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Frequency and temperature dependences of dielectric permittivity and electric modulus of pure and
Ba-doped Bi2Ti4O11 were studied in the ranges of 1021– 106 Hz and2150–350 °C, respectively.
We found that the antiferroelectric phase transition temperature of Bi2Ti4O11 decreases with Ba
doping. In the permittivity studies, we also observed dielectric relaxation peaks shift to higher
temperature with increasing frequency. Furthermore, in the electric modulus formalism, conducting
peaks were uncovered above 150 °C in addition to the dielectric relaxation peak. We discussed the
mechanisms for the dielectric relaxation and conduction processes based on TiO6 octahedra
distortion and a space-charge model. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1587685#

I. INTRODUCTION

Several compounds exist in the binary system
(Bi2O3)m– (TiO2)n .1 For example, Bi4Ti3O12 (m52,n53)
is a well-known layer-structured ferroelectric with a Curie
temperature of 675 °C.2 Bi2Ti2O7 (m51,n52) was also re-
ported to have a ferroelectric phase transition at 700 °C.1 A
diffuse ferroelectric phase transition was observed in
Bi2Ti3O9 (m51,n53) in the temperature range
200–280 °C.3 However, Bi2Ti4O11 (m51,n54) was deter-
mined to be an antiferroelectric. Subbarao first studied the
temperature dependence of the dielectric constants in
Bi2Ti4O11 at a fixed frequency (105 Hz) and found a phase
transition at 250 °C.4 Kahlenberg and Bohm investigated the
crystal structures of the room temperature phasea and the
high temperature phaseb.5 They found that thea-b phase
transition is antiferroelectric, which is induced by small dis-
placements of the Bi cations parallel and antiparallel alterna-
tively to theb axis in the TiO6 octahedral network, while Ti
and O atoms almost remain at the same positions before and
after the phase transition. The soft mode resulting from the
displacements of the Bi atoms was observed by Raman scat-
tering spectra.6

Frequency dependence of complex permittivitye* has
been studied for some compounds in the system
(Bi2O3)m– (TiO2)n . A strong low-frequency dielectric dis-
persion was observed in Bi2Ti2O7 ~Ref. 1! and Bi2Ti3O9 ,3

while Bi4Ti3O12 has several dielectric relaxation peaks be-
low 950 °C.7 It is generally accepted that the presence of

oxygen vacancies in the compounds of the system
(Bi2O3)m– (TiO2)n plays an important role to the dielectric
properties of the polycrystalline ceramics. Jovalekicet al.
reported that the accumulation of oxygen vacancies at the
surface of grains in Bi4Ti3O12 as well as at domain walls
within the grains results in a huge increase of the dielectric
permittivity due to the appearance of spatial charge
polarization.8

Since the above results were mostly on ferroelectric
compounds in the system (Bi2O3)m– (TiO2)n , it will be very
interesting to study the frequency and temperature depen-
dence of the permittivity of antiferroelectric compounds in
this system, such as Bi2Ti4O11 ~BT!. In this article we report
the temperature and frequency dependence of the dielectric
permittivity and electric modulus in BT at frequencies
1021– 106 Hz in the temperature range2150–350 °C. In or-
der to study the influence of the oxygen vacancies on the
dielectric properties of BT, we also investigated a Ba-doped
sample Ba0.02Bi1.98Ti4O11 ~BBT!. We first observed a dielec-
tric relaxation peak in the temperature dependence of the
dielectric permittivity and studied its relaxation time distri-
bution. Then, we found two peaks in the temperature depen-
dence of the electric modulus, the peak at lower temperature
was attributed to the dielectric relaxation and that at higher
temperature was associated with a conduction process. Both
processes are thermally activated following the Arrhenius
law.

In Sec. II of this article, we briefly describe the experi-
mental method. Then, in Sec. III, we report the experimental
results on the dielectric permittivity and electric modulus,
and discuss the mechanisms for the dielectric relaxation anda!Electronic mail: jliu@unlserve.unl.edu
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the conduction processes. Finally, the conclusion is in Sec.
IV.

II. EXPERIMENT

The polycrystalline samples Bi2Ti4O11 ~BT! and
Ba0.02Bi1.98Ti4O11 ~BBT! were prepared by solid state reac-
tion. The starting materials Bi2O3 , TiO2 , and BaCO3 were
dried before being weighed and mixed in an agate mortar
thoroughly. The mixtures were calcined in air at 900–
1000 °C for 20 h with intermediate grinding. The final
samples were ground into powder, checked by x-ray diffrac-
tion, and pressed into disks of 10 mm diameter. The disks
were sintered at 1100 °C for 2 h. Complex dielectric permit-
tivities were measured using a NOVOCONTROL Alpha
High Resolution Dielectric Analyzer~Alpha-S! in the tem-
perature range2150–350 °C and the frequency range
1021– 106 Hz.

III. RESULTS AND DISCUSSION

A. Antiferroelectric transition

The temperature dependence of the dielectric constant
~real part of the permittivity! e8 and dielectric loss tand of
BT and BBT at frequency 106 Hz are shown in Fig. 1.e8
slightly increases with increasing temperature below 50 °C,
then increases rapidly to its maximum at 250 and 240 °C for
BT and BBT, respectively. After that,e8 decreases with in-
creasing temperature. This anomaly is attributed to the anti-
ferroelectric phase transition observed before.5 One can see
that Ba doping reduces the phase transition temperature from
250 to 240 °C.

To explain the decrease of the antiferroelectric phase
transition temperature by Ba doping, one needs to know the
phase transition mechanism in BT. As shown in Fig. 2, the
crystal structure of BT consists of double chains of deformed
TiO6 octahedra running parallel to theb axis and interlinked

partially by edge-sharing and partially by corner-sharing.
These octahedra build up a network with channels along the
b axis in which the Bi31 ions are placed. The phase transi-
tion is induced by alternating parallel and antiparallel dis-
placements of Bi31 ions along theb direction resulting in an
antiferroelectric polarization of the low temperaturea
phase.5 The displacements of the Bi31 ions result from the
special properties of the Bi31 ions: i.e., the Bi31 ions has a
lone pair of 6s electrons beyond the closed shell. Hence the
possible hybridization of 6s and 6p orbitals makes the Bi31

ion strongly stereoactive due to the eccentric space occupied
by the associated electron cloud. In the high temperatureb
phase, the lone pair electron cloud was proposed to occupy
random orientations with respect to the octahedral
framework.9 Then, on cooling downward, the ordering of the
lone pair and the strain of the TiO6 network associated with
this ordering induce the antiparallel displacements of the
Bi31 ions along theb axis, and therefore give rise to the
lattice distortion.9 Thus the replacement of the asymmetric
Bi31 ions by spherically symmetric Bi21 ions should reduce
the distortions, i.e., the Bi21 ion, which is larger than the
Bi31 ion, symmetric, and less polarizable, tends to occupy
the center of the polyhedron and weakens the lattice distor-
tion causing the phase transition temperature to decrease.
Hence, in summary, we have demonstrated indirectly that the
phase transition in BT is associated with the displacements
of Bi31 ions along theb axis.

B. Dielectric relaxation

The temperature dependences of the dielectric permittiv-
ity e* 5e82 i e9 for various frequencies are shown in Figs. 3
and 4 for BT and BBT, respectively. At high frequency,
above 4.73105 Hz, we notice that there is a local maximum
in e8 at about 250 °C, which we believe corresponds to the
antiferroelectric phase transition as mentioned in Sec. III A.
This local maximum changes to a point of inflection due to

FIG. 1. Temperature dependence ofe8 and tand for BT ~a! and BBT~b! at
the frequency 106 Hz.

FIG. 2. Projection of the room temperature structure of Bi2Ti4O11 deviating
10° from the@010# direction, the tunnels contain the Bi cations.~This picture
was from Ref. 5.!
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the rapid increase ofe8 caused by the electrode surface po-
larization capacitance, which is much larger than the sample
capacitance.

From the imaginary parte9 of e* shown in Fig. 3~b!,
one can see that at frequencies higher than 5.13104 Hz, e9
increases monotonically from2150 to 150 °C, then a bump
appears at around 200 °C which shifts to lower temperature
as the frequency decreases. This becomes a distinct peak
below 4.53103 Hz, whose position continues to move to
lower temperatures at lower frequencies. We attribute this
behavior to a low frequency dielectric relaxation. Since the
relaxation maximum shifts monotonically to lower tempera-
tures with decreasing frequency, we could ascribe this dielec-
tric dispersion to a thermally activated process. We also no-
tice a rapid increase ofe9 above the peak, which we believe
is due to the conductivity increase of the sample.

In Figs. 5~a! and 5~b!, we presented the frequency de-
pendence ofe9 in BT and BBT, respectively. One can see a
relaxation peak shifting to high frequency with increasing

temperature. Meanwhile, on the low frequency side,e9 in-
creases rapidly as the temperature increases because of the
conductivity contribution mentioned above.

Generally, for a dielectric dispersion with a single relax-
ation time, the complex permittivity can be described by a
Debye equation,

e* ~v!5e8~v!2 i e9~v!5e`1
es2e`

11 ivt
, ~1!

wherees and e` are the low- and high-frequency values of
e8, t is the relaxation time, andv is the angular frequency.
However, we could not successfully fit the line shape in Fig.
5 by using Eq. ~1!. Hence we change to the empirical
Havriliak–Negami equation,10 which assumes a relaxation
time distribution,

e* ~v!5e8~v!2 i e9~v!5e`1
es2e`

@11~ ivt!~12a!#b , ~2!

where the parametersa and b are used to measure the de-
parture from the ideal Debye response for whicha50, b
51, and t is the mean relaxation time. We fitted the low
temperaturee9 ~below 50 °C! to Eq. ~2! with the constraints
0<a<1, (12a)b<1. At high temperature~above 50 °C!
e9 was fitted using Eq.~2! together with a conductivity con-
tribution 2 is/vs, wheres is the dc conductivity ands is the
exponent. In Fig. 5 we showed the fitted results, where the
parametera is in the range 0.5–0.8 andb lies between 1 and

FIG. 3. Temperature dependence ofe8 ~a! and e9 ~b! for BT at various
frequencies.

FIG. 4. Temperature dependence ofe8 ~a! and e9 ~b! for BBT at various
frequencies.

FIG. 5. Frequency dependence ofe9 for BT ~a! and BBT ~b! at various
temperatures. Solid lines: fitted to the Havriliak–Negami equation~see text!.
The following fitted parameters are given in the order of temperatureT, a,
andb. For BT: ~250 °C, 0.73, 1.98!; ~0 °C, 0.68, 1.91!; ~50 °C, 0.65, 1.87!;
~100 °C, 0.62, 1.78!; ~150 °C, 0.62, 1.75!; and ~200 °C, 0.67, 1.70!. For
BBT: ~250 °C, 0.76, 1.98!; ~0 °C, 0.72, 1.78!; ~50 °C, 0.64, 1.56!; ~100 °C,
0.60, 1.55!; ~150 °C, 0.57, 1.50!; and ~200 °C, 0.48, 1.30!.

2814 J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Liu et al.



2. These parameters manifest that the dielectric dispersion in
BT and BBT has a wide relaxation time distribution.

The above-mentioned broad relaxation time distribution
can be studied from another angle:11 Let g(t,T) be the
temperature-dependent distribution function for relaxation
times, then the complex dielectric constant can be expressed
as a superposition of Debye relaxations with different char-
acteristic timest ~Ref. 12!

e* 2e`5e~0,T!E g~t,T!d~ ln t!

12 ivt
, ~3!

wheree(0,T) is the low-frequency dielectric constant. Thus
the imaginary part ofe* can be written as

e95e~0,T!E g~t,T!d~vt!

11v2t2 . ~4!

For a broad relaxation time distribution functiong(t,T),
whentmin<1/v<tmax, e9(v,T) can be approximated as13

e9~v,T!.
p

2
e~0,T!gS 1

v
,TD . ~5!

Hence the spectrum of dielectric relaxation gives direct
information aboutg(1/v,T). In the limit of a broad spec-

trum, one can also obtain an important simple relation be-
tween the real and imaginary parts of the dielectric
permittivity14

e9~v,T!.2
p

2

]e8~v,T!

]~ ln v!
. ~6!

Thus adopting Eq.~6! we could calculatee9(v,T) by
usinge8(v,T) measured at different temperatures. In Fig. 6
we showed the measured values ofe9(v,T) and those cal-
culated by using the above method. One can see that they
show good agreement which verifies the early assumption
that, in the measured temperature range, the relaxation time
distributiong(1/v,T) is rather broad.

One more important issue worth emphasizing is that
based on Eq.~5!, apart from the frequency independent pref-
actor (p/2)e(0,T), e9(v,T) reflects directly the spectral
function g(1/v,T). Thus if we plot thee9(v,T) data in
scaled coordinates, i.e.,e9(v,T)/emax9 versus log(v/vm),
where vm corresponds to the frequency of the relaxation
peak in thee9 versus log(v) curve, we can deduce the shape
of the relaxation time spectrumg(1/v,T) at different tem-
peratures, as shown in Fig. 7. In view of the slight spread of
the curves, we conclude that the distribution function for

FIG. 6. Comparison of the measurede9 with the calcu-
lated e9 from Eq. ~6! at several different temperatures
for BT ~a! and BBT~b!, where the solid lines represent
the calculated results.
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relaxation times has a mild temperature dependence, its
width decreasing with increasing temperature.

After we obtain the relaxation time distributiong(t,T),
we could also determine the most probable relaxation time
tm51/vm from the position of the relaxation peak in the
e9(v,T) versus logv plots. This generally follows the
Arrhenius law:

tm5to exp~Ea /kBT!, ~7!

whereto is the prefactor andEa denotes the activation en-
ergy for dielectric relaxation. The Arrhenius law was origi-
nally developed to model dielectric properties of gases and
polar liquids, and assumes a temperature independent activa-
tion energy. In Fig. 8 we plot the measured values of lnt
versus 1/T, and the solid lines are the fitted results using Eq.
~7!. From the slopes of these straight lines we obtain activa-
tion energies of 0.33 and 0.41 eV for BT and BBT, respec-
tively. We see that Ba doping increases the activation energy,
a fact that will be discussed in Sec. III D.

C. Electric modulus

When discussing the results presented in Fig. 5, we
noted thate9 increases with temperature in the low fre-
quency region, which we attributed to a conduction process.
In order to explore this phenomenon in detail, we use the
electric modulus formalismM* for rendering.

The electric modulus is the reciprocal of the permittivity
M* 51/e* . Although it was originally introduced by
Macedo15 to study space charge relaxation phenomena,M*
representation is now widely used to analyze ionic
conductivities.16 Generally, for a pure conduction process, a
relaxation peak would be observed in the frequency spectra

of the imaginary componentM 9 and no peak would take
place in the corresponding plot ofe9. However, for a dielec-
tric relaxation process, a relaxation peak appears in both
the M* and e* representation. Comparisons of thee* and
M* representations have been used to distinguish localized
dielectric relaxation processes from long-range
conductivity.17,18

Physically, the electric modulus corresponds to the relax-
ation of the electric field in the material when the electric
displacement remains constant, so that the electric modulus
represents the real dielectric relaxation process, which can be
expressed as15

M* ~v!51/e* ~v!5M 81 iM 9

5M`F12E
0

`S 2
dF~ t !

dt Dexp~2 ivt !dtG ,
~8!

whereM`5(e`)21 is the asymptotic value ofM 8(v), and
F(t) is the time evolution of the electric field within the
material.

The temperature dependence of the electric modulusM 8
and M 9 for various frequencies is shown in Figs. 9 and 10
for BT and BBT, respectively. Both samples show a two-step
decrease inM 8 in the measured temperature range. One is in
the range of2150 to 100 °C and the other lies between 100
and 350 °C. Correspondingly,M 9 shows two peaks in the
same temperature ranges, both peaks shift to high tempera-
ture with increasing frequency. We attribute the low tempera-
ture peak to the dielectric relaxation mentioned in Sec. III B,
and the high-temperature peak to the conduction process.
Furthermore, we notice that the conduction peak in BBT

FIG. 7. Scaling behavior ofe9 at various temperature for BT~a! and
BBT ~b!.

FIG. 8. Arrhenius plot of dielectric relaxation times for BT and
BBT.

2816 J. Chem. Phys., Vol. 119, No. 5, 1 August 2003 Liu et al.



appears at a lower temperature than that of BT, which means
Ba doping decreases the activation energy of the conduction
process.

In Fig. 11 we show the frequency dependence ofM 9 at
various temperatures. We observe that two peaks appear in
M 9 above 150 °C, which shift to higher frequency with in-
creasing temperature. These peaks indicate the transition
from short range to long range mobility with decreasing fre-
quency, where the low frequency side of the peak represents
the range of frequencies in which the ions are capable of
moving long distances, i.e., performing successful hopping
from one site to the neighboring site, whereas, for the high
frequency side, the ions are spatially confined to their poten-
tial wells and can execute only localized motion.19

We derive the most probable conductivity relaxation
times tc from the peak frequencyf max in M 9 based on the
condition 2p f maxtc51, then plot their reciprocal temperature
dependencies in Fig. 12. We observe that they follow closely
the Arrhenius law@Eq. ~7!#. Based on the high temperature
data, we obtained the activation energies for conduction pro-
cesses, 1.63 and 1.24 eV for BT and BBT, respectively, while
using both high and low temperature data we deduced acti-
vation energies for dielectric relaxation of 0.33 and 0.41 eV,
respectively, which are consistent with the values obtained in
Sec. III B. We can clearly see that Ba doping increases the
activation energy of the dielectric relaxation, but decreases
that of the conduction process.

D. Mechanism for dielectric relaxation
and conduction

From studying the dielectric response, we found both
dielectric relaxation and a conduction process in BT and

BBT. As shown in Sec. III B, the dielectric relaxation has
several characteristics: first, it has a broad relaxation time
distribution with the width decreasing with increasing tem-
perature. Second, it is a thermally activated process follow-
ing the Arrhenius law with an activation energy of 0.33 eV
for BT and 0.41 eV for BBT. Third, this process persists
above the antiferroelectric phase transition temperatureTc .
All the aforementioned behaviors could be explained by the
commonly used Skanavi model.20,21To account for the origin
of a dielectric relaxation observed in Bi2O3-doped SiTiO3 ,
Skanavi suggested that the distortions of the oxygen octahe-
dra that surround the Ti ions introduced by Bi31 ions and
associated vacancies are sufficient to produce more than one
off-center equilibrium position for the Ti41 ion, and that the
observed relaxation is associated with thermally activated
motion among these equivalent minima.

The structure of Bi2Ti4O11 is formed by a framework of
distorted TiO6 octahedra, i.e., in the low temperature phase,
the individual Ti–O distance varies from 1.797 to 2.200 Å,
and the angles between the central atoms and the corners of
the octahedra show a pronounced deviation from the ideal
values 90° and 180°.5 Thus, following the reasoning of the
Skanavi model,20,21 one can assume that several potential
minima for Ti ions may exist in the distorted oxygen octahe-
dra. Therefore the dielectric relaxation described in Sec. III B
could be associated with thermally activated motion of Ti
ions hopping among them. Since these distortions persist
above the antiferroelectric phase transition,5 one expects to
observe the dielectric relaxation aboveTc as well. Further-
more, there are two crystallographic inequivalent symmetry
positions Ti~1! and Ti~2! in the crystal lattice, which are co-

FIG. 10. Temperature dependence ofM 8 ~a! andM 9 ~b! for BTT at various
frequencies.

FIG. 9. Temperature dependence ofM 8 ~a! and M 9 ~b! for BT at various
frequencies.
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ordinated by octahedra with different distortions,5 and in
each of them, different potential minima for the Ti ions will
have different strengths. Hence the hopping of Ti ions among
these minima results in a broad relaxation time distribution.
In addition, at high temperature, the more thermally excited
Ti ions, which carry higher kinetic energy than some poten-
tial wells, hop less discriminately among all these potential
minima, thus reducing the relaxation time distribution.

As for the activation energy increase from 0.33 eV in BT
to 0.41 eV in BBT, we attribute that to additional distortion
of the oxygen octahedra caused by oxygen vacancies intro-
duced by replacing Bi31 ions by Ba21 ions. The electrical
imbalance caused by the divalent Ba ion substituting for the
trivalent Bi ions is compensated for by the creation of oxy-
gen vacancies, i.e., two doped Ba21 ions substitute for two
Bi31 ions with the formation of an extra oxygen vacancy.
Thus the oxygen vacancies created by Ba doping could fur-
ther enhance the distortion of oxygen octahedra, and lead to
the increase of the activation energy.22 This explanation does
not conflict with the mechanism of the antiferroelectric phase
transition mentioned in Sec. III A because the phase transi-
tion is associated only with the alternating Bi31 ion displace-
ments rather than the distortions of octahedra.

It was reported by Waser23 that the oxygen vacancies can
move at higher temperature in SrTiO3 due to thermal activa-
tion, with energy of 1.005–1.093 eV, and give rise to con-
duction. Whereas, the conduction activation energies ob-
served in our samples, which are 1.63 eV in BT and 1.24 eV
in BBT, appeared to be too high to attribute to the aforemen-
tioned mechanism. The other alternative is the space-charge
model, according to Coelhoet al.,24 the free charges move

through the sample towards the electrode of opposite sign in
the presence of the external electric field and constitute a
macrodipole. Therefore its oscillations with external ac field
give rise to relaxation and conduction processes. Maglione
et al.25 explained dielectric relaxation phenomena in several
perovskite materials based on this model. They found the
relaxation activation energies of space charge were around
1.17–1.48 eV and the conduction activation energies were in
the range of 1.07–1.31 eV for La-doped PbTiO3 . Thus, com-
pared with their data, we concluded that the conduction pro-
cesses in our samples are better interpreted in the context of
the space-charge model.

IV. CONCLUSION

We have investigated the temperature and frequency de-
pendences of the dielectric permittivity and electric modulus
in pure and Ba-doped Bi2Ti4O11. We found that Ba doping
decreased the antiferroelectric phase transition temperature
due to reduction of the displacements of Bi31 ions along the
b axis. Besides, we observed a dielectric dispersion in both
samples and attributed it to the motion of the off-center Ti
ions in the distorted oxygen octahedra. We also found a con-
duction process at high temperature, and suggested it to be
associated with oscillations of space charge which is an ac-
cumulation of free charges at the two electrode interfaces.
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