
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

2-2014

Relating Constraint Answer Set Programming Languages and Relating Constraint Answer Set Programming Languages and

Algorithms Algorithms

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Lierler, Yuliya, "Relating Constraint Answer Set Programming Languages and Algorithms" (2014).
Computer Science Faculty Publications. 11.
https://digitalcommons.unomaha.edu/compscifacpub/11

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/11?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F11&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Relating Constraint Answer Set Programming

Languages and Algorithms

Yuliya Lierler

Department of Computer Science
The University of Nebraska at Omaha

6001 Dodge Street
Omaha, NE 68182

Abstract

Recently a logic programming language AC was proposed by Mellarkod et
al. (2008) to integrate answer set programming and constraint logic pro-
gramming. Soon after that, a clingcon language integrating answer set
programming and finite domain constraints, as well as an ezcsp language
integrating answer set programming and constraint logic programming were
introduced. The development of these languages and systems constitutes the
appearance of a new AI subarea called constraint answer set programming.
All these languages have something in common. In particular, they aim at
developing new efficient inference algorithms that combine traditional answer
set programming procedures and other methods in constraint programming.
Yet, the exact relation between the constraint answer set programming lan-
guages and the underlying systems is not well understood. In this paper we
address this issue by formally stating the precise relation between several
constraint answer set programming languages – AC , clingcon, ezcsp – as
well as the underlying systems.

Keywords: (Constraint) answer set programming, constraint satisfaction
processing, satisfiability modulo theories

1. Introduction

Constraint answer set programming (CASP) is a novel, promising direc-
tion of research whose roots can be traced back to propositional satisfiability
(SAT). SAT solvers are efficient tools for solving Boolean constraint satis-
faction problems that arise in different areas of computer science, including

Preprint submitted to Artificial Intelligence October 28, 2013

software and hardware verification. Answer set programming (ASP) extends
computational methods of SAT using ideas from knowledge representation,
logic programming, and nonmonotonic reasoning. As a declarative program-
ming paradigm, it provides a rich, and yet simple modeling language that,
among other features, incorporates recursive definitions. Satisfiability mod-
ulo theories (SMT) extends computational methods of SAT by integrating
non-Boolean symbols defined via a background theory in other formalisms,
such as first order theory or a constraint processing language. The key ideas
behind such integration are that (a) some constraints are more naturally
expressed by non-Boolean constructs and (b) computational methods devel-
oped in other areas of automated reasoning than SAT may complement its
technology in an effective manner processing these constraints.

Constraint answer set programming draws on both of these extensions
of SAT technology: it integrates answer set programming with constraint
processing. This new area has already demonstrated promising results, in-
cluding the development of the CASP solvers acsolver [1] (Texas Tech
University), clingcon1 [2, 3] (Potsdam University, Germany), ezcsp2 [4]
(KODAK), idp3 [5] (KU Leuven). These systems provide new horizons to
knowledge representation as a field by broadening the applicability of its com-
putational tools. CASP not only provides new modeling features for answer
set programming but also improves grounding and solving performance by
delegating processing of constraints over large and possibly infinite domains
to specialized systems. The origins of this work go back to [6, 7].

Drescher and Walsh [8, 9] (inca, NICTA, Australia), Liu et al. [10]
(mingo, Aalto University, Finland) took an alternative approach to tack-
ling CASP languages — a translational approach. In the former case, the
CASP programs are translated into ASP programs (Drescher and Walsh pro-
posed a number of translations). In the latter, the program is translated into
integer linear programming formalism. The empirical results demonstrate
that this is also a viable approach towards tackling CASP programs.

The general interest towards CASP paradigms illustrates the importance
of developing synergistic approaches in the automated reasoning community.
To do so effectively one requires a clear understanding of the important fea-

1http://www.cs.uni-potsdam.de/clingcon/
2http://marcy.cjb.net/ezcsp/index.html
3http://dtai.cs.kuleuven.be/krr/software/idp

2

tures of the CASP-like languages and underlying systems. Current CASP
languages are based on the same principal ideas yet relating them is not
a straightforward task. One difficulty lies in the fact that these languages
are introduced together with a specific system architecture in mind that
rely on various answer set programming, constraint satisfaction processing,
constraint logic programming, and integer linear programming technologies.
The syntactic differences stand in the way of clear understanding of the key
features of the languages. For example, the only CASP language that was
compared to its earlier sibling was the language ezcsp. Balduccini [4] for-
mally stated that the ezcsp language is a special case of AC . Relating CASP
systems formally is an even more complex task. The variations in underlying
technologies complicate clear articulation of their similarities and differences.
For instance, the main building blocks of the CASP solver acsolver [1] are
the ASP system smodels [11] and sicstus Prolog4. The technology be-
hind clingcon [2, 3] is developed from the ASP solver clasp [12] and the
constraint solver gecode [13]. In addition, the CASP solvers adopt differ-
ent communication schemes among their heterogeneous solving components.
For instance, the system ezcsp relies on blackbox integration of ASP and
CSP tools in order to process the ezcsp language [4]. Systems acsolver
and clingcon promote tighter integration of multiple automated reasoning
methods.

The broad attention to CASP suggests a need for a principled and general
study of methods to develop unifying terminology and formalisms suitable to
capture variants of the languages and solvers. This work can be seen as a step
in this direction. First, it presents a formal account that illustrates a precise
relationship between the languages of acsolver, clingcon, and ezcsp.
Second, it formally relates the systems that take a hybrid approach to solving
in CASP. In particular, it accounts for systems acsolver, clingcon, and
ezcsp.

Usually backtrack search procedures (Davis-Putnam-Logemann-Loveland
(DPLL)-like procedures [14]), the backbone of CASP computational meth-
ods are described in terms of pseudocode. In [15], the authors proposed an
alternative approach to describing DPLL-like algorithms. They introduced
an abstract graph-based framework that captures what the states of compu-
tation are and what transitions between states are allowed. This approach

4http://www.sics.se/isl/sicstuswww/site/index.html

3

allows us to model a DPLL-like algorithm by a mathematically simple and
elegant object, a graph, rather than a collection of pseudocode statements.
We develop a similar abstract framework for performing precise formal anal-
ysis on relating the constraint answer set solvers acsolver, clingcon, and
ezcsp. Furthermore, this framework allows an alternative proof of correct-
ness of these systems. This work clarifies and extends state-of-the-art devel-
opments in the area of constraint answer set programming and, we believe,
will promote further progress in the area.

More on Related Work: Another direction of work related to the de-
velopments in CASP is research on HEX-programs [16]. These programs
integrate logic programs under answer set semantics with external computa-
tion sources via external atoms. They were motivated by the need to interface
ASP with external computation sources, for example, to allow the synergy of
ASP and description logic computations within the context of the semantic
web. CASP has a lot in common with HEX-programs. System dlvhex5 [17]
computes models of such programs. It allows defining plug-ins for inference
on external atoms and as such can be used as a general framework for de-
veloping CASP solvers (but it does not provide any specific computational
mechanism by default).

Heterogeneous nonmonotonic multi-context systems [18] is another for-
malism related both to CASP and HEX-programs. CASP and HEX-programs
can be seen as one of the possible incarnations of a special case of multi-
context systems. Multi-context systems provide a more general formalism
where “contexts” written in different logics relate with each other via bridge
rules. Intuitively, CASP provides two contexts: one in the language of answer
set programming and another one in the language of constraint program-
ming. Yet, the bridge rules are of extremely simplistic nature in CASP, in
particular, they relate atoms in a logic program to constraints of constraint
processing.

Paper Structure: We start by reviewing AC programs introduced by Mel-
larkod et al. (2008) and the notion of an answer set for such programs. In
the subsequent section we introduce the clingcon language and formally
state its relation to the AC language. We then define a new class of weakly-
simple programs and demonstrate that the acsolver algorithm is applicable

5http://www.kr.tuwien.ac.at/research/systems/dlvhex/

4

also to such programs. We review a transition system introduced by Lier-
ler (2008, 2011) to model smodels. We extend this transition system to
model the acsolver algorithm and show how the newly defined graph can
characterize the computation behind the system acsolver. We define a
graph suitable for modeling the system clingcon and state a formal result
on the relation between the acsolver and clingcon algorithms. At last
we illustrate how the same graph may model the ezcsp system. The final
section presents the proofs of the formal results stated in the paper.

A report on some of the results of this paper has been presented at [21]
and [22]. This work extends earlier efforts by introducing a transition sys-
tem that captures advanced CASP solvers clingcon and ezcsp featuring
learning and backjumping. This paper also provides a complete account of
proofs for the formal results.

2. Review: AC Programs

A sort (type) is a non-empty countable collection of strings over some fixed
alphabet. A signature Σ is a collection of sorts, properly typed predicate
symbols, constants, and variables. Sorts of Σ are divided into regular and
constraint sorts. All variables in Σ are of a constraint sort. Each variable
takes on values of a unique constraint sort. For example, let signature Σ1

contain three regular sorts step = {0..1}, action = {a}, fluent = {f}; and
two constraint sorts time = {0..200}, computer = {1..2}; variable T , T ′ of
constraint sort time; and predicates

at(step, time) occurs(action, step) next(step, step) holds(fluent, step)
on okT ime(time) okComp(computer, time).

A term of Σ is either a constant or a variable.
An atom is of the form p(t1, . . . , tn) where p is an n-ary predicate symbol,

and t1, ..., tn are terms of the proper sorts. A literal is either an atom a or its
negation ¬a. A constraint sort is often a large numerical set with primitive
constraint relations (examples include arithmetic constraint relations like ≤).

The partitioning of sorts induces a partition of predicates of the AC lan-
guage:

• Regular predicates denote relations among constants of regular sorts;

• Constraint predicates denote primitive constraint relations on constraint
sorts;

5

• Defined predicates denote relations between constants that belong to
regular sort and constants that belong to constraint sorts; such predi-
cates can be defined in terms of constraint, regular, and defined predi-
cates;

• Mixed predicates denote relations between constants that belong to
regular sort and constants that belong to constraint sorts. Mixed pred-
icates are not defined by the rules of a program and are similar to
abducible relations of abductive logic programming [23].

For example, for signature Σ1, we define at(step, time) to be a mixed predi-
cate; occurs(action, step), on, next(step, step), holds(fluent, step) to be reg-
ular predicates; okT ime(time) and okComp(computer, time) to be defined
predicates.

An atom formed by a regular predicate is called regular. Similarly for
constraint, defined, and mixed atoms. We say that an atom is a non-mixed
atom if it is regular, constraint, or defined. For signature Σ1, atoms at(0, T)
and occurs(a, 1) are sample mixed and regular atoms respectively.

An nested program is a finite set of rules of the form

a0 ← a1, . . . , al, not al+1, . . . , not am,
not not am+1, . . . , not not an,

(1)

where a0 is ⊥ or a ground non-constraint atom, and each ai (1 ≤ i ≤ n)
is a ground non-constraint atom or symbols >, ⊥. If a0 = ⊥, we often
omit ⊥ from the notation. This is a special case of programs with nested
expressions [24]. The expression a0 is the head of a rule (1). If B denotes
the body of (1), the right hand side of the arrow, we write Bpos for the
elements occurring in the positive part of the body, i.e., Bpos = {a1, . . . , al};
Bneg for the elements occurring under single negation as failure, i.e., Bneg =
{al+1, . . . , am}; and Bneg2 for the elements occurring under double negation
as failure, i.e., Bneg2 = {am+1, . . . , an}. We frequently identify the body
of (1) with the conjunction of its elements (in which not is replaced with the
classical negation connective ¬):

a1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am ∧ ¬¬am+1 ∧ · · · ∧ ¬¬an. (2)

Similarly, we often interpret a rule (1) as a clause

a0 ∨ ¬a1 ∨ · · · ∨ ¬al ∨ al+1 ∨ · · · ∨ am ∨ ¬am+1 ∨ · · · ∨ ¬an (3)

6

(in the case when a0 = ⊥ in (1) a0 is absent in (3)). Given a program Π, we
write Πcl for the set of clauses (3) corresponding to the rules in Π.

We restate the definition of an answer set due to Lifschitz et al. (1999)
for nested programs in a form convenient for our purposes. The reduct ΠX

of a nested program Π with respect to set X of atoms is obtained from
Π by deleting each rule (1) such that X does not satisfy its body (recall
that we identify its body with (2)), and replacing each remaining rule (1)
by a0 ← Bpos where B stands for the body of (1). A set X of atoms is
an answer set of a nested program Π if it is minimal among sets of atoms
satisfying (ΠX)cl.

According to [25], a choice rule construct [11]

{a}

of the lparse6 language can be seen as an abbreviation for a rule

a← not not a.

We adopt this abbreviation in the rest of the paper. For a program that
consists of this rule both ∅ and {a} form its answer sets.

The rules and programs are called regular if the bodies of the rules do not
contain symbols > or ⊥.

An (AC) program is a finite set of rules of the form (1) where

• a0 is ⊥, a regular, or a defined atom,

• each ai, 1 ≤ i ≤ l, is a non-mixed atom if a0 is a defined atom,

• each ai, l + 1 ≤ i ≤ n, is a non-mixed atom.

We assume that any mixed atom occurring in AC program is of the restricted
form m(~r, V), where ~r is a sequence of regular constants and V is a variable.
This assumption does not impact applicability of the language but is made
for the ease of the presentation.

6http://www.tcs.hut.fi/Software/smodels/ .

7

For instance, a sample AC program over signature Σ1 follows

okComp(1, T)← T ≤ 5, on.
okComp(2, 106)← on.
okT ime(T)← T ≤ 10, okComp(1, T).
okT ime(T)← T ≥ 100, okComp(2, T).
← occurs(a, 0), at(0, T), T 6= 1, not okT ime(T).
← occurs(a, 0), at(0, T), T ≥ 110.
← occurs(a, 1), at(1, T ′), T ′ ≥ 110.
holds(f, 1)← occurs(a, 0), next(1, 0).
next(1, 0).
occurs(a, 0).
{on}.

(4)

The implementation of such language requires the declaration of the signature
Σ1 itself. In syntax proposed by Mellarkod et al. (2008) we encode the
declaration of Σ1 as follows:

time(0..200).
computer(1..2).
step(0..1).
action(a).
f luent(f).
#csort(time).
#csort(computer).
#mixed at(step, time).
#regular occurs(action, step).
#regular on.
#defined okT ime(time).
#defined okComp(computer, time).

This sample program is inspired by Example 1 in [1] that encodes a small
planning domain. It is well known that answer set programming provides
a convenient language for encoding planning problems. Yet if in a problem
actions have to be mapped to real time that is represented by a large inte-
ger domain, grounding becomes a bottleneck for answer set programming.
Mellarkod et al. illustrated how AC language allows us to overcome this
limitation in Example 1.

Mellarkod et al. [1] considered programs of different syntax than discussed
here. For instance, in [1] classical negation may precede atoms in rules. Also

8

signature Σ may contain variables of regular sort. Nevertheless, the AC
language discussed here is sufficient to capture the class of programs covered
by the acsolver algorithm.

2.1. Semantics of the AC Language

We define the semantics of AC programs by transforming a program into
a nested program using grounding. For an AC program Π over signature Σ,
by the set ground(Π) we denote the set of all ground instances of the rules in
Π. The set ground∗(Π) is obtained from ground(Π) by replacing a constraint
atom a by > or ⊥ if a is true or false respectively. A ground constraint atom
evaluates to true or false under a standard interpretations of its symbols.
For example, a constraint atom 1 = 1 evaluates to true, whereas a constraint
atom 1 6= 1 evaluates to false. It is easy to see that ground∗(Π) is a nested
program.

For instance, let ground(Π) consist of two rules

okT ime(100)← 100 > 100, okComp(2, 100).
okT ime(101)← 101 > 100, okComp(2, 101).
← occurs(a, 0), at(0, 101), 101 6= 1, not okT ime(101).

then ground∗(Π) is

okT ime(101)← ⊥, okComp(2, 100).
okT ime(101)← >, okComp(2, 101).
← occurs(a, 0), at(0, 101),>, not okT ime(101).

If we define the semantics of an AC program as the semantics of a corre-
sponding nested program ground∗(Π) then mixed atoms will never be part
of answer sets (indeed, mixed atoms never occur in the heads of the rules).
This is different from an intended meaning of these atoms that suppose to
“connect” the values of regular constants and their constraint counterpart.
We now introduce notion of a functional set composed of mixed atoms that
is crucial in defining answer sets of AC programs. We say that a sequence
of (regular) constants ~r is specified by a mixed predicate m if ~r follows the
sorts of the regular arguments of m. For instance, for program (4) a sequence
0 of constants (of type step) is the only sequence specified by mixed predi-
cate at. For a set X of atoms, we say that a sequence ~r of regular constants
is bound in X by a (constraint) constant c w.r.t. predicate m if there is an

9

atom m(~r, c) in X. A set M of ground mixed atoms is functional over the un-
derlying signature if for every mixed predicate m, every sequence of regular
constants specified by m is bound in M by a unique constraint constant w.r.t.
m. For instance, for the signature of program (4) sets {at(0, 1), at(1, 1)} and
{at(0, 2), at(1, 1)} are functional, whereas {at(0, 1)} and {at(0, 1), at(0, 2)}
are not functional sets.

Definition 1. For an AC program Π, a set X of atoms is called an answer
set of Π if there is a functional set M of ground mixed atoms of Σ such
that X is an answer set of ground∗(Π) ∪M .

For example, sets of atoms

{at(0, 1), at(1, 1), occurs(a, 0), next(1, 0), holds(f, 1)} (5)

and

{on, at(0, 0), occurs(a, 0), at(1, 1), next(1, 0), holds(f, 1)
okComp(1, 0), . . . , okComp(1, 5), okComp(2, 106),
okT ime(0), . . . , okT ime(5), okT ime(106)}

are among answer sets of (4).
The definition of an answer set for AC programs presented here is dif-

ferent from the original definition in [1] (even when we restrict our attention
to programs without doubly negated atoms), but there is a close relation
between them:

Proposition 1. For an AC program Π over signature Σ such that Π contains
no doubly negated atoms and the set S of all true ground constraint literals
over Σ, X is an answer set of Π if and only if X ∪ S is an answer set (in
the sense of [1]) of Π.

3. The clingcon Language

Consider a subset of the AC language, denoted AC−, so that any AC
program without defined atoms is an AC− program. The language of the
constraint answer set solver clingcon defined in [2, 3]7 can be seen as a
syntactic variant of the AC− language.

7The system clingcon accepts programs of more general syntax than discussed in [2]
(for instance, aggregates such as #count are allowed by clingcon).

10

We now review clingcon programs and show how they map into AC−

programs. For a signature Σ, a clingcon variable is an expression of the
form p(~r), where p is a mixed predicate and ~r is a sequence of regular con-
stants. For any clingcon variable p(~r), by p(~r)0 we denote its predicate
symbol p and by p(~r)s we denote its sequence of regular constants ~r.

We say that an atom is a clingcon atom over Σ if it has the following
form

v1 ◦ · · · ◦ vk ◦ c1 ◦ · · · ◦ cm � vk+1 ◦ · · · ◦ vl ◦ cm+1 ◦ · · · ◦ cn, (6)

where vi is a clingcon variable; ci is a constraint constant; ◦ are primitive
constraint operations (note that ◦ denotes an occurrence of an operation
so that a different operation can be used at each occurrence); and � is a
primitive constraint relation.

A clingcon program is a finite set of rules of the form (1) where (i) a0 is ⊥
or a regular atom, (ii) each ai, 1 ≤ i ≤ n, is a regular or clingcon atom. The
system clingcon accepts rules where a0 is a clingcon atom but it should
be seen as an abbreviation for the same rule with ⊥ as the head and not a0

occurring in the body.
Any clingcon program Π can be rewritten in AC− using a function ν

that maps the set of clingcon variables occurring in Π to the set of distinct
variables over Σ. For a clingcon variable v, vν denotes a variable assigned
to v by ν.

For each occurrence of clingcon atom (6) in some rule r of Π (i) add a set
of mixed atoms v0

i (v
s
i , v

ν
i) for 1 ≤ i ≤ l to the body of r, and (ii) replace (6)

in r by a constraint atom

vν1 ◦ · · · ◦ vνk ◦ c1 ◦ · · · ◦ cm � vνk+1 ◦ · · · ◦ vνl ◦ cm+1 ◦ · · · ◦ cn.

We denote resulting AC− program by ac(Π).
For instance, let clingcon program Π over Σ1 without defined predicates

consist of a single rule

← occurs(a, 0), at(0) ≥ 110. (7)

Given ν that maps at(0) to T ′, ac(Π) has the form

← occurs(a, 0), at(0, T ′), T ′ ≥ 110. (8)

The following proposition makes the relation between a clingcon program
and its AC− counterpart precise.

11

Proposition 2. For a clingcon program Π over signature Σ, a set X is a
constraint answer set of Π according to the definition in [2, 3] iff there is a
functional set M of ground mixed atoms of Σ such that X ∪M is an answer
set of ac(Π).

We demonstrated how any clingcon program can be seen as a program
in the language of AC−. There is an important class of AC programs called
safe. In fact, Mellarkod et al. [1] only considered such programs in devising
the algorithm for processing the AC programs. We will now illustrate that
given any safe AC− program, we can syntactically transform this program
into a clingcon one. Thus the languages of AC− and clingcon (for which
the solving procedures have been proposed) are truly only syntactic variants
of each other. We now define a two step transformation that first transforms
a safe AC− program into what we call a super-safe program and then into a
corresponding clingcon program.

Rule (1) is called a defined rule if a0 is a defined atom. We say that an
AC program Π is safe [1] if every variable occurring in a non defined rule
in Π also occurs in a mixed atom of this rule. In other words, any constraint
variable occurring in a non defined rule is mapped to some sequence of regular
constants ~r specified by a mixed predicate. Consider, a safe program (8). A
constraint variable T ′ of sort time maps to a regular constant 0 of sort step
specified by mixed predicate at.

An AC program Π is super-safe if Π is safe and

1. if a mixed atom m(~c,X) occurs in Π then a mixed atom m(~c,X ′) does
not occur in Π (where X and X ′ are distinct variable names),

2. if a mixed atomm(~c,X) occurs in Π then neither a mixed atomm′(~c ′, X)
such that ~c 6= ~c ′ nor a mixed atom m′(~c,X) such that m 6= m′ occurs
in Π.

For example, program (4) is super-safe. On the other hand, if we replace the
sixth rule of (4) by semantically the same rule (8) the program is not super-
safe (but safe) as both conditions 1 and 2 are violated. Intuitively, super-
safeness ensures that a constraint variable maps uniquely to some sequence of
(regular) constants ~r specified by a specific mixed predicate m and the other
way around. For instance, in program (4) constraint variable T of sort time
corresponds to regular constant 0 of sort step specified by mixed predicate
at, whereas constraint variable T ′ of sort time corresponds to constant 1 of
sort step specified by at.

12

We note that any safe AC program Π can be converted to a super-safe
program so that the resulting program has the same answer sets:

Proposition 3. For any safe AC program Π, there is a transformation on Π
that produces a super-safe AC program which has the same answer sets as Π.

Section 10 presents such a transformation.
For any super-safe AC− program Π, by con(Π) we denote a clingcon

program constructed as follows: (i) all mixed atoms in Π are dropped, (ii)
every constraint variable X is replaced by an expression m(~c) where m(~c ,X)
is a mixed atom in Π in which X occurs (given the conditions of super-
safeness we are guaranteed that there is a unique mixed atom of the form
m(~c ,X) for each constraint variable X in Π).

For instance, let AC− program Π over Σ1 (without defined predicates)
consist of a single rule (8). This program is clearly super-safe. The corre-
sponding clingcon program con(Π) is (7).

The following proposition makes the relation between a super-safe AC−

program and its clingcon counterpart precise.

Proposition 4. For a super-safe program Π over signature Σ, there is a
functional set M of ground mixed atoms of Σ such that X ∪M is an answer
set of Π iff a set X is a constraint answer set of con(Π) according to the
definition in [2, 3].

In other words, Proposition 4 suggests that the languages AC− and cling-
con are syntactic variants of each other.

4. Weakly-Simple AC Programs

To the best of our knowledge system acsolver was the first CASP solver
implemented. The correctness of the acsolver algorithm was shown for
simple AC programs.8 We start this section by reviewing simple programs.
We then define a more general class of programs called weakly-simple. In
Section 6 we present a generalization of the acsolver algorithm and state
its correctness for such programs.

8The acsolver algorithm was proved to be correct for a class of “safe canonical”
programs – a special case of simple programs. Any simple program may be converted to
a canonical program by means of syntactic transformations discussed in [1].

13

A part of the AC program Π that consists of defined rules is called a
defined part denoted by ΠD. By ΠR we denote a non-defined part of Π, i.e.,
Π \ ΠD. For program (4), the rules

okComp(1, T)← T ≤ 5, on
okComp(2, 106)← on
okT ime(T)← T ≤ 10, okComp(1, T)
okT ime(T)← T ≥ 100, okComp(2, T)

form its defined part whereas the other rules form ΠR.
We say that an AC program Π is simple if it is super-safe and its defined

part contains no regular atoms and has a unique answer set. In weakly-simple
programs that we define here we first lift the restriction that a defined part
of a program has a unique answer set. Second, weakly-simple programs
allow regular atoms in defined rules under some syntactic conditions that we
define by means of a predicate dependency graph. For any AC program Π,
the predicate dependency graph9 of Π is a directed graph that

• has all predicates occurring in Π as its vertices, and

• for each rule (1) in Π has an edge from a0
0 to a0

i where 1 ≤ i ≤ l.

Definition 2. We say that an AC program Π is weakly-simple if

• it is super-safe,

• each strongly connected component of the predicate dependency graph
of Π is a subset of either regular predicates of Π or defined predicates.

It is easy to see that any simple program is also a weakly-simple program
but not the other way around. For example, program (4) is weakly-simple
but not simple since its defined part contains a regular atom on.

5. Abstract smodels

Most state-of-the-art answer set solvers are based on algorithms closely
related to the dpll procedure [14]. Nieuwenhuis et al. described dpll by

9A similar definition of predicate dependency graph was given in [26] for programs of
more general syntax.

14

means of a transition system that can be viewed as an abstract framework
underlying dpll computation [15]. Lierler (2008, 2011) proposed a simi-
lar framework, smΠ, for specifying an answer set solver smodels following
the lines of its pseudo-code description [27]. Our goal is to design such a
framework for describing an algorithm behind acsolver. As a step in this
direction we review the graph smΠ that underlines an algorithm of smodels,
one of the main building blocks of acsolver. The presentation follows [19].

For a set σ of atoms, a record relative to σ is a list M of literals over
σ, some possibly annotated by ∆, which marks them as decision literals. A
state relative to σ is a record relative to σ possibly preceding symbol ⊥. For
instance, some states relative to a singleton set {a} of atoms are

∅, a, ¬a, a∆, a ¬a, ⊥, a⊥, ¬a⊥, a∆⊥, a ¬a⊥.

We say that a state is inconsistent if either ⊥ or two complementary
literals occur in it, e.g., a and ¬a. For example, states a ¬a and a⊥ are
inconsistent. Frequently, we identify a state M with a set of literals occurring
in it possibly with the symbol ⊥, ignoring both the annotations and the
order between its elements. In some cases we identify a set of literals with
a conjunction of its members, thus we can write M |= φ where M is a state
and |= is understood as a satisfiability relation. If neither a literal l nor
its complement l occur in M , then l is unassigned by M . For a set M of
literals, by M+ and M− we denote the set of atoms stemming from positive
and negative literals in M respectively. For instance, {a,¬b}+ = {a} and
{a,¬b}− = {b}.

If C is a disjunction (conjunction) of literals then by C we understand the
conjunction (disjunction) of the complements of the literals occurring in C.
In some situations, we will identify disjunctions and conjunctions of literals
with the sets of these literals.

By Bodies(Π, a) we denote the set of the bodies of all rules of a regular
program Π with the head a. We recall that a set U of atoms occurring in
a regular program Π is unfounded [28, 29] on a consistent set M of literals
with respect to Π if for every a ∈ U and every B ∈ Bodies(Π, a), M |= B
(where B is identified with the conjunction of its elements), or U ∩Bpos 6= ∅.

Each regular program Π determines its Smodels graph smΠ. The set of
nodes of smΠ consists of the states relative to the set of atoms occurring in Π.
The edges of the graph smΠ are specified by the transition rules presented in
Figure 1. A node is terminal in a graph if no edge leaves this node.

15

Unit Propagate:
M =⇒ M l if C ∨ l ∈ Πcl and C ⊆M
Decide:
M =⇒ M l∆ if l is unassigned by M
Fail :

M =⇒ ⊥ if

{
M is inconsistent and different from ⊥,
M contains no decision literals

Backtrack :

P l∆ Q =⇒ P l if

{
P l∆ Q is inconsistent, and
Q contains no decision literals

All Rules Cancelled :
M =⇒ M ¬a if B ∩M 6= ∅ for all B ∈ Bodies(Π, a)
Backchain True:

M =⇒ M l if

{
a← B ∈ Π, a ∈M, l ∈ B,
B′ ∩M 6= ∅ for all B′ ∈ Bodies(Π, a) \B

Unfounded :
M =⇒M ¬a if a ∈ U for a set U unfounded on M w.r.t. Π

Figure 1: The transition rules of the graph smΠ.

16

The graph smΠ can be used for deciding whether a regular program Π has
an answer set by constructing a path from ∅ to a terminal node. Following
proposition serves as a proof of correctness and termination for any procedure
that is captured by the graph smΠ.

Proposition 5. For any regular10 program Π,

(a) graph smΠ is finite and acyclic,

(b) for any terminal state M of smΠ other than ⊥, M+ is an answer set
of Π,

(c) state ⊥ is reachable from ∅ in smΠ if and only if Π has no answer sets.

6. Abstract acsolver

6.1. Query, Extensions, and Consequences

In order to present the transition system suitable for capturing acsolver
we introduce several concepts.

Given an AC program Π and a set p of predicate symbols, a set X of
atoms is a p-input answer set (or an input answer set w.r.t. p) of Π if X is
an answer set of Π∪Xp where by Xp we denote the set of atoms in X whose
predicate symbols are different from the ones occurring in p. For instance,
let X be a set {a(1), b(1)} of atoms and let p be a set {a} of predicates, then
Xp is {b(1)}. The set X is a p-input answer set of a program a(1) ← b(1).
On the other hand, it is not an input answer set for the same program with
respect to a set {a, b} of predicate symbols. Intuitively set p denotes a set
of intentional predicates [30]: The concept of p-input answer sets is closely
related to “p-stable models” in [30].

Proposition 6. For a nested program Π, a complete set X of literals, and a
set p of predicate symbols such that predicate symbols occurring in the heads
of Π form a subset of p, X+ is a p-input answer set of Π iff X is a model
of SMp[Π] (i.e., p-stable model of Π).

For a set S of literals, by SR, SD, and SC we denote the set of regular,
defined, and constraint literals occurring in S respectively. By SR,D and SD,C
we denote the unions SR∪SD and SD∪SC respectively. By At(Π) we denote

10In [19], only programs without doubly negated atoms were considered. Extension of
the results to regular programs is straightforward.

17

the set of atoms occurring in a program Π. Recall that a substitution Θ is a
finite set of the form

{v1/t1, . . . , vn/tn}

where v1, . . . , vn are distinct variables and each ti is a term other than vi.
Given a substitution Θ and a set X of literals, we write XΘ for the result of
a substitution.

For an AC program Π, a (complete) query Q is a (complete) consistent
set of literals over At(ΠD)R ∪ At(ΠR)D,C . For a query Q of Π, a complete
query E is a satisfying extension of Q w.r.t. Π if Q ⊆ E and there is a
(sort respecting) substitution γ of variables in E by ground terms so that
the result of this substitution, Eγ, satisfies the conditions

1. if a constraint literal l ∈ Eγ then l is true under the intended interpre-
tation of its symbols, and

2. there is an input answer set A of ΠD w.r.t. defined predicates of Π such
that Eγ+

R,D ⊆ A and Eγ−R,D ∩ A = ∅.

We say that literal l is a consequence of Π and Q if for every satisfying
extension E of Q w.r.t. Π, l ∈ E. By Cons(Π, Q), we denote the set of all
consequences of Π and Q. If there are no satisfying extensions of Q w.r.t. Π
we identify Cons(Π, Q) with the singleton {⊥}.

Let Π be (4) and Q be {okT ime(T), T 6= 1}. A set

{on, okT ime(T), T 6= 1}

forms a satisfying extension of Q w.r.t. Π. Indeed, consider substitutions
{T/106}. This is the only satisfying extension of Q w.r.t. Π. Consequently,
it forms Cons(Π, Q). On the other hand, there are no satisfying extensions
for a query {¬on, okT ime(T)} so that {⊥} corresponds to Cons(Π, Q).

6.2. The graph ACΠ

For each constraint and defined atom A of signature Σ, select a new
symbol Aξ, called the name of A. By Σξ we denote the signature obtained
from Σ by adding all names Aξ as additional regular predicate symbols (so
that Aξ itself is a regular atom).

For an AC program Π, by Πξ we denote a set of rules consisting of (i)
choice rules {aξ} for each constraint and defined atom a occurring in ΠR, and
(ii) ΠR whose mixed atoms are dropped, and constraint and defined atoms
are replaced by their names. Note that Πξ is a regular program.

18

Query Propagate:
M =⇒ M lξ if l ∈ Cons(Π, query(M)),

Figure 2: The transition rule Query Propagate.

For instance, let Π be (4) then Πξ consists of the rules

{T 6= 1ξ}. {T ≥ 110ξ}. {T ′ ≥ 110}. {okT ime(T)ξ}.
← occurs(a, 0), T 6= 1ξ, not okT ime(T)ξ

← occurs(a, 0), T ≥ 110ξ.
← occurs(a, 1), T ′ ≥ 110ξ.
occurs(a, 0).
holds(f, 1)← occurs(a, 0), next(1, 0).
next(1, 0).
occurs(a, 0).
{on}.

(9)

For a set M of atoms over Σξ, by M ξ− we denote a set of atoms over Σ
by replacing each name Aξ occurring in M with a corresponding atom A.
For instance, {okT ime(T)ξ, T 6= 1ξ}ξ− is {okT ime(T), T 6= 1}.

Let Π be an AC program. The nodes of the graph ACΠ are the states
relative to the set At(Πξ) ∪ At(ΠD)R of atoms.

For a state M of ACΠ, by query(M) we denote the largest subset of M ξ−

over At(ΠD)R ∪ At(ΠR)D,C . For example, for program (4) and the state M

occurs(a, 0) ¬on∆ okT ime(T)ξ
∆
,

query(M) is {¬on, okT ime(T)}.
The edges of the graph ACΠ are described by the transition rules of smΠξ

and the additional transition rule Query Propagate presented in Figure 2 We
abuse notation and identify ⊥ξ with ⊥ itself.

The graph ACΠ can be used for deciding whether a weakly-simple AC
program Π has an answer set by constructing a path from ∅ to a terminal
node:

Proposition 7. For any weakly-simple AC program Π,

(a) graph ACΠ is finite and acyclic,

19

(b) for any terminal state M of ACΠ other than ⊥, (M ξ−)+
R is a set of all

regular atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in ACΠ if and only if Π has no answer
sets.

Proposition 7 shows that algorithms that find a path in the graph ACΠ

from ∅ to a terminal node can be regarded as AC solvers for weakly-simple
programs.

Let Π be an AC program (4). Here is a path in ACΠ with every edge
annotated by the name of a transition rule that justifies the presence of this
edge in the graph:

∅ Unit Propagate
=⇒ occurs(a, 0)

Decide
=⇒ occurs(a, 0) ¬on∆ Decide

=⇒
occurs(a, 0) ¬on∆ okT ime(T)ξ

∆ Query Propagate
=⇒

occurs(a, 0) ¬on∆ okT ime(T)ξ
∆ ⊥ Backtrack

=⇒
occurs(a, 0) ¬on∆ ¬okT ime(T)ξ

Unit Propagate
=⇒

occurs(a, 0) ¬on∆ ¬okT ime(T)ξ ¬T 6= 1ξ
Unit Propagate

=⇒
occurs(a, 0) ¬on∆ ¬okT ime(T)ξ ¬T 6= 1ξ next(1, 0)

Unit Propagate
=⇒

occurs(a, 0) ¬on∆ ¬okT ime(T)ξ ¬T 6= 1ξ next(1, 0) holds(f, 1)

(10)

Since the last state in the path is terminal, Proposition 7 asserts that

{occurs(a, 0) next(1, 0) holds(f, 1)}

forms the set of all regular atoms in some answer set of Π. Indeed, recall
answer set (5).

6.3. acsolver algorithm

We can view a path in the graph ACΠ as a description of a process of
search for a set of regular atoms in some answer set of Π by applying the
graph’s transition rules. Therefore, we can characterize an algorithm of a
solver that utilizes the transition rules of ACΠ by describing a strategy for
choosing a path in this graph. A strategy can be based, in particular, on
assigning priorities to transition rules of ACΠ, so that a solver never follows
a transition due to a rule in a state if a rule with higher priority is applicable.
A strategy may also include restrictions on rule’s applications.

20

We use this approach to describe the acsolver algorithm [1, Fig.1]. The
acsolver selects edges according to the priorities on the transition rules of
the graph ACΠ as follows:

Backtrack,Fail >>
Unit Propagate,All Rules Cancelled,Backchain True >>
Unfounded >> Query Propagate⊥ >> Decide,

where by Query Propagate⊥ we denote a transition due to the rule Query
Propagate if there are no satisfying extensions of query(M) w.r.t. ΠD, i.e.,
Cons(Π, query(M)) = {⊥}. It is easy to show that Proposition 7 also holds
for subgraphs of ACΠ that are constructed by dropping all other edges due
to Query Propagate but Query Propagate⊥. Let Π be an AC program (4).
Path (10) in ACΠ does not comply with the priorities of the acsolver
algorithm. On the other hand, the path

∅ Unit Propagate
=⇒ occurs(a, 0)

Unit Propagate
=⇒ occurs(a, 0) next(1, 0)

Unit Propagate
=⇒

occurs(a, 0) next(1, 0) holds(f, 1)
Decide
=⇒

occurs(a, 0) next(1, 0) holds(f, 1) ¬on∆ Decide
=⇒

occurs(a, 0) next(1, 0) holds(f, 1) ¬on∆ okT ime(T)ξ
∆ Query Propagate

=⇒
occurs(a, 0) next(1, 0) holds(f, 1) ¬on∆ okT ime(T)ξ

∆ ⊥ Backtrack
=⇒

occurs(a, 0) next(1, 0) holds(f, 1) ¬on∆ ¬okT ime(T)ξ
Unit Propagate

=⇒
occurs(a, 0) next(1, 0) holds(f, 1) ¬on∆ ¬okT ime(T)ξ ¬T 6= 1ξ

(11)
is a valid path of acsolver. Indeed, this path respects the fact that the
transition rule Unit Propagate has a higher priority than Decide.

Mellarkod et al. (2008) demonstrated the correctness of the acsolver
algorithm for the class of safe canonical programs by analyzing the properties
of its pseudocode. Proposition 7 provides an alternative proof of correctness
for this algorithm for a more general class of weakly-simple programs that
relies on the transition system ACΠ. Furthermore, Proposition 7 encapsulates
the proof of correctness for a class of algorithms that can be described using
ACΠ. For instance, it immediately follows that the acsolver algorithm
modified to follow different priorities of transition rules is still correct.

Note that for a clingcon program Π, ac(Π) is a weakly-simple program (in
fact, it is a simple program). It follows that a class of algorithms captured
by the graph ACΠ is applicable to clingcon programs after minor syntactic

21

transformations. Nevertheless the graph ACΠ is not suitable for describing
the clingcon system. In the next section we present another graph for this
purpose.

7. Abstract clingcon

The clingcon system is based on tight coupling of the answer set solver
clasp and the constraint solver gecode. The clasp system starts its
computation by building a propositional formula called completion [31] of
a given program so that its propagation relies not only on the program
but also on the completion. Furthermore, it implements such backtracking
search techniques as backjumping, learning, forgetting, and restarts. Lier-
ler and Truszczynski (2011) introduced the transition system sml(asp)F,Π
and demonstrated how it captures the clasp algorithm. It turns out that
sml(asp)F,Π augmented with the transition rule Query Propagate is appro-
priate for describing clingcon. The graph sml(asp)F,Π extends a simpler
graph sm(asp)F,Π [32]. These extensions are essential for capturing such ad-
vanced features of clasp and clingcon as conflict-driven backjumping and
learning. In this section we start by reviewing the graph sm(asp)F,Π and
showing that augmenting it with the rule Query Propagate captures basic
clingcon algorithm implementing a simple backtrack strategy in place of
conflict-driven backjumping and learning. We call new graph conF,Π. This
abstract view on basic clingcon allows us to compare it to acsolver in
formal terms. To capture full clingcon algorithm we extend conF,Π with
the rules Backjump and Learn in a similar manner as the graph sm(asp)F,Π
was extended to the graph sml(asp)F,Π in [32].

We write Head(Π) for the set of nonempty heads of rules in a program Π.
For a clause C = ¬a1 ∨ . . . ∨ ¬al ∨ al+1 ∨ . . . ∨ am we write Cr to denote the
rule

← a1, . . . , al, not al+1, . . . , not am.

For a set F of clauses, we define F r = {Cr | C ∈ F}. For a set A of atoms,
by Π(A) we denote a program Π extended with the rules {a} for each atom
a ∈ A.

The transition graph sm(asp)F,Π for a set F of clauses and a regular pro-
gram Π is defined as follows. The set of nodes of sm(asp)F,Π consists of the
states relative to At(F ∪Π). There are five transition rules that characterize
the edges of sm(asp)F,Π. The transition rules Unit Propagate, Decide, Fail ,

22

Unfounded’ :

M =⇒M ¬a if

{
a ∈ U for a set U unfounded on M
w.r.t. Π(At(F ∪ Π) \Head(Π))

Figure 3: The transition rule Unfounded’.

Backtrack of the graph smF r∪Π, and the transition rule Unfounded’ presented
in Figure 3

Lierler and Truszczynski (2011) demonstrated how sm(asp)ED-Comp(Π),Π

models basic clasp (without conflict driven backjumping and learning) where
ED-Comp(Π) denotes clausified completion with the use of auxiliary atoms.
Formula ED-Comp(Π) exhibits an important property that Lierler and Truszczyn-
ski call Π-safe. We now extend this notion to AC programs. For an AC
program Π, a set F of clauses is Π-safe if

1. At(Πξ) ∪ At(ΠD)R ⊆ At(F),

2. F |= ¬a, for every a ∈ At(Πξ) \Head(Πξ), and

3. for every answer set X of Πξ there is a model M of F such that X =
M+ ∩Head(Πξ).

We note that, a set F of clauses is Π-safe if it is Πξ-safe according to the
“safeness” definition given in [32]. If all regular atoms in Π also occur in its

regular part, formula Πξcl is a straight-forward example of Π-safe formula.
Under the same restriction, formulas Comp(Πξ) and ED-Comp(Πξ) are also
Π-safe, where the former stands for the completion of Πξ whose formulas
are clausified in a straightforward way by applying distributivity. We refer
the reader to [32] for precise definitions of Comp(Π) and ED-Comp(Π) con-
structed from the Clark’s completion of Π [31]. We call AC programs, which
satisfy the restriction that all regular atoms in Π also occur in its regular
part, friendly. This restriction is inessential as for such atoms adding simple
constraints will turn a non friendly program into a friendly one.

We now define the graph conF,Π for AC programs that extends sm(asp)F,Π
in a similar way as ACΠ extends smΠ.

For an AC program Π and a set F of clauses, the nodes of conF,Π are
the states relative to the set At(F ∪ Πξ) ∪ At(ΠD)R. The edges of conF,Π
are described by the transition rules of sm(asp)F,Πξ and the transition rule
Query Propagate of ACΠ.

23

Proposition 8. For any weakly-simple AC program Π and a Π-safe set F
of clauses,

(a) graph conF,Π is finite and acyclic,

(b) for any terminal state M of conF,Π other than ⊥, (M ξ−)+
R ∩ At(Π) is

a set of all regular atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in conF,Π if and only if Π has no answer
sets.

For friendly programs, the algorithm behind basic clingcon is modeled
by means of the graph conED-Comp(Πξ),Π with the following priorities

Backtrack,Fail >> Unit Propagate >> Unfounded’ >>
Query Propagate >> Decide.

Proposition 8 demonstrates that the basic clingcon algorithm is applicable
not only to clingcon programs but also to a broader class of weakly-simple
AC programs.

7.1. On the Relation of acsolver and Basic clingcon

Following concept helps us to formulate the relation between ACΠ and
conF,Π precisely. An edge M =⇒ M ′ in the graph ACΠ (conF,Π) is singular
if:

• the only transition rule justifying this edge is Unfounded , and

• some edge M =⇒ M ′′ can be justified by a transition rule other than
Unfounded or Decide.

It is easy to see that due to priorities of acsolver and clingcon, singular
edges are inessential. Indeed, given that Unfounded is assigned lowest pri-
ority, the singular edges will never be followed as other transitions such as
Unit Propagate are available (see the second condition of the definition of a
singular edge).

We define AC−Π (con−F,Π) as the graph obtained by removing all singular
edges from ACΠ (conF,Π).

Proposition 9. For a friendly AC program Π, the graphs AC−Π and con−
Comp(Πξ),Π

are equal.

24

It follows that the graph con−
Comp(Πξ),Π

also provides an abstract model

of acsolver. Hence the difference between abstract acsolver and basic
clingcon algorithms can be stated in terms of difference in Π-safe formulas
Comp(Πξ) and ED-Comp(Πξ) that they are applied to.

7.2. The conlF,Π Graph

The clingcon algorithm incorporates backjumping and learning, mod-
ern techniques of dpll-like procedures. Nieuwenhuis et al. [15] provide com-
prehensive description of these techniques. We start by briefly describing the
main ideas behind them. We then proceed to defining the graph conlF,Π
that will allow us to model the clingcon algorithm featuring backjumping
and learning.

Consider a state
M0 l

∆
1 . . . l

∆
n Mn, (12)

where l∆1 . . . l
∆
n are the only decision literals. We say that all the literals of

each liMi belong to decision level i. Consider a state of the form (12) such
that the transition rule Backtrack is applicable to it. It is easy to see that
the rule Backtrack has an effect of backtracking from decision level n to level
n−1. At times, it is safe to backtrack to a decision level prior to n−1. This
process is called backjumping.

Learning technique is responsible for augmenting the database of given
clauses or logic rules in the hope that newly acquired information is instru-
mental in future search. This technique proved to be of extreme importance
to the success of modern SAT and ASP technology.

We now define the graph conlF,Π. To accommodate the fact that this
graph has to capture learning, we introduce the notion of an augmented state
that includes not only currently assigned literals but also of “learned infor-
mation”. Such learned information corresponds to newly derived constraints
that become available for future propagations. In case of clingcon these
constraints are represented as clauses. We say that a regular program Π en-
tails a clause C when for each consistent and complete set M of literals, if M+

is an answer set for Π, then M |= C. For instance, any regular program en-
tails each rule (understood as a clause) occurring in it. For an AC program Π
and a set F of clauses, an augmented state relative to F and Π is either a
distinguished state ⊥ or a pair M ||Γ where M is a record relative to the set
At(F ∪Πξ) ∪At(ΠD)R, and Γ is a set of clauses over At(F ∪Πξ) ∪At(ΠD)R
such that F |= Γ or Πξ |= Γ.

25

Unit Propagate Learn:

M ||Γ =⇒ M l||Γ if

{
C ∨ l ∈ F ∪ Πξcl ∪ Γ and
C ⊆M

Backjump:

P l∆ Q||Γ =⇒ P l′||Γ if

{
P l∆ Q is inconsistent and
F |= l′ ∨ P or Πξ |= l′ ∨ P

Learn:

M ||Γ =⇒ M || C, Γ if


every atom in C occurs in F or Πξ,
F |= C or Πξ |= C, and
C 6∈ Γ.

Figure 4: The additional transition rules of the graph conlF,Π.

For an AC program Π and a set F of clauses, the nodes of conlF,Π are
the augmented state relative to F and Π. The rules Decide, Unfounded , and
Fail of sm(asp)F,Π are extended to conlF,Π as follows: M ||Γ =⇒ M ′||Γ
(M ||Γ =⇒ ⊥, respectively) is an edge in conlF,Π justified by Decide or
Unfounded (Fail , respectively) if and only if M =⇒ M ′ (M =⇒ ⊥)
is an edge in sm(asp)F,Π justified by Decide or Unfounded (Fail , respec-
tively). The other transition rules of conlF,Π are presented in Figure 4. The
transition rule Backjump describes the essence of backjumping procedure
that replaces backtracking. The rule Learn captures the essence of learning
in terms of hybrid constraint answer set solvers exemplified by clingcon.
The rule Unit Propagate Learn is a modification of the transition rule Unit
Propagate in conF,Π. This modification addresses the effect of learning. In-
deed, this unit propagate derives atoms not only from given F and Π (that
are identical in all sets of states in conlF,Π), but also from a set of learnt
clauses Γ that depends on a particular state in conlF,Π. We refer to the
transition rules Unit Propagate Learn, Unfounded’ , Backjump, Decide, and
Fail of the graph sml(asp)F,Π as basic. We say that a node in the graph is
semi-terminal if no rule other than Learn is applicable to it. We omit the
word “augmented” before “state” when this is clear from a context.

The graph conlF,Π can be used for deciding whether a weakly-simple AC
program Π has a model in the following sense.

Proposition 10. For any weakly-simple AC program Π and a Π-safe set F

26

of clauses,

(a) every path in conlF,Π contains only finitely many edges justified by
basic transition rules,

(b) for any semi-terminal state M ||Γ of conlF,Π reachable from ∅||∅, (M ξ−)+
R∩

At(Π) is the set of all regular atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅||∅ in conlF,Π if and only if Π has no
answer sets.

On the one hand, Proposition 10 (a) asserts that if we construct a path
from ∅||∅ so that basic transition rules periodically appear in it then some
semi-terminal state is eventually reached. On the other hand, parts (b)
and (c) of Proposition 10 assert that as soon as a semi-terminal state is
reached the problem of deciding whether Π has an answer set is solved. In
other words, Proposition 10 shows that the graph conlF,Π gives rise to a
class of correct algorithms for computing answer sets for weakly-simple AC
programs. It gives a proof of correctness to every CASP solver in this class
and a proof of termination under the assumption that basic transition rules
periodically appear in a path constructed from ∅||∅.

Nieuwenhuis et al. 2006 proposed transition rules to model such tech-
niques as forgetting and restarts. The graph conlF,Π can easily be extended
with such rules.

7.3. clingcon algorithm

The algorithm behind clingcon is modeled by means of the graph
conlED-Comp(Πξ),Π with the following priorities

Backjump(Learn),Fail >> Unit Propagate Learn >> Unfounded’ >>
Query Propagate >> Decide.

By Backjump(Learn) we denote the fact that learning occurs in clingcon
every time backjump occurs. Proposition 10 demonstrates that the cling-
con algorithm is applicable not only to clingcon programs but also to a
broader class of weakly-simple AC programs.

27

8. The ezcsp Language and Algorithm

Balduccini [4] demonstrated that the ezcsp language may be seen as a
subset of the AC language. In fact, it is a subset of the AC− language.
ezcsp restricts the AC− by requiring that constraint atoms occur only in
the rules whose head is symbol ⊥. The ezcsp system is based on loose
coupling of answer set solvers, e.g., smodels or clasp, and constraint logic
programming systems, e.g., sicstus Prolog. The system ezcsp treats a given
program as a regular program (with slight modifications accounting for the
special treatment of constraint atoms) and allows an answer set solver to
find an answer set. This answer set is used to form a query that is then
processed by a constraint logic programming system. This process may be
repeated. To make these ideas precise we may model the system ezcsp that
couples the answer set solver smodels and sicstus Prolog using the graph
ACΠ. The ezcsp algorithm selects edges according to the priorities on the
transition rules of ACΠ as follows:

Backtrack,Fail >>
Unit Propagate,All Rules Cancelled,Backchain True >>
Unfounded >> Decide >> Query Propagate⊥.

Note that this set of priorities highlights the difference between acsolver
and ezcsp (based on smodels) as the difference in priorities on the tran-
sitions that the systems follow. Indeed, ezcsp always follows the transition
Decide prior to exploring the transition due to Query Propagate.

Similarly, we can use the graph conlF,Π to capture the ezcsp algorithm
based on the answer set solver clasp. It will demonstrate that the difference
between clingcon and ezcsp (based on clasp) roots in the same place
as the difference between acsolver and ezcsp. The ezcsp selects edges
according to the priorities on the transition rules of conlED-Comp(Πξ),Π as
follows:

Backjump(Learn),Fail >>
Unit Propagate Learn, >>
Unfounded’ >> Decide >> Query Propagate⊥.

ezcsp always follows the transition Decide prior to exploring the transition
due to Query Propagate. Furthermore, unlike clingcon which allows Query
Propagate to propagate new atoms ezcsp uses only limited version of this
transition rule, in particular Query Propagate⊥. In other words, ezcsp may
only conclude that constraint atoms of a program are conflicting but not able
to derive any inferences from it.

28

9. Conclusions, Discussions, and Future Work

We started this paper by listing a number of CASP languages and systems
acsolver, clingcon, ezcsp, idp, inca, and mingo that recently have
come into use as an attempt to broaden the applicability of automated rea-
soning methods. Distinguishing feature of such CASP solvers as acsolver,
clingcon, ezcsp is combining the inferences stemming from traditionally
different research fields. This general interest towards hybrid solving illus-
trates the importance of developing synergistic approaches in the automated
reasoning community. A clear picture of the distinguishing features of CASP-
like languages and underlying systems is of importance in order to facilitate
further developments of the field. This is the prime focus of this work that
(a) formally states the relation between the CASP languages of acsolver,
clingcon, and ezcsp and (b) provides a systematic account on the algo-
rithmic differences between the underlying solvers. For example, one take
home lesson is that the languages of clingcon and ezcsp are the syntactic
variants of AC−. Another lesson is that despite all the technological dif-
ferences in the newly developed solvers such as acsolver, clingcon, and
ezcsp they have a lot in common. This alludes to a possibility of creating a
general-purpose platform that would assist the creation of new architectures
of CASP-like technology.

To summarize the technical contributions of this paper: we demonstrated
a formal relation between the AC and clingcon languages and the algo-
rithms behind acsolver and clingcon. We designed transition systems
ACΠ and conlF,Π for describing algorithms for computing (subsets of) an-
swer sets of weakly-simple AC programs. We used these graphs to specify
the acsolver, clingcon and ezcsp algorithms. Compared with traditional
pseudo-code descriptions of algorithms, transition systems use a more uni-
form (i.e., graph based) language and offer more modular proofs. The graphs
ACΠ and conF,Π offer a convenient tool to describe, compare, analyze, and
prove correctness for a class of algorithms. In fact we formally show the
relation between the subgraphs of ACΠ and conF,Π, namely that the graphs
AC−Π and con−Comp(Π),Π are equal. Furthermore, the transition systems for
acsolver and clingcon result in new algorithms for solving a larger class
of AC programs – weakly-simple programs introduced in this paper. Nei-
ther the acsolver nor clingcon systems, respectively, can deal with such
programs. In the future we will consider ways to use current ASP/CLP tech-
nologies to design a solver for weakly-simple programs. Work by Balduccini

29

et al. [33] is a step in that direction.
In the future we would like to uncover the precise relationship with idp,

and the translational solvers introduced in [8, 9, 10]. The idp language builds
on top of the formalism called PC(ID) [34] that is strongly related to logic
programs under answer set semantics [32]. As of this point there is no for-
mal account describing the insides of the idp system supporting a CASP
language. The translational solvers developed in [8, 9] rely on transforma-
tions from a CASP language to an ASP formalism. A graph underlying
an ASP solver (for instance, sml(asp)F,Π for the case of clasp [32]) ap-
plied to a transformation devised in [8, 9] can be used to characterize such
a solver. Even though we introduced similar graphs, ac and conl, for cap-
turing hybrid solvers these graphs are not appropriate to formally compare
translational and hybrid solvers. The transition rule Query Propagate of AC
and conl is too crude to capture the details of solving that occurs on the
side of specialized solvers (such as gecode or sicstus Prolog). To point at
exact differences between a translational solver and its hybrid counterpart
the computation done in a specialized solver has to be unfolded. The mingo
solver [10] implements CASP by translating its programs into integer linear
programs. It is an interesting direction of research to study how the technol-
ogy of integer linear programming compares to the technology of ASP and
CASP.

Acknowledgments

We are grateful to Yuanlin Zhang, Daniel Bailey, Marcello Balduccini,
Broes de Cat, Michael Gelfond, Vladimir Lifschitz, Max Ostrowski, Peter
Schueller, and Miroslaw Truszczynski for useful discussions related to the
topic of this work as well as their comments on earlier drafts of the paper.
We are in debt to the reviewers of the paper for their valuable feedback that
allowed to improve the presentation.

10. Appendix: Proofs of Formal Results

We start by introducing the necessary terminology used in [1].
A consistent set S of ground atoms over the signature Σ is called a partial

interpretation of an AC program Π if it satisfies the following conditions:

1. A constraint atom l ∈ S iff l is true under its intended interpretation;

30

2. The mixed atoms of S form the functional set w.r.t. the signature of Π.

The definition of semantics of AC program follows [1]. By replacing
“nested program” with “ground AC program”, the definition of reduct in
Section 2 is trivially extended to ground AC programs. A partial interpre-
tation S of Σ is an acc-answer set of an AC program Π if S is minimal (in
the sense of set-theoretic inclusion) among the partial interpretations of Σ
satisfying the rules of (ground(Π) ∪M)S, where M is the set of all mixed
atoms occurring in S. We note that this is a generalization of the answer
set definition presented in [1] to the case of programs with doubly negated
atoms.

Proposition 1. For an AC program Π over signature Σ and the set T of
all true ground constraint literals over Σ, X is an answer set of Π if and only
if X ∪ T is an answer set (in the sense of [1]) of Π.

Proof. Left-to-right: Let X be an answer set of Π. By definition, there is
a functional set M of ground mixed atoms such that X is an answer set of
ground∗(Π) ∪M , i.e., minimal among sets of atoms satisfying

((ground∗(Π) ∪M)X)cl. (13)

Obviously, M forms the set of all mixed atoms occurring in X.
Let the set Y of atoms be any model of (13). It is easy to see that (i)

Y ∪ T is a partial interpretation, and (ii) Y ∪ T satisfies

((ground(Π) ∪M)X∪T)cl. (14)

Indeed, from the construction of (13) and (14) it immediately follows that
we obtain (13) from (14) by replacing every atom from T with >. Thus
Y ∪ T satisfies (14) iff Y satisfies (13). It follows that X ∪ T is a minimal
partial interpretation satisfying (14) (since X is minimal among sets of atoms
satisfying (13)) and hence is an acc-answer set of Π.

Right-to-left. Let X ∪ T be an acc-answer set of Π. By M we denote the
set of all mixed atoms occurring in X.

Let Y ∪ T be any partial interpretation satisfying (14). Using the argu-
ment from left-to-right direction we derive that Y is a model satisfying (13).
From the fact that X ∪ T is a minimal partial interpretation satisfying (14)
(i.e., it is an acc-answer set of Π) it follows that X is a minimal model
satisfying (13).

31

A splitting set [35] for a nested program Π is any set U of atoms such
that, for every rule r ∈ Π, if Head(r) ∩ U then At(r) ∈ U . The set of rules
r ∈ Π such that At(r) ∈ U is called a bottom of Π relative to the splitting
set U and denoted by bU(Π). The set Π \ bU(Π) is the top of Π relative to U .
By eU(Π, X), we denote the program consisting of all rules obtained from Π
by replacing an atom a in U , if a ∈ X with > and ⊥ otherwise.

Proposition 11 (Splitting Set Theorem [35]). Let U be a splitting set for
a nested program Π. A set A of atoms is an answer set for Π iff A =
X ∪ Y where X is an answer set for bU(Π) and Y is an answer set for
eU(Π \ bU(Π), X).

For a set M of ground mixed atoms over Σ, by M̃ we denote the following
set of atoms

{m | m is a ground mixed atom over Σ, m 6∈M},

i.e., the set consisting of all ground mixed atoms over Σ that are not in M .

Observation 1. A set of atoms is an answer set of nested program Π if and
only if it is an answer set of the regular program constructed from Π by

• dropping the rules where ⊥ occurs in Bpos∪Bneg2 and > occurs in Bneg,

• dropping >, not ⊥, and not not > from the rest of the rules.

This observation is due to equivalent transformations on programs with nested
expressions [24].

Proposition 2. For a clingcon program Π over signature Σ, a set X is a
constraint answer set of Π according to the definition in [2, 3] iff there is a
functional set M of ground mixed atoms of Σ such that X ∪M is an answer
set of ac(Π).

Proof. It is easy to see that ac(Π) is a super-safe program (by its construction
and function V definition).

Left-to-right: Let X be a constraint answer set of Π according to the
definition in [2]. Then there is an assignment A : V [Π]→ D[Π] such that X is
an answer set of ΠA defined in [2], where V [Π] denotes the set of all clingcon
variables occurring in Π and D[Π] is a set of constraint constants. For a

32

clingcon variable c in Π, by A(c) we denote a constraint constant assigned
by A to c. Let us construct a substitution γ using A as follows: for each
clingcon variable c in Π add cV/A(c) to γ.

For a clingcon variable p(~r) by p(~r)M we denote a mixed atom p(~r, p(~r)V).
We say that such mixed atom is matching for p(~r). Let S denote the set of
matching mixed atoms constructed from all the clingcon variables occurring
in Π. It is easy to see that Sγ is a functional set of ground mixed atoms.
Let M be Sγ. We now show that X ∪M is an answer set of ac(Π). By the
definition, X ∪M is an answer set of ac(Π) if X ∪M is an answer set of

ground∗(ac(Π)) ∪M. (15)

By Proposition 11, X ∪M is an answer set of (15) iff X is an answer set of

ground∗(ac(Π)). (16)

The transformation described in Observation 1 applied to (16) will result
in ΠA. We are given that X is an answer set of ΠA. Consequently, it is an
answer set of (16).

Right-to-left: Let M be a functional set of ground atoms of Σ and X be
a set of ground atoms such that X ∪M is an answer set of ac(Π). Let V [Π]
denote the set of all clingcon variables occurring in Π. From the fact that M
is a functional set it follows that for every variable p(~r) ∈ V [Π] there is an
atom of the form p(~r, c) in M . We can construct an assignment A for V [Π]
as follows: for every variable p(~r) ∈ V [Π], A(p(~r)) = c where p(~r, c) ∈M .

By the definition of an answer set for an AC program, X ∪ M is an
answer set of (15). Furthermore, by Proposition 11, X is an answer set of
(16). From ΠA construction and it follows that the transformation described
in Observation 1 applied to (16) will result in ΠA. We are given that X is
an answer set of ΠA. Consequently, X is an answer set of ΠA and therefore
a constraint answer set of Π.

Proposition 3. For any safe AC program Π, there is a transformation
on Π that produces a super-safe AC program which has same answer sets
as Π.

Proof. In this proof, ~c always denotes a sequence of regular constants, and m
denotes a mixed predicate.

Let T denote the following transformation

33

For each sequence of constants ~c and each m such that ~c is specified by m
Associate a unique new variable with 〈m,~c〉 denoted by Y〈m,~c〉;

For each rule r of Π
Let r′ be the same as r;

For each variable X of r
Let m1(~c1, X), ...mk(~ck, X) be the mixed atoms of r
Replace mi(~ci, X) in r′ with mi(~ci, Y〈mi,~ci〉) for i ∈ 1..k;
Add Y〈m1, ~c1〉 = . . . = Y〈mi,~ci〉 to r′;
Replace each occurrence of X in r′ by Y〈m1, ~c1〉.

Let Π′ be the new program produced by the transformation T . It is easy
to see that Π′ is indeed a super safe program as a unique new variable is
associated with every pair 〈m,~c〉 and Π′ is constructed from Π to preserve
the requirements of super-safe program.

To prove that Π and Π′ have the same answer sets, let M be any func-
tional set. It is easy to see that M̃ is a splitting set of ground∗(Π) ∪ M
and ground∗(Π′) ∪ M , where the bottom of both programs is formed by
empty set of rules. By Proposition 11, it follows that a set X of atoms is an
answer set of ground∗(Π) ∪M (thus, of Π) iff X is an answer set of

eM̃(ground∗(Π) ∪M,X). (17)

Similarly, X is an answer set of ground∗(Π′) ∪M (thus, of Π′) iff it is an
answer set of

eM̃(ground∗(Π′) ∪M,X). (18)

It is easy to see that the transformation described in Observation 1 applied
to (17) and (18) results in the same program. Thus any set X of atoms is an
answer set of Π iff it is an answer set of Π′.

Proposition 4 is proved in the same spirit as Proposition 2.

We refer the reader to [30] for the review of operator SM but we state several
formal results from [30] and [26] in the form convenient for our presentation.

Proposition 12 (Special case of Theorem 1 [30]). For any nested program Π
and a complete set X of literals over At(Π), the following conditions are
equivalent

• X+ is an answer set of Π

34

• X is a p-stable model [30], where p is the list of all predicate symbols
in Π (i.e., X is a model of SMp[Π])).

Proposition 13 (Special case of Symmetric Splitting Theorem [26]). Let Π
and Π′ be nested programs and let p, q be disjoint tuples of distinct predicate
symbols. If

• each strongly connected component of predicate dependency graph of
Π ∪ Π′ is a subset of p or a subset of q,

• no atom with predicate symbols in q occurs in any head in Π,

• no atom with predicate symbols in p occurs in any head in Π′,

then SMpq[Π ∪ Π′] is equivalent to SMp[Π] ∧ SMq[Π
′].

For a set A of atoms by pred(A) we denote the set of predicate symbols of
atoms in A. We will sometime abuse the notation and use pred(Π) to denote
the set of predicate symbols occurring in program Π.

Proposition 6. For a nested program Π, a complete set X of literals, and a
set p of predicate symbols such that predicate symbols occurring in the heads
of Π form a subset of p (i.e., pred(Heads(Π)) ⊆ p), X+ is a p-input answer
set of Π iff X is a model of SMp[Π] (i.e., p-stable model of Π).

Proof. By the definition, X+ is a p-input answer set of Π iff X+ is an answer
set of Π∪X+(p). By Proposition 12, X+ is an answer set of Π∪X+(p) iff X
is a model of

SMpred(Π) pred(X+(p))[Π ∪X+(p)]. (19)

From the fact that pred(Heads(Π)) ⊆ p, it follows that

X+(p) ∩Heads(Π) = ∅,

so that atoms with predicate symbols different from p occur in the heads only
of the facts of X+(p). Consequently, by Proposition 13, (20) is equivalent to

SMpred(Π)[Π] ∧ SMpred(X+(p))[X
+(p)]. (20)

Obviously, set X is a model of the second conjunct of (20). We de-
rive that X is a model of (20) iff X is a model of SMpred(Π)[Π]. Recall
that pred(Heads(Π)) ⊆ p. By Proposition 13, the following expressions are
equivalent

35

• SMpred(Π)[Π],

• SMpred(Heads(Π))[Π],

• SMp[Π].

Weakly-simple AC programs satisfy important syntactic properties that
allow to characterize their answer sets by means of queries based on them.
The proof of Proposition 7 relies on this alternative characterization that we
make precise in Lemma 1. To state the lemma we introduce several concepts
that we rely on in the proof.

For an AC program Π, we say that a query Q is based on Π if it is a
complete and consistent set of literals over At(ΠD)R ∪ At(ΠR)D,C . If Q is a
satisfying extension of itself, then there is a substitution γ of variables in Q by
ground terms such that the result, Qγ, satisfies the conditions 1 and 2 of the
definition of satisfying extension. We say that Qγ is an interpretation of Q.
We call such queries satisfiable (i.e., queries that are satisfying extensions).

For an AC program Π and a query Q based on Π, by Π(Q) we denote a
program constructed from Π by

1. eliminating ΠD,

2. dropping removing each occurrence of a mixed atom,

3. replacing an atom a by > if a ∈ QD,C ,

4. replacing an atom a by ⊥ if ¬a ∈ QD,C ,

5. for each regular literal l ∈ QR adding a rule

• ← not l if l is an atom, and

• ← a if l is a literal ¬a.

It is easy to see that for a query Q based on an AC program Π, Π(Q) is
a nested program. For instance, let Π be program (4). A query Q consisting
of literals

{on, okT ime(T), T 6= 1}
is based on Π. Program Π(Q) follows

← occurs(a, 0), >, not >
occurs(a, 0)←
{on}
← not on.

36

Let Q1 be a query based on Π consisting of literals

{on, ¬okT ime(T), T 6= 1}.

Program Π(Q) follows

← occurs(a, 0), >, not ⊥
occurs(a, 0)←
{on}
← not on.

An expression is a term, an atom, or a rule. Given a substitution Θ and
an expression e, we write eΘ for the result of replacing vi in e by ti for every
i ≤ n.

Recall that for a set S of literals, by SR, SD, and SC we denote the set of
regular, defined, and constraint literals occurring in S respectively. By SMix

we denote a set of mixed literals occurring in S.
We call a rule (1) with a0 = ⊥ a constraint.

Lemma 1. For a weakly-simple AC program Π, Π has an answer set iff there
is a query Q based on Π such that Q is satisfiable w.r.t. Π and Π(Q) has an
answer set. Furthermore, if I is a query interpretation for Q w.r.t. Π and X
is an answer set of Π(Q) then X ∪ I+

D is a subset of some answer set of Π
such that X is the set of all regular atoms in it.

Proof. Left-to-right: Assume that Π has an answer set. Let S be a complete
and consistent set of ground11 literals over Σ such that S+ is an answer set
of Π. By the definition of an answer set, there exists a functional set M
of ground mixed atoms over Σ such that S+ is an answer set of the nested
program ground∗(Π) ∪M .

It is sufficient to construct a satisfiable query based on Π such that Π(Q)
has an answer set. We start by constructing a query Q based on Π using S.
Then we demonstrate that

(i) this Q is satisfiable w.r.t. Π, and

(ii) Π(Q) has an answer set.

11We will sometimes omit the word “ground”, when it is clear from the context.

37

Let ΠMix be a subset of ΠR that consists of all rules in ΠR whose bodies
contain mixed, defined, or constraint literals. Since Π is a weakly-simple
program and every weakly-simple program is safe, it follows that each rule
in ΠMix contains a mixed atom. From the fact that M is a functional set
of mixed atoms and Π is a weakly-simple program and hence super-safe
(see conditions 1 and 2), it follows that for each rule r in ΠMix there is
a substitution Θ such that rΘ ∈ ground(Π) so that every mixed atom m
occurring in rΘ also occurs in M ; furthermore, there is no substitution Θ′

different from Θ such that every mixed atom m occurring in rΘ′ also occurs
in M . Let us denote such rule rΘ that corresponds to r in ground(Π) by
r(ground(Π),M).

We now construct a query Q as follows.

1. Let Q contain every regular literal in SR whose atom occurs in ΠD,
2. For each rule r in ΠMix, so that by Ξ we denote the substitution such

that rΞ = r(ground(Π),M), let Q contain
(a) defined atom d, if d occurs in r and dΞ ∈ S+

D,
(b) defined literal ¬d, if atom d occurs in r and dΞ ∈ S−D,
(c) constraint atom c, if c occurs in r and cΞ is true under intended

interpretation of its symbols
(d) constraint literal ¬c, if c occurs in r and cΞ is false under intended

interpretation of its symbols.

From the query Q construction (and the fact that ΠMix consists of all rules
in ΠR whose bodies contain mixed, defined, or constraint literals) it immedi-
ately follows that Q is based on Π. Let γ be the union of Ξ for each rule r in
ΠMix such that Ξ is the substitution so that rΞ = r(ground(Π),M). From
the fact that Π is a weakly-simple program and hence super-safe and the
choice of Ξ that relies on a functional set M of mixed atoms it follows that γ
is also a substitution.

In order to demonstrate (i) and (ii) we introduce the following notation
and state additional observations. By R(Π), D(Π), Mix(Π) we denote the
set of regular, defined, and mixed predicates of Π respectively. From Propo-
sitions 12, 13 and the fact that Π is a weakly-simple program it follows that
S+ is an answer set of Π iff S is a model of

SMR(Π) Mix(Π)[ground
∗(ΠR) ∪M] ∧ SMD(Π)[ground

∗(ΠD)]. (21)

Consequently, S is a model of

SMD(Π)[ground
∗(ΠD)].

38

By Proposition 6, S+ is an input answer set of ground∗(ΠD) w.r.t. D(Π).
Hence, S+ is an input answer set of ΠD w.r.t. D(Π). This constitutes obser-
vation (a).

Similarly, S is a model of

SMR(Π) Mix(Π)[ground
∗(ΠR) ∪M]. (22)

Furthermore, from Proposition 13, (22), and the fact that mixed atoms ap-
pear in the heads only in facts in M , it follows that S is a model of

SMR(Π)[ground
∗(ΠR)].

By Proposition 6, S+ is an input answer set of ground∗(ΠR) w.r.t. R(Π).
This constitutes observation (b).

(i) We now show that Qγ is a query interpretation for a query Q w.r.t. Π.
From the Q construction (see conditions 2c and 2d) it follows that if a con-
straint literal l ∈ Qγ then l is true under the intended interpretation of
its symbols. It is left to show that there is an input answer set A of ΠD

w.r.t. defined predicates of Π, so that Qγ+
R,D ⊆ A and Qγ−R,D ∩A = ∅: Let A

be S+ and recall observation (a) and the construction of Q (see conditions 2a
and 2b).

(ii) We now show that Π(Q) has an answer set. Recall observation (b).
By the definition of an input answer set, S+ is an answer set of

ground∗(ΠR) ∪ S+
R(Π).

Recall that for a set X of atoms, by Xp we denote the set of atoms in X
whose predicate symbols are different from the ones occurring in p. It is easy
to see that S+

R(Π) = S+
D ∪S

+
Mix. In other words, ground∗(ΠR)∪S+

R(Π) is equal
to

ground∗(ΠR) ∪ S+
D ∪ S

+
Mix. (23)

It is easy to see that S+
D ∪ S

+
Mix ∪ S

−
D ∪ S

−
Mix is a splitting set of (23). By

Proposition 11, S+ \ (S+
D∪S

+
Mix) is an answer set of the program constructed

from (23) by

• eliminating facts S+
D ∪ S

+
Mix,

• replacing atom a by > if a ∈ S+
D ∪ S

+
Mix,

• replacing atom a by ⊥ if a ∈ S+
D ∪ S

+
Mix.

39

It is easy to see that the transformation described in Observation 1 applied
to such program and to Π(Q) without the constraints introduced in step 5
of Π(Q) construction results in the same program. It is easy to see that
these constraints are satisfied by S+ \ (S+

D ∪ S
+
Mix). By the Theorem on

Constraints [24] it follows that S+ \ (S+
D ∪ S

+
Mix) is an answer set of Π(Q).

Consequently, it is an answer set of Π(Q).

Right-to-left: Assume that there is a query Q based on Π such that Q is
satisfiable w.r.t. Π and Π(Q) has an answer set. We show that Π also has an
answer set.

From the fact that Q is satisfiable it follows that there is an interpretation
I for Q w.r.t. Π. By the definition of the interpretation, there is a substitution
γ such that Qγ is I itself.

By the safety condition on weakly-simple programs, any variable X that
occurs in some rule in Π also occurs in some mixed atom in this rule. Let us
define a substitution γ′ as follows: it extends the substitution γ by X/vX for
each variable X such that in every rule that X occurs in, it occurs only once;
vX is an arbitrary constant of the same sort as X (recall that sorts are non
empty). By γ′ construction, every variable in At(Π)Mix also occurs in γ′.
Let M be the ground set of mixed atoms At(Π)Mixγ

′ (i.e., for each atom
m ∈ At(Π)Mixγ

′, mγ′ ∈ M .) From the fact that Π is a super-safe program
it follows that M is a functional set over Σ.

By the definition of an answer set of an AC program, to demonstrate
that Π has an answer set, it is sufficient to show that

ground∗(Π) ∪M (24)

has the answer set. It is obvious that M ∪ M̃ is a splitting set of (24). By
Proposition 11, (24) has an answer set iff a program constructed from (24)
by dropping facts M , dropping the rules that contain mixed atoms in M̃ , and
removing atoms from M from the remaining rules. We denote this ground
program by [Π,M].

By Proposition 12, [Π,M] has an answer set iff there is a model of

SMD(Π),R(Π)[[Π,M]]. (25)

Indeed, D(Π), R(Π) form the set of all predicate symbols of a program. By
Proposition 13, (25) is equivalent to

SMR(Π)[[Π,M]R] ∧ SMD(Π)[[Π,M]D].

40

That can be equivalently rewritten as

SMR(Π)[[Π,M]R] ∧ SMD(Π)[ground
∗(ΠD)]. (26)

Consider a complete and consistent set Y of ground regular literals such
that Y + is an answer set of Π(Q). (By our assumption Y exists). By the
condition 5 of Π(Q) construction it follows that IR ⊆ Y . By the Theorem
on Constraints [24] it follows that Y + is also an answer set of the program
Π(Q)′ constructed from Π(Q) by dropping the constraints in Π(Q) derived
from the condition 5. We now note that the transformation described in
Observation 1 applied to Π(Q)′ results in a program identical to [Π,M]R.
We derive that Y + is an answer set of [Π,M]R.

From the fact that I is a query an interpretation, it follows that there is an
input answer set A of ΠD w.r.t. D(Π) such that (i) Q+

R ⊆ A, Q−R∩A = ∅ (note
that QR = IR), and (ii) I+

D ⊆ A, I−D∩A = ∅. Furthermore, by Proposition 11,
the input answer set definition and the fact that IR ⊆ Y , it follows that there
is a complete and consistent set Z of ground non-constraint literals over Σ
such that Y ⊆ Z, ID ⊆ Z, and Z+ is an input answer set of ΠD w.r.t. D(Π).
By Proposition 6, Z is a model of

SMD(Π)[ground
∗(ΠD)]. (27)

From the fact that Y + is an answer set of [Π,M]R and Proposition 12, it
follows that Y is a model of

SMR(Π)[[Π,M]R]. (28)

Since Y ⊆ Z, Z is a model of (28) also.
From (27) and (28) we derive that Z is a model of (26). Consequently Π

has an answer set.

We now establish the relation between answer sets of Πξ and Π(Q). For a
set M of atoms over Σ, by M ξ we denote a set of atoms over Σξ by replacing
each constraint and defined literal A occurring in M with a corresponding
name Aξ. For instance, {T 6= 1, acceptT ime(T)}ξ is

{T 6= 1ξ, acceptT ime(T)ξ}.

Lemma 2. For a weakly-simple AC program Π, a query Q based on Π, and
a set X of atoms over At(Π)R so that Q+

R ⊆ X, X is an answer set of Π(Q)
iff X ∪ (Q+

D,C)ξ is an answer set of Πξ.

41

Proof. By Π(Q)′ we denote a program constructed from Π(Q) by dropping
the constraints in Π(Q) derived from the condition 5. It is easy to see that set
(Q+

D,C)ξ∪ (Q−D,C)ξ is a splitting set of Πξ. The bottom part of Πξ (relevant to

this splitting set) consists of choice rules for each atom occurring in (QD,C)ξ.
It follows that (Q+

D,C)ξ is an answer set of the bottom. Let U denote (Q+
D,C)ξ∪

(Q−D,C)ξ. Note that eU(Πξ \ bU(Πξ), (Q+
D,C)ξ) coincides with Π(Q)′.

Left-to-right: Let X be an answer set of Π(Q). By the Theorem on
Constraints [24] it follows that X is also an answer set of the program Π(Q)′.
By Proposition 11, X ∪ (Q+

D,C)ξ is an answer set of Πξ.

Right-to-left: Let X∪(Q+
D,C)ξ be an answer set of Πξ. By Proposition 11,

it follows that X is an answer set of Π(Q)′. From the fact that Q+
R ⊆ X

the Theorem on Constraints [24] it follows that X is also an answer set
for Π(Q).

Proposition 7. For any weakly-simple AC program Π,

(a) graph ACΠ is finite and acyclic,

(b) for any terminal state M of ACΠ other than ⊥, (M ξ−)+
R is a set of all

regular atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in ACΠ if and only if Π has no answer
sets.

Proof. Part (a) is proved as in the proof of Proposition 1 in [19].
(b) Let M be a terminal state. Recall that smΠξ is a subgraph of ACΠ.
From Proposition 5, it follows that M+ is an answer set of Πξ. It is obvious
that query(M) forms a query based on Π, and query(M)+

R ⊆ (M ξ−)+
R. By

Lemma 2, it follows that (M ξ−)+
R is an answer set of Π(query(M)). Further-

more, since Query Propagate is not applicable we conclude that

Cons(ΠD, query(M)) ⊆M ξ−

and therefore it is different from {⊥}. Consequently, query(M) is a satisfiable
query. By Lemma 1, (M ξ−)+

R is a set of all regular atoms in some answer set
of Π.
(c) Left-to-right: Since ⊥ is reachable from ∅, there is an inconsistent state M
without decision literals such that there exists a path from ∅ to M and M
has the form:

42

Case 1. M is of the form l1 . . . ln ⊥ From Lemma 5 in [19], it follows
that any answer set of Πξ satisfies l1 . . . ln. On the other hand, ⊥ appears
in M due to the application of the transition rule Query Propagate so that
Cons(ΠD, query(l1 . . . ln)) = {⊥}. In other words there exists no satisfying
extension of query(l1 . . . ln) w.r.t. ΠD. From Lemmas 2 and 1, it follows that
Π has no answer sets.

Case 2. M is of the form l1 . . . ln where each li is an atom. From Lemma 5
in [19], it follows that any answer set of Πξ satisfies l1 . . . ln. Since l1 . . . ln is
inconsistent we conclude that Πξ has no answer sets. From Lemmas 2 and 1,
it follows that Π has no answer sets.

Right-to-left: From (a) it follows that there is a path from ∅ to some
terminal state. By (b), this state cannot be different from ⊥, because Π has
no answer sets.

Proposition 14. [32, Proposition 5] Let Π be a regular program. For every
Π-safe [32] set F of clauses, a set X of atoms is an answer set of Π if and
only if X = M+ ∩ At(Π), for some model M of [F,Π].

Proposition 15. [32, Proposition 7] For any SM(ASP) theory [F,Π],

(a) graph sm(asp)F,Π is finite and acyclic,

(b) for any terminal state M of sm(asp)F,Π other than ⊥, M is a model
of [F,Π],

(c) state ⊥ is reachable from ∅ in sm(asp)F,Π if and only if [F,Π] has no
models.

Proposition 8. For any weakly-simple AC program Π and a Π-safe set F
of clauses,

(a) graph conF,Π is finite and acyclic,

(b) for any terminal state M of conF,Π other than ⊥, (M ξ−)+
R ∩ At(Π) is

a set of all regular atoms in some answer set of Π,

(c) state ⊥ is reachable from ∅ in conF,Π if and only if Π has no answer
sets.

Proof. The proof of this proposition follows the lines of the proof of Propo-
sition 7 relying on Propositions 14 and 15.

43

Proposition 9. For a friendly AC program Π, the graphs AC−Π and
con−

Comp(Πξ),Π
are equal.

Proof. The proof of this proposition immediately follows Proposition 8 in [32]
and the fact that graphs

AC−Π and con−Comp(Π),Π

differ from
sm−Π and sm(asp)−Comp(Π),Π

graphs, respectively, by the same transition rule Query Propagate.

Proof of Proposition 10 follows the lines of the proof of Proposition 7,
Proposition 14, and Proposition 9 in [32].

References

[1] V. S. Mellarkod, M. Gelfond, Y. Zhang, Integrating answer set pro-
gramming and constraint logic programming, Annals of Mathematics
and Artificial Intelligence 53 (2008) 251–287.

[2] M. Gebser, M. Ostrowski, T. Schaub, Constraint answer set solving, in:
Proceedings of 25th International Conference on Logic Programming
(ICLP), Springer, 2009, pp. 235–249.

[3] M. Ostrowski, T. Schaub, Asp modulo csp: The clingcon system, Theory
and Practice of Logic programming (TPLP) 12 (2012) 485–503.

[4] M. Balduccini, Representing constraint satisfaction problems in answer
set programming, in: Proceedings of ICLP Workshop on Answer Set
Programming and Other Computing Paradigms (ASPOCP), https://
www.mat.unical.it/ASPOCP09/, 2009.

[5] J. Wittocx, M. Mariën, M. Denecker, The idp system: a model
expansion system for an extension of classical logic, in: Proceed-
ings of Workshop on Logic and Search, Computation of Structures
from Declarative Descriptions (LaSh), electronic, 2008, pp. 153–165.
Available at https://lirias.kuleuven.be/bitstream/123456789/

229814/1/lash08.pdf.

44

[6] I. Elkabani, E. Pontelli, T. C. Son, Smodels with clp and its applications:
A simple and effective approach to aggregates in asp, in: B. Demoen,
V. Lifschitz (Eds.), ICLP, volume 3132 of Lecture Notes in Computer
Science, Springer, 2004, pp. 73–89.

[7] S. Baselice, P. A. Bonatti, M. Gelfond, Towards an integration of answer
set and constraint solving, in: M. Gabbrielli, G. Gupta (Eds.), ICLP,
volume 3668 of Lecture Notes in Computer Science, Springer, 2005, pp.
52–66.

[8] C. Drescher, T. Walsh, Translation-based constraint answer set solving,
in: Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI), AAAI Press, 2011, pp. 2596–2601.

[9] C. Drescher, T. Walsh, A translational approach to constraint answer set
solving, Theory and Practice of Logic programming (TPLP) 10 (2011)
465–480.

[10] G. Liu, T. Janhunen, I. Niemelä, Answer set programming via mixed
integer programming, in: Principles of Knowledge Representation and
Reasoning: Proceedings of the 13th International Conference, AAAI
Press, 2012, pp. 32–42.

[11] I. Niemelä, P. Simons, Extending the Smodels system with cardinal-
ity and weight constraints, in: J. Minker (Ed.), Logic-Based Artificial
Intelligence, Kluwer, 2000, pp. 491–521.

[12] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Conflict-driven an-
swer set solving, in: Proceedings of 20th International Joint Conference
on Artificial Intelligence (IJCAI’07), MIT Press, 2007, pp. 386–392.

[13] C. Schulte, P. J. Stuckey, Efficient constraint propagation engines,
Transactions on Programming Languages and Systems (2008).

[14] M. Davis, G. Logemann, D. Loveland, A machine program for theorem
proving, Communications of the ACM 5(7) (1962) 394–397.

[15] R. Nieuwenhuis, A. Oliveras, C. Tinelli, Solving SAT and SAT modulo
theories: From an abstract Davis-Putnam-Logemann-Loveland proce-
dure to DPLL(T), Journal of the ACM 53(6) (2006) 937–977.

45

[16] T. Eiter, G. Brewka, M. Dao-Tran, M. Fink, G. Ianni, T. Krennwall-
ner, Combining Nonmonotonic Knowledge Bases with External Sources,
in: S. Ghilardi, R. Sebastiani (Eds.), 7th International Symposium on
Frontiers of Combining Systems (FroCos 2009), volume 5749 of LNAI,
Springer, 2009, pp. 18–42.

[17] T. Eiter, G. Ianni, R. Schindlauer, H. Tompits, A uniform integration of
higher-order reasoning and external evaluations in answer set program-
ming, in: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), Professional Book Center, 2005, pp. 90–96.

[18] G. Brewka, T. Eiter, Equilibria in heterogeneous nonmonotonic multi-
context systems, in: Proceedings of National conference on Artificial
Intelligence (AAAI), AAAI Press, 2007, pp. 385–390.

[19] Y. Lierler, Abstract answer set solvers, in: Proceedings of International
Conference on Logic Programming (ICLP), Springer, 2008, pp. 377–391.

[20] Y. Lierler, Abstract answer set solvers with backjumping and learning,
Theory and Practice of Logic Programming 11 (2011) 135–169.

[21] Y. Lierler, Y. Zhang, A transition system for AC language algorithms,
in: Proceedings of ICLP Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP), http://www.dbai.tuwien.
ac.at/proj/aspocp11/accepted.html, 2011.

[22] Y. Lierler, On the relation of constraint answer set programming lan-
guages and algorithms, in: Proceedings of the AAAI Conference on
Artificial Intelligence, MIT Press, 2012.

[23] A. Kakas, R. Kowalski, F. Toni, Abductive logic programming, Journal
of Logic and Computation 2 (1992) 719–770.

[24] V. Lifschitz, L. R. Tang, H. Turner, Nested expressions in logic pro-
grams, Annals of Mathematics and Artificial Intelligence 25 (1999)
369–389.

[25] P. Ferraris, V. Lifschitz, Weight constraints as nested expressions, The-
ory and Practice of Logic Programming 5 (2005) 45–74.

46

[26] P. Ferraris, J. Lee, V. Lifschitz, R. Palla, Symmetric splitting in the
general theory of stable models, in: Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), IJCAI press, 2009, pp.
797–803.

[27] P. Simons, Extending the stable model semantics with more expressive
rules, in: Logic Programming and Non-monotonic Reasoning: Pro-
ceedings Fifth Int’l Conf. (Lecture Notes in Artificial Intelligence 1730),
Springer, 1999, pp. 305–316.

[28] A. Van Gelder, K. Ross, J. Schlipf, The well-founded semantics for
general logic programs, Journal of ACM 38 (1991) 620–650.

[29] J. Lee, A model-theoretic counterpart of loop formulas, in: Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI),
Professional Book Center, 2005, pp. 503–508.

[30] P. Ferraris, J. Lee, V. Lifschitz, Stable models and circumscription,
Artificial Intelligence 175 (2011) 236–263.

[31] K. Clark, Negation as failure, in: H. Gallaire, J. Minker (Eds.), Logic
and Data Bases, Plenum Press, New York, 1978, pp. 293–322.

[32] Y. Lierler, M. Truszczynski, Transition systems for model generators
— a unifying approach., Theory and Practice of Logic Programming,
27th Int’l. Conference on Logic Programming (ICLP’11) Special Issue
11 (2011) 629–646.

[33] M. Balduccini, Y. Lierler, P. Schueller, Prolog and asp inference under
one roof, in: Proceedings of 12th International Conference on Logic
Programming and Nonmonotonic Reasoning, Springer, 2013, pp. 148–
160.

[34] M. Mariën, J. Wittocx, M. Denecker, M. Bruynooghe, SAT(ID): Sat-
isfiability of propositional logic extended with inductive definitions, in:
Theory and Applications of Satisfiability Testing, 11th International
Conference (SAT), Springer, 2008, pp. 211–224.

[35] S. T. Erdoğan, V. Lifschitz, Definitions in answer set programming,
in: V. Lifschitz, I. Niemelä (Eds.), Proceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR),
Springer, 2004, pp. 114–126.

47

	Relating Constraint Answer Set Programming Languages and Algorithms
	Recommended Citation

	tmp.1383861796.pdf.DNW9j

