idea (the intensity of the smell of the shoes).  In mathematics, this 

idea is captured by a formal mathematical property called the transitive property of equality. This property 

states that if A = B and B = C, then A = C, and allows the three variables to be used interchangeably. A 

common application of this property might be illustrated by substituting an improper fraction into an 

expression in place of a mixed number.  The symbol representations look different but hold the same value 

and can, therefore, be used interchangeably. The ability to substitute equivalent values within a 

communication system is perhaps the most critical operational structure of both of these systems. For 

instance, expository writing is not simply a matter of choosing appropriate words, but choosing the best 

words to convey the writer's meaning. A mathematician does the same thing by simplifying a complex 

expression through a set of successively simplified equivalences. This will be demonstrated in more detail 

in the next section. 

4. Postulate 4:  Language and numeric systems are interdependent. We use numbers in written language and 

letters and words in numeric systems. Clearly no kind of quantity or ordinal relationship can be expressed 

in written language without the underlying mathematical concepts supporting them. Conversely, 

generalizable algebraic and geometric relationships could not be stated without the use of letters as 

variables, or without the description of conditions using words. 
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The Language of Mathematical Symbols, Notation, and Processes 
 

There are approximately 500,000 words in the English language. Factor in the knowledge that written 

language allows for many words to hold multiple meanings and you have a system of immense power to transmit 

ideas; however, such complexity comes with a much greater potential for ambiguity in the interpretation of ideas. 

The mechanism by which the transmission of ideas can be made more efficient and more precise is mathematics. 

Applying a mathematical process to language whereby we simplify a written expression through the substitution of a 

more concise statement reduces the ambiguity. As an exercise in mathematical process applied to writing, let us 

interpret the following paragraph: 

 

It would certainly be most auspicious if you would evince a design, for which I would be 

abundantly grateful, whereby it would be resolved that the canine, currently residing in the 

immediate vicinity, be escorted from the premises; this pursuant to the beast's immediate 

biological need to vacate copious amounts of extraneous fluid due to an exceedingly high internal 

pressure index. 

 

Many readers may appreciate various aspects of word usage in the previous narrative, or perhaps interpret it as 

an example of ironic overstatement of the intended message, or maybe even as the sarcastic tirade of a pseudo-

intellectual. In reality, any interpretation may constitute a deviation from the writer's true intention because this 

passage is subject to the nuances of individual perception as readers digest each component to determine the 

meaning. By applying mathematical thinking to a written process or notational system we can reduce or even 

eliminate the interpretive ambiguity of a passage. Let us try it with this passage. Politely stated, a mathematician 

might generate a final equivalence that looks something like, "Thank you for taking the dog outside. He needs to 

tinkle." This would be done through a series of substitutions using simplified equivalencies until a distilled message 

emerges. Let us dissect the passage by identifying important components and making substitutions of reasonably 

congruent but simplified phrases: 

 

1. Component 1: "It would certainly be most auspicious if you would evince a design" = "it would be 

favorable to consider a way" 

2. Component 2: "for which I would be abundantly grateful" = "and I would be very thankful." 

3. Component 3: "whereby it would be resolved that the canine, currently residing in the immediate vicinity" 

= "where we decide that the dog living here" 

4. Component 4: "would be escorted from the premises" = "would be taken outside" 

5. Component 5: "this pursuant to" = "because of" 

6. Component 6: “the beast's immediate biological need to vacate copious amounts of extraneous fluid” = “the 

dog’s need to get rid of extra water” 

7. Component 7: “due to an exceedingly high internal pressure index” = “because of uncomfortable bladder 

pressure”  

 

We can now reassemble the passage with the substitutions and possibly have a more concise and efficient 

statement although, in this form, it may appear to be somewhat awkward: 

 

It would be favorable to consider a way… and I would be very thankful… where we decide that 

the dog living here… would be taken outside… because of… the dog’s need to get rid of extra 

water… because of uncomfortable bladder pressure. 

 

 Now, let us consider a few more mathematical procedures that could be applied to this revised passage. 

There is a property in mathematics called the Commutative Property which states that the order of some 

mathematical operations within an expression does not influence the value of the expression.  An example would be 

the Commutative Property of Addition where 2 + 3 = 3 + 2. The placement of the digits in the expression does not 

impact the value of the expression. We can apply this property to the phrase, “and I would be very thankful” because 

the placement of this phrase within the message does not critically impact the meaning of the message. Additionally, 

we could combine components 3 and 4 into a single new reasonably equivalent component. The same could be done 

with components 5, 6, and 7. If we simply started with the phrase, “Thank you” and continued to simplify the 
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revised expression with reasonably congruent substitutions, the next iteration of the passage may look something 

like the following: 

 

 

Component 2         Component 1                  Components 3 and 4            Components 5, 6, and 7 

  Thank you…  for considering…  taking this dog out…  because he needs to go to the bathroom 

 

 This passage can be simplified even farther based on the need for precision or specific attention to various 

details.  The most basic message may end up reading something like, “Thanks for taking the dog out.  He needs to 

tinkle.” 

Let us now examine mathematical problem solving with an eye focused on the same procedural 

mechanism. As complex as mathematical communication appears to be, there are fewer than 100 symbols in all of 

mathematics. Factor in that mathematical symbols hold more consistently to a single function rather than having 

multiple meanings the way that words do, and the system appears comparatively simple. So how does mathematical 

language have the ability to be so concise and so robust with relatively little notation? The answer is fairly straight 

forward in that a unique permutation of mathematical symbols typically has a single, exact meaning; moreover, the 

nature of mathematical notation is ultimately intended to distill numbers, expressions and relationships down to their 

most elegant, readable, or otherwise useful form. Theoretical constructs such as irony or sarcasm, good or evil, do 

not exist in mathematical notation, though those constructs can still be defined mathematically within a system. By 

eliminating the ambiguity of the notation, logic prevails because there is no opportunity to interpret the meaning past 

what is specifically stated by the symbols. As an exercise, let us examine the following simple relationship: 

 

𝐴 = 𝐵 

 

  This is a statement equating the values associated with the variables A and B. Though we do not know the 

values, or even the nature of the values, we know they are the same. The relationship is absolute and does not allow 

for parameters, conditions, provisos or special circumstances. This notion of absolute equality tends to offend our 

natural intuition about the world because so much of how we interpret communication is dependent on other 

contextual factors. For example a ship approaching a rocky shoreline in foggy conditions sees the single pulse of a 

lighthouse beacon. This single flash of light, repeated at regular intervals as the light rotates, carries a message of 

warning. The environmental conditions create a context for the communication. Now put the same ship in clear 

conditions on still water. A single repeating pulse of light would simply inform the ship's crew that the lighthouse 

was working. Successive flashes would need to be emitted in some other kind of mathematical pattern for a message 

of danger to be successfully transmitted. 

Context is important in mathematics as well but it is generally supplied by additional notation.  The 

absence of this additional notation creates ambiguity. For example, at some point we have all learned that the sum of 

the interior angles of a triangle is 180 degrees. However, without more contextual communication, this equivalency 

may not be true. If the triangle is constructed on the surface of a convex manifold, say, the surface of the earth, then 

the sum of the angles would be different. Try it. Place one vertex of a triangle at the North Pole of a globe. Draw a 

straight line due South until you intersect the equator. Make a right angle turn (90 degrees) to define the second 

vertex and follow the equator due East one fourth of the way around the globe. Define the third vertex by turning 

back due North and draw your last side as a straight line that ends at the North Pole. You have made three right 

angles in constructing this triangle, the sum of which is 270 degrees, not the 180 that you have been taught. Is the 

fabric of our mathematical system breaking down because of this contradiction? Of course not. We have simply 

failed to communicate the conditions under which our 180 degree relationship holds true, and this is one of the great 

oversights of mathematics instruction at the secondary level. This example is evidence of why looking at the 

notation of mathematics as a language is so important. Critical parts of messages cannot be omitted while 

maintaining an expectation that the intended meaning will be accurately relayed. Let us suppose that we want to 

describe a rational number. Most math teachers adopt a shorthand approach to this kind of description by suggesting 

that a rational number is basically a constant or variable in fractional form where we have a number over a number. 

The description seems fairly complete, but consider the precision of the following notation: 

 

N defines the Natural Numbers:  1, 2, 3… 

Z defines the Integers: 0, ±1, ±2, ±3… 

Q then defines the rational numbers thusly:  {
𝑎

𝑏
|∀𝑎 ∈ 𝑍, ∃𝑏 ∈ 𝑁} 
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The notation of Q can be translated to English as follows: Rational Numbers are the set of numbers 

organized in the form a over b such that for every value of a that is an element of the Integers, there exists a value b 

that is an element of the Natural Numbers. 

  Admittedly, the formal notation defining a rational number looks intimidating, and maybe even seems 

excessive, but the message being conveyed requires an explicit notation to eliminate ambiguity. If we were to simply 

say that a rational number is a number over a number or an integer over an integer, we would have to consider zero 

to be a possible character in the denominator of a fraction, which in computational mathematics defies definition as 

a constant value. 

The message here is that equivalence relationships are only factual if we are meticulous about how we 

communicate them. For this reason, mathematical notation is not a language system intended to describe truth, but 

rather, to define fact, irrefutable and absolute within a given context. This, of course, begs the question how are facts 

determined?  

If we can get past the notion that fact is only as pure as the postulates on which we base our system, we can 

begin to focus on the goals of our communication. The language of computational mathematics has only four broad 

procedural goals in the determination of fact, and the goals occur in a hierarchy: 

 

1. to define known values as contextualized constants  

2. to define unknown values as mathematical expressions in terms of identified and contextualized variables  

3. to establish relationships between and among different combinations of constants and expressions in the 

form of equations 

4. to create concrete notions of equality from abstract situations  that occur numerically, algebraically, and 

geometrically.   

 

     If you were to examine the contents of an Algebra textbook, you would discover that every section of every 

chapter involves procedures focused on one or more of the goals stated above. Mathematical instruction often 

conceptualizes “doing math” as procedural applications, or simply the steps to reaching a solution to a problem. This 

is a misrepresentation of mathematical process. These so called “steps” of a problem are merely restatements of 

equivalent expressions. Successive substitutions (what appears to be steps of a problem) of these equivalent 

expressions allow us to remove the complexity and ambiguity of the original expression. Each step, in reality, is a 

simpler restatement of the initial expression using the exact same protocols as we did when we simplified the written 

passage in the last section. Though the written versus mathematical problems look different, the processes needed to 

simplify or interpret them are nearly identical. Suppose, for example, that we want to derive a popular relationship 

stating that the area of a circle is equivalent to the product of the constant Pi and the numeric square of the 

measurement of the circle's radius. Many of us know this formula by rote memorization (A = πr2). This familiar 

formula is an elegant, factual statement connecting two expressions from a complex relationship, but how was the 

relationship established? There are many different notational approaches to establishing this equivalence 

relationship, but the purest notation can be found in calculus. Note that each “step” of this process is a notational 

restatement or translation of a previous expression, beginning with equivalence relation for the numeric 

representation of a circle. 
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Just as the goal of a written document somewhat determines the language style and composition 

appropriate for representing the idea, mathematical processes are determined by the nature of the solution being 

sought. In the area formula derivation illustrated above, the final expression allows us to determine the relationship 

between a circle’s area and its radius. The purpose is to determine a complex measured value (the area of the circle) 

by relating it to a value that is easier to obtain, that being the radius. In this example, a non-mathematician only 

needs to know that each statement provides an equivalent representation in successively less complex terms under 

given conditions, exactly as we did when simplifying the written passage. In considering the outcome, which is a 

simple formula involving only two variables, it is easy to overlook the precision of the communication protocol that 

allows the formula to exist. 

   Using the four procedural goals stated above, we can define a notational system of mathematical rules 

which seem complex relative to the written English rules we use almost every day, but in reality, are just an 

application of the same logical principles under two different communication paradigms. The mathematical 

procedures that we have used for the both the written passage and formula derivation also apply to sign language 

and voice patterns. In fact, they are also so simple that even a computer can understand them! Our instincts may tell 

us that if we need a computer, our task must be difficult. Consider, however, that a computer can only function by 

being told exactly what to do. The communication protocol that a computer uses must be simple enough to be 

distilled down into a finite number of combinations using only ones and zeros. Let us conclude this section by 

exploring a modern application of computers and language that helps illustrate this phenomenon. 

 There are approximately 44 sounds (phonemes) in the English language depending on the linguistic source 

we choose to consider. Each sound combination in a spoken word is analogous to the letter combinations used to 

make written words. Our brains recognize and interpret sounds in spoken language similar to how they recognize 

and interpret words in written language. Amazingly enough, a computer can be taught to do the same thing. By 

analyzing a range of values for the variables of pitch, duration, frequency, volume, pacing, etcetera, the computer 

can begin to recognize the vocalization of different words and phrases by comparing strings of binary digits. Of 

course this is a bit of an oversimplification. The actual programming model must be significantly more complex 

because an English word may be spoken a number of different ways by the same individual, not to mention, many 

different ways by the English speaking world. Mathematics helps the computer estimate what the sounds of words 

and phrases should digitally look like by using a mathematical model called a Markov Chain. When we speak, the 

sounds our voices make are converted to binary code (numbers consisting of only ones and zeros). A mathematical 

analysis can then compare the numeric code to a database of existing codes for possible written word substitutions. 

The Markov model is a Stochastic modeling process that relies on the idiosyncrasies of a given language to help 
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determine the intended order of words based on how the language is commonly structured. For example, the words 

“happy birthday” have a higher probability of being spoken in sequence than “aptly earth pay,” which might sound 

similar to the computer depending on who is speaking. The mathematical model would help the computer select the 

most likely translation based on the context of the surrounding phrase combinations. 

 

 

Misconceptions in Mathematical versus Written Vocabulary 
 

 Although we know that English words can potentially have several meanings, many of us may not fully 

appreciate how the meaning of a word is established by the context of the surrounding language. For example, when 

we use the word “root” in English, we might mean the underground part of a plant or tree, the fundamental cause of 

a problem, or even a root-word extraction. In each option, the surrounding words provide context for how we 

interpret “root” but note that each of the interpretive contexts fall under an organizational system for written words. 

In short, with words having multiple meanings, we must use the context of surrounding language to accurately 

interpret which possible meaning is most appropriate, but consider what might occur if there were a crossover of 

English words into mathematical language contexts. 

The word root has a unique mathematical meaning that is written the same way as all other English 

language notation, but has a very different semiotic notation in the language of mathematics. Suppose we wanted to 

evaluate the root of an expression to find the hypotenuse of a right triangle. In English, we would simply use the 

phrase, “evaluate the root of the expression to determine the length of the hypotenuse.” Translated into semiotic 

notation for mathematical language, it would read as follows: ℎ = √𝑎2 + 𝑏2. The notation is relatively simple in this 

example, but with a more complex expression the notation not only assumes we know what the root symbol means 

in the language of mathematics, but also how the surrounding contextual nuances affect the process of simplifying it. 

As an exercise in English to mathematics language, translate into words the following mathematical notation:  √𝑥.
3

  

Syntactically, this expression is simple translate into English, “… the third root of x.”  Semantically, it is more 

difficult to capture, which is exactly why the study of mathematics needs to be taught beyond the aspects of 

procedural fluency. Semantically, the expression means that the product of three identical factors of a number 

results in the value x. Given this semantic description, we must also understand the definition and context of the 

terms product and factors, as well as understanding that the index value of the root determines the number of times 

we must multiply our identical factors of x. 

Let us now turn our attention to some inconsistencies in translating from English to mathematics language 

using a few of the previous ideas. Some words are shared between English description and mathematical notation 

and can be translated directly from one system to the other without ambiguity. Or, as we have seen using the word 

“root,” the translations can be more difficult and require some contextual information. In a third scenario, there are 

some delimiters that are shared between the systems but have completely different meanings. In the first case, we 

might use the example, “five is greater than three.”  The phrase can easily be translated into mathematical notation, 

5 > 3. The notation > can be directly substituted for the phrase, “is greater than.” As a counterpoint, now consider 

the use of delimiters. We could make an exclamatory statement in English, “… the shoes are red!” Clearly, the 

writer is expressing excitement about the shoes being red. On the other hand, we could structure a similar phrase in 

mathematics, “… the answer is 5!” This is not an exclamatory statement, but rather, a substitution of a numeric 

answer of 120 using factorial notation. In mathematics, an exclamation point has its own meaning, which is very 

different than how it is used in a standard written system. A factorial translates into written language as the product 

of all of the numbers counting down from a given number n to 1 and including n and 1 (i.e.  n x (n-1) x (n-2) … x 4 

x 3 x 2 x 1). The mathematical notation describing a specific factorial such as 5! can be expressed as follows: 

 

5! =∏𝑛

5

𝑛=1

 

 

 

Finally, let us briefly look at an English translation of ideas that appear to be self-evident but are actually 

translated appropriately while interpreted incorrectly. Take the word “twenty” for example. This is given to equate 

to the numeric value of 20. In reality the number 20 is a notational representation of a quantity that only exists 

because of place value. That is to say the digits zero through nine are each represented by a single word. The number 

20 is also represented by the word “twenty” but the quantity of 20 is actually not a single number in the way that the 
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digits zero through nine are. The number 20, in essence, a quantity represented by two digits (mathematical letters if 

you please) and place value notation to create the equivalent of a mathematical word meaning 20. The place value 

notation of the number 20 says we have two sets of a place value worth 10 and zero sets of the place value worth 1. 

Understanding how numbers follow this rule within an algebraic system is critical to understanding how polynomial 

operations in algebra can be used to create useful expression and equations. 

 

 

Conclusion 
 

Capturing the idea of how language is used in everyday communication is tremendously difficult. It is hard 

to imagine that the 26 alphabetic symbols we use can be permuted into half a million words, which, in turn, can be 

arranged to make sentences and stories with more possible symbolic permutations than there are atoms in the known 

universe. But within all of this complexity, there are some very simple underlying mathematical structures that 

define the use of all languages including the communication aspects mathematics itself. Recall the four postulates 

that govern the syntax of written and mathematical communication. Letters and digits create the symbols we 

understand as words, numbers, and abstract expressions. Punctuation and mathematical notation help organize and 

provide nuance. Equivalent expressions can be substituted for one another in both systems to clarify meaning or 

model efficiency. Written language and mathematical language are, and will remain, interdependent. Recall also that 

the mathematical processes of substitution and simplification are designed to reduce ambiguity and misinterpretation 

in the transmission and presentation of ideas. Finally, consider that vocabulary and symbolic notation is not 

universally defined between these two interdependent communication systems. These concepts are important to 

remember in the instruction of both subjects. As mathematics teachers strive to define mathematical processes, it 

may be effective to consider drawing parallels to how students communicate in written English. As language 

teachers try to reinforce the idea of clarity in their students’ writing, they can draw parallels to simple mathematical 

processes. At any rate, we should all reinforce what we all know about transmitting messages to solve problems, 

particularly in the modern age of texting, tweeting, and emailing where abbreviations, shorthand, and colloquial 

symbolism reign supreme. 
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