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Electronic properties of NaCdF3: A first-principles prediction

Chun-gang Duan,1,* W. N. Mei,1 Jianjun Liu,1,2 Wei-Guo Yin,1 J. R. Hardy,1,2 R. W. Smith,3 M. J. Mehl,4 and L. L. Boyer4
1Department of Physics, University of Nebraska at Omaha, Omaha, Nebraska 68182-0266, USA

2Department of Physics and Center for Electro-Optics, University of Nebraska at Lincoln, Lincoln, Nebraska 68588, USA
3Department of Chemistry, University of Nebraska-Omaha, Nebraska 68182-0109, USA

4Center for Computational Materials Science, Naval Research Laboratory, Washington, D.C. 20375-5345, USA
~Received 27 October 2003; published 8 January 2004!

Based on first-principles total energy calculations, we predict that NaCdF3 could be formed in a ferroelectric
crystal structure. Using a symmetry guided search with structure optimization, we found two ferroelectric
structures, nearly degenerate in energy, competing for the ground state: a rhombohedral structure with space
group R3c and an orthorhombic structure with space groupPna21. The energies of both structures are
'60 meV lower than the sum of those of the constituents, NaF and CdF2, implying chemical stability.

DOI: 10.1103/PhysRevB.69.033102 PACS number~s!: 77.84.2s, 71.20.2b, 71.15.Nc

Perovskite and perovskitelike crystal structures are preva-
lent in many areas of scientific and technological importance.
This is especially true in the area of ferroelectrics where
oxide perovskites dominate applications in electronics and
optics. While halide-based perovskites form an interesting
class of materials, with many structural instabilities, until
now, only one, NaCaF3 has been predicted to have a ferro-
electric ground state.1 Results of subsequent calculations2

and the lack of success in forming this compound experi-
mentally, indicate the components NaF and CaF2 have suffi-
ciently lower energy to prohibit compound formation by
standard methods. Fabrication of new halide-based ferroelec-
trics is of general scientific interest because they are rare and
may be desirable for certain applications in technology. The
nonperovskite fluoride, BaMgF4, has been considered for
use in nonvolatile memories because of its low fatigue rate.3

The oxide, LiNbO3, finds many applications owing to its
nonlinear optical properties. The fluoride compounds consid-
ered here have structures isomorphous with LiNbO3, but
with a much larger band gap, which would allow compo-
nents to operate at much higher frequencies.

In this Brief Report we revisit NaCaF3 and consider an-
other compound, NaCdF3, which, as we will see, has pre-
dicted properties similar to those of NaCaF3, but with more
favorable energetics for compound formation. We explore
the candidate structures for these hypothetical compounds
using a two stage method. In the first stage, we do an ap-
proximate calculation of the ‘‘instability tree.’’ Specifically,
an approximate density-functional theory~DFT! based
model, capable of rapid total energy calculations, is applied
to compute the instabilities of the undistorted cubic perov-
skite structure. Here we use an automated procedure to fol-
low the instabilities to lower symmetry structures that are
isotropy subgroups of the parent group.4 All symmetry points
of the Brillouin Zone are considered. The process is repeated
for the new parent groups, etc., until we find all stable struc-
tures that resulted originally from instabilities of the cubic
perovskite structure. In the final stage, we further relax and
refine the approximate structures using a highly accurate
DFT method. The same accurate DFT method is applied to

the constituent compounds NaF and CdF2 (CaF2) for com-
parison with total energy results for NaCdF3 (NaCaF3).

Several alkaline cadmium fluoride compoundsMCdF3

(M5K, Rb, Cs, Tl! have been synthesized experiment-
ally,5–7 however none of them exhibit ferroelectricity. Let us
consider the possibility that NaCdF3 would be ferroelectric
in the context of the tolerance factor of perovskite com-
poundsABX3,8 t5(RA1RX)/A2(RB1RX), whereRA , RB ,
and RX are the effective ionic radii ofA, B, andX, respec-
tively, andt51 is regarded the most stable perovskite struc-
ture from purely geometrical point of view. Adopting the
Shannon radii,9 we find the t value of NaCdF3 ~0.84! is
much smaller than those ofMCdF3 (M5K, Rb, Cs, Tl! and
very close to that of NaCaF3 ~0.83!. This implies that it is
relatively easier to distort NaCdF3 from the ideal cubic struc-
ture, which has higher symmetry and no polarization, to a
structure with much less symmetry. The trend oft values for
these compounds correlates with their structural phase tran-
sitions and lack thereof. Specifically, KCdF3 (t50.92) has
three phase transitions7 (Pm3m→P4/mbm→Pbnm
→Pbn21). As the value gets higher, it is found that there
exist small distortions at low temperature in RbCdF3 (t
50.98) and TlCdF3 (t50.94), but no distortion was ob-
served in CsCdF3 (t51.00).7 A similar trend is seen for the
MCaF3 (M5K, Rb, Cs! compounds.10–13

Previous studies14–16 have shown that the structural and
vibrational properties ofMCaF3 are rather well predicted by
the electron-gas model of Gordon and Kim~GK!.17 How-
ever, when anions overlap with cations having filledd shells,
as in NaCdF3, the GK model significantly overestimates the
repulsive force—in this case, between Cd and F. Thus, for
Cd-F interactions we scale the repulsive part of the GK po-
tential, i.e., that arising from the Thomas-Fermi approxima-
tion for electronic kinetic energy, by an amount~0.86! cho-
sen to give the experimental lattice constant of CdF2. The
instability trees obtained using the GK models for NaCdF3
and NaCaF3 are summarized as follows. First of all, the re-
sults for both compounds are qualitatively the same. In each
case, the two lowest-energy structures originate from the
most unstable mode of the cubic structure, which hasR5
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symmetry. One branch leads to a stable crystal with space
group R3c and involves theG2

2 ferroelectric instability of

the R3̄c structure. Another branch leads to a stable crystal
with Pna21 symmetry and involves aG4

2 ferroelectric insta-
bility of the Pnma structure, preceded by anX4

2 instability
of the Imma structure. The GK models find theR3c struc-
ture 12 and 15 meV lower in energy than thePna21 struc-
ture for NaCdF3 and NaCaF3, respectively, and the energy of
the constituent compounds are 295 and 204 meV per formula
unit below theR3c energies, respectively. A third branch
originating from the second most unstable mode (M2

1 sym-
metry! was considered and found to lie;125 meV above
the R3c structures.

Ab initio band structure and total energy calculations were
carried out for NaCdF3 and NaCaF3 in three space groups,

R3c, Pbn21, andIm3 using the FLAPW method18 and the
GGA.19 The factor RKmax is set to be 9. The upper limit of
the angular momentuml max510 is adopted in the spherical-
harmonic expansion of the Kohn-Sham functions inside the
atom spheres. Twentyk points in the irreducible part of the
Brillouin zone are used in the self-consistent calculation. The
convergence obtained is up to 0.1 meV of the total energy.
The same methods were applied to calculate total energies
for NaF, CaF2, and CdF2. Based on our tests on RKmax, we
are able to set an uncertainty of610 meV on our calculated
energies.

The relaxed structures and total energies are listed in
Tables I and II. TheIm3 structure, originating from the sec-
ond most unstable mode (M2

1 symmetry! of the cubic per-
ovskite structure, has substantially higher energy than the

TABLE I. Predicted structure parameters for compounds considered in this paper. GK model values are identified, where appropriate, by
parentheses. Lattice parameter lengths are in Bohr and angles are in degrees.

Space Lattice Wyckoff Coordinates
Compound Group parameters notation x y z atom

NaF Fm3m a58.88(8.75)
CaF2 Fm3m a510.41(10.17)
NaCaF3 R3c r511.74(11.38) a 0.289~0.285! 0.289~0.285! 0.289~0.285! Na

b556.17(56.88) a 0~0! 0~0! 0~0! Ca
b 0.879~0.875! 0.617~0.623! 0.212~0.217! F

NaCaF3 Pna21 a511.42(11.10) a 0.964 0.495 0.770 Na
b511.17(10.85) a 0.520 0.500 0.003 Ca
c516.05~15.60! a 0.148 0.334 0.551 F

a 0.724 0.199 0.921 F
a 0.071 0.878 0.747 F

NaCdF3 R3c r511.60(11.42) a 0.286 0.286 0.286 Na
b556.81(56.81) a 0 0 0 Ca

b 0.878 0.619 0.215 F
NaCdF3 Pna21 a511.31(11.12) a 0.966 0.496 0.772 Na

b511.06(10.88) a 0.524 0.500 0.003 Ca
c515.93~15.61! a 0.139 0.338 0.549 F

a 0.730 0.201 0.916 F
a 0.076 0.875 0.746 F

TABLE II. Calculated energies for the instability tree structures of NaBF3 relative to the energy of the
constituent compounds: specifically,E(NaBF3)-E(NaF)-E(BF2), whereB5Ca or Cd, in units of meV. GK
model results are shown in parentheses.

Tree 1 Tree 2 Tree 3
Compound Group Mode Energy Group Mode Energy Group Mode Energy

NaCaF3 Pm3m R5
2 889~930! Pm3m R5

2 889~930! Pm3m M2
1 889~930!

R3̄c G2
2 205~282! Imma X4

2 —~304! Im3 G4
2 —~354!

R3c 146~204! Pnma G4
2 157~227! Imm2 —~332!

Pna21 131~219!
NaCdF3 Pm3m R5

2 792~1087! Pm3m R5
2 792~1087! Pm3m M2

1 792~1087!

R3̄c G2
2 75~384! Imma X4

2 —~408! Im3 G4
2 130~463!

R3c -59~295! Pnma G4
2 216~321! Imm2 113~437!

Pna21 252~308!
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other two structures, so we do not consider it to be a candi-
date for the ground state. The FLAPW calculations using GK
structure parameters give lower total energies, relative to the
combined total energy of the constituent compounds, than
the corresponding GK values. Relaxation of the lattice pa-
rameters rendered significantly lower energies. On the other
hand, the GK model Wyckoff parameters were found to be
already very near the minimum energy values. For both com-
pounds the relaxed Wyckoff parameters agree with those of
the GK model to within;0.01. Compare values in Table I
for NaCaF3 in the R3c structure. We did not attempt more
precise refinements for the remaining compounds/structures.
For NaCdF3, the total energy of the rhombohedral phase is
lower than that of the orthorhombic phase by only 7 meV per
formula unit. Considering the accuracy of our method, either
structure could be the ground state.

In Fig. 1 we show the calculated energy band structures
for the two phases of NaCdF3. The theoretical energy gaps
of the rhombohedral and orthorhombic phases are 3.6 and
3.4 eV at theG point, respectively. Partial density of states
analysis reveal quite similar pictures of both band structures:
the upper part of the valence states consists mainly of the F
2p electron states. The Cd 4d electron states lie around
25 eV of the valence bands. The bottom of conduction
bands is dominated by Cd 5s states and F 2p electron states.
The Na 3s electron states appear apparently only from 8 eV
above the Fermi level. It shows that the interaction between
Cd21 and F2 ions is much larger than that between Na1 and
F2 ions. The valence-band dispersion is small compared to
the case of LiNbO3.20

The rhombohedral phases of NaCaF3 and NaCdF3 have
the same symmetry as the LiNbO3 structure. Thus we apply
the same method to compute the electronic structure and
lattice parameters of LiNbO3, as well as NaF, CaF2 , CdF2,
for comparison with available experimental results~Table
III !. We see the calculated lattice constants agree well with
observations. Discrepancies are within 2%. Of the three
perovskite-type compounds, LiNbO3 has the smallest lattice
constants, whereas NaCaF3 has the largest. The close agree-
ment between the theoretical and experimental lattice con-
stants of LiNbO3 supports our prediction of the theoretical
structure of NaCdF3.

We found that the total energies of both structures of
NaCdF3 are about 60 meV per formula unit lower than the
sum of that of the constituents. This renders the fabrication
of NaCdF3 more promising than that of NaCaF3. The calcu-
lated energy gaps of NaF and CdF2 are much lower than
experimental values, consistent with the common trend in
density-functional methods of underestimating the energy
gap. By adjusting accordingly for this expected error, we
estimate the experimental energy gap for NaCdF3 would be
around 8.5 eV.

We have applied the self-consistent atomic deformation
~SCAD! method27 to determine monopole and dipole mo-
ments of ions in the predicted ferroelectric structures of
NaCaF3 and NaCdF3. The SCAD eigenvalues compare fa-
vorably with the band structure. The predicted monopole
moments are the full ionic charges, and these do not change
when the structures are distorted from paraelectric to ferro-

electric. Thus the change in polarization is simply given by
the sum of contributions from monopole displacements and
the induced dipole moments.28 Since the F2 ion is not very
polarizable, a reflection of the fact that the fluorine bands
have low dispersion, polarization values for the ferroelectric
structures are dominated by the monopole displacement con-
tributions. Dipolar contributions are only a few percent of
the total and in the direction to reduce the total polarization.
Specifically, we find 0.23 C/m2 for NaCdF3 in the R3c
structure and 0.11 C/m2 in thePna21 structure. For NaCaF3
the corresponding values are 0.26 and 0.10 C/m2. For com-
parison, we have applied this method to compute the polar-

FIG. 1. Calculated band structures of NaCdF3: ~a! rhombohe-
dral phase,~b! orthorhombic phase.
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ization LiNbO3 using the experimental structure. Again, the
monopole charges are the full ionic values. We find a ferro-
electric polarization of 0.77 C/m2, in good agreement with
the room temperature value~0.71!.29 However, in this case
the dipolar contributions are about 20% of the total and serve
to enhance the monopole contribution.

In conclusion, ourab initio calculations predict that
NaCdF3 could be formed in a ferroelectric structure having
an energy substantially lower than its constituents. We esti-
mate an experimental energy gap of about 8–9 eV at theG

point. This indicates that this compound might be a good
candidate for a frequency conversion material working in the
ultraviolet region.

This work was supported by the Nebraska Research Ini-
tiative, the Nebraska-EPSCoR-NSF Grant No. EPS-9720643
and Department of the Army Grants Nos. DAAG 55-98-1-
0273 and DAAG 55-99-1-0106. Work at the Naval Research
Laboratory was supported by the Office of Naval Research.
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