
University of Nebraska at Omaha University of Nebraska at Omaha

DigitalCommons@UNO DigitalCommons@UNO

Computer Science Faculty Publications Department of Computer Science

4-2006

Answer Set Programming based on Propositional Satisfiability Answer Set Programming based on Propositional Satis ability

Enrico Giunchiglia
Universita di Genova

Yuliya Lierler
University of Nebraska at Omaha, ylierler@unomaha.edu

Marco Maratea
Universtia di Genova

Follow this and additional works at: https://digitalcommons.unomaha.edu/compscifacpub

 Part of the Computer Sciences Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE

Recommended Citation Recommended Citation
Giunchiglia, Enrico; Lierler, Yuliya; and Maratea, Marco, "Answer Set Programming based on Propositional
Satisfiability" (2006). Computer Science Faculty Publications. 10.
https://digitalcommons.unomaha.edu/compscifacpub/10

This Article is brought to you for free and open access by
the Department of Computer Science at
DigitalCommons@UNO. It has been accepted for
inclusion in Computer Science Faculty Publications by an
authorized administrator of DigitalCommons@UNO. For
more information, please contact
unodigitalcommons@unomaha.edu.

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/compscifacpub
https://digitalcommons.unomaha.edu/compsci
https://digitalcommons.unomaha.edu/compscifacpub?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/compscifacpub/10?utm_source=digitalcommons.unomaha.edu%2Fcompscifacpub%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/

Answer Set P rogranuning based on Propositional Satisfiability

Enrico Giuncb igua 1, Yuliya Lieder~ and Marco Maratea1'3

1 STAR-Lab, DIST, Univers-ity of Genova
viole francesoo Cauea, 13 - 16145 Genooa, Italy
{enrico, marco}~d'is t . unige . it

2 Institut fiir lnfmTTUJtik, Erlangen-Numberg-Universitiit
Haberstr. 2, Erlangen, Germany
yutiyatDinformat ik. uni- ertangen. de

3 Department of M a!hematics, Univers-ity of Calabria
viole Pietro Bucci, Cuba 31b - 87036 Rende {CS}, Italy
marat eatDmat . unicaL i t

Abstract. Answer Set Programming (ASP) emerged in the late 1990s as a new
logic programming paradigm which has been su~fulJy applied in various appli
cation domains. Ah~) motivated by the availability of efficient solvers for pro~
sitional satisfiability (SAT), various reductions from logic programs to SAT were
introduced in the past. All t hese reductions either are limited to a subclass or
logic programs, or introduce new var iables, or may produce exponentially bigger
propositional formulas.

In t his paper, we present a SAT-based procedure, called ASP-SAT, that (i) deals
wit h any (non disjunctive) logic program, (ii) works on a propositional formula
wit hout addi tional variables (except for those possibly introduced by the clause
fonn t ransformation:!, and (iii) is guaranteed to work in polynom:al space. From a
theoretical perspective, we prove soundness and completeness of ASP-SAT. From
a practical perspective, we have (i) implemented ASP-SAT in CMODELS, (ii) ex
tended the basic procedures in order to incorporate the most popular SAT reasoning
st.rnt.~P-", nnrl (iii) mnrhu~t.M ~n P.¥t.P.n.!'<iVP mmpn.rn.t.ivP n.nnlysiR involv ing also nt.hP.r
sta~of-th~art answer set solvers. The experimental analysis shows t hat our solver is
competitive with the other solvers we considered, and that the reasoning strategies
that work best on 11small but hard 1

' problems are ineffective on 11big but easy11

problems and vice versa.

K eywords: Answer Set Programming, Propositional Satisfiabilit)·

1. I ntroduction

Answer Set Programming (ASP) emerged in the late 1990s as a new
logic programming paradigm (Marek and 'fruszczynski, 1999; Niemela,
1999), and bas been successfully applied in various domains including
space shuttle control (Nogueira et a l. , 2001), planning (Lifschitz et al. ,
1999), and the design and in1plementation of query answering systems
(Baral and Scher!, 2004). Syntactically, ASP programs look uke Pro-

log programs, but they are t reated by rather d ifferent computational
mecharusms. Indeed, ASP systems like CMODELS (Lied er and Lifschitz,
2003), SMODELS (Simons et al., 2002), SMODELScc (Ward and Schlipf,
2004), DLV (Leone et al., 2005), and ASSAT (Lin and Zhao, 2002; Lin
and Zhao, 2004) interpret logic programs via t he answer set semantics
(Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1991). T he goal is
to find the "models" (called answer sets) of the program, and not to
evaluate whether a query is true or not, as in standard Prolog systems.
The ASP approach is thus similar to propositional sat isfiability check
ing, where propositional formulas encode the problem and models of
the formula correspond to the solutions of the problem.

Propositional satisfiability (SAT) is one of the most intensely studied
fields in Artificial Intelligence and Computer Science. Various proce
dures that can deal with thousands of variables are now available (see,
e.g., (Le Berre and Simon, 2003)) . Also motivated by the availability
of efficient SAT solvers (such as SATZ (Li and Anbulagan, 1997) and
MCHAFF (Moskewicz eta!., 2001)) , various red uctions from logic pro
grams to SAT were introduced in the past. T he most popular of such
reductions is Clark's completion (Clark, 19'78). Pages (1994) showed
that if a logic program is "tight" then its answer sets are in one-to
one correspondence with the models of its Clark's completion. From a
theoretical point of view, Fages' result was then generalized to include
programs with infinitely many rules (Lifschitz, 1996) , programs tight
"on their completion models" (Babovich et al., 2000), programs with
nested expressions in t he bodies of the rules (Erdem and Lifschitz,
2001), and disjunct ive programs (Lee and Lifschitz, 2003). From a
practical point of view, computation of answer sets for tight programs
viR C:bu k 's mmp lP.t.ion ><nrl SA'T' solving h"s h P.P.n Rrst. implP.mP.nt.P.rl in

CMODELS, and has been also shown to be effective on many classes of
problems. Still , these results do not apply to the whole class of logic pro
grams. In general, it is well known that each answer set corresponds to a
model of its completion, but the converse is in general not t rue (Marek
and Subrahmanian , 1989).

Ben-Eliyahu and Dechter (1996) gave a translation from a class of
disjunctive logic programs to SAT: Their t ranslation may need O(n2)

new variables and O(n3) new clauses, where n is the number of atoms
in the logic program. Lin and Zhao (2003a) introduced a translation
which needs the introduction of O(n2 + m) new variables and O(n X m)
new clauses, where m is the number of rules in the logic program. Jan
hunen (2004) presented an optimized encoding wl:ich is sub-quadratic
in both size and number of atoms. Lin and Zhao (2004) repor t that the
grounding of a program correspond ing to the computation of a Hamil
tonian path in a complete graph with 50 nodes, ;>rod uces a program

with 5000 atoms and 240000 rules, and in a complete graph of 60 nodes
produces a progran1 with 7000 atoms and 420000 rules. For problems
like these, the number of variables or clauses in the result ing formula
may become prohibitive.

The only reduction to SAT whicll does not need extra variables has
been proposed by Lin and Zhao (2002, 2004) . The drawback of thls
reduction is that it may blow up in s pace, i. e., the resulting number of
clauses can be exponent ial. This is not by chance. A recent result by
Lifschitz and Razborov (Lifscllitz and Razborov, 2004) shows that -
assuming P g; NC1 /poly, a conjecture from computational comp lexity
theory widely believed to be tru~ whenever we t ry to translate a logic
program to a set of clauses

either we have to introduce new variables,

or an exponential blow up may occur .

Despite the potential exponential blow up, system ASSAT based on such
a reduction outperforms state-of-the-art ASP systems like SMODELS

and DLV on many interesting problems.
In this paper we present a procedure, called ASP-SAT, that

1. deals with any (not necessarily t ight) logic program,

2. works on a propositional formula without addit ional variables (ex
cept for those possibly introduced by t he clause form transforma
t ion), and

3. is guaranteed to work in polynomial space.

From a theoretical perspective, we prove the soundness and complete
ness of ASP -SAT. We also show how to extend this basic proced ure
in order to compute all answer sets still working in polynomial space.

From a practical perspective, we have implemented ASP -SAT in
CMODELS. We call the resulting system CMODELS2. Given the SAT
based nature of our proced ure, we have been able to in1plement - with
a relatively small effort- several searcll strategies and heur istics which
have been shown effective in the SAT literature. Then, we experimen
tally analyze whicll combinat ions of reasoning strategies work best on
which problems. In particular,

We inlplemented various "look-allead" strategies (used while de
scending the search t ree); "look-back" strategies (used for recov
ering from a failure in the search tree); and "heuristics" (used for
selecting the next literal to brancll on) .

We considered CMODELS2 with various combinations of strate
gies, and other state-of-the-art systems like SMODELS, SMODELScc,

ASSAT , and DLV .

We conducted an extensive exper imental analysis, involving all
the above ment ioned versions of CMODELS2 and systems, and a
wide variety of t ight and non tight programs, ranging from "small"
randomly generated programs wit h a few hundred atoms, up to
"large" programs with tens of thousands variables.

Our experimental results show t hat the look-back (resp . look-ahead)
version of CMODELS2 has a clear edge over t he other state-of-the-art
systems that we considered on large (resp. small randomly generated)
problems. T he look-back version of CMODELS2 is very competitive also
on the other non random, non large progran1s that we considered.

If we focus on the performanoes of the various versions of CMOD

ELS2, the experimental results also point out that:

l. On the small randomly generated problems, "look-ahead solvers"
(featur ing a rather sophist icated look-ahead based on "failed lit
era l", a simple look-back strategy -essentially backtracking- and a
heuristic based on the information gleaned d ur ing the look-ahead
phase) are best.

2. On the large problems, "look-back solvers" (featur ing a simple but
efficient look-ahead strategy -essentially un it-propagation with 2
literal watching- , a rather sophisticated look-back based on "learn
ing" and a constant t ime heur istic based on the in formation gleaned
during the look-back phase) are best.

3. Add ing a powerful look-back (resp. look-ahead) to a look-ahead
(resp. look-back) solver does not lead to better performances if the
resulting solver is run on the small (resp. large) problems that we
considered.

t:sing the terminology in (Giunchiglia et a l. , 2001), our comparison is
"fair" because all t he reasoning st rategies are realized on a common
platform and thus the experimental evaluation is not biased by the
differenoes due to the quality of the implementation, and is "signif
icant" because CMODELS2 implements cur rent state-of-the-ar t look
ahead/look-back strategies and heur ist ics. We believe that these re
sults have important consequences bot h for developers and a lso for
people interested in benchmarking ASP systems. For instance, our
results say that we can hardly expect to develop a solver with the
best performances on all the categor ies of problems. As a consequence,

developers should focus on specific classes of benchmarks (e.g., on
randomly generated programs), and

benchmarking should take into account whether solvers have been
designed for specific classes of programs: Indeed, it hardly makes
sense to run a solver designed for random (resp . large) programs
on large (resp. random) programs.

The paper is structured as follows. In Section 2 we introduce the
definitions, terminology and results at the basis of our work. Then, in
Section 3 we present ASP-SAT in its basic backtracking version, and
we prove its sound ness and completeness. V.fe also discuss in details
what needs to be done in order to implement ASP -SAT on top of a SAT
solver with learning. In Section 4 we show how we implemented ASP
SAT in CMODELS. Section 5 contains t he experimental, comparative
evaluat ion. We end the paper with the conclusions and future work in
Section 6.

A preliminary version of this paper is (Giunchiglia et al., 2004).
This paper contains a lso results presented in (Giunchiglia and Maratea,
2005a; Giunchiglia and Maratea, 2005b).

2. Formal Background

2.1. SYNTAX OF LOGIC P ROGRAMS

A rule is an expression of the form

p0 <-- Pl , ... ,pk, not Pk+J, ... , not Pm , not not Pm+l , ... , not not Pn
(1)

(0 :::; k:::; m:::; n) where Po is an atom or the symbol .L (.L is the logical
symbol standing for the empty disj unct ion, i.e. , False) , Pl,P2, . .. ,pn
are atoms, and the symbol not is the "negation" as failure operator.
p0 is the bead of the rule, and the expression at the right of the arrow
is the body. The intuitive meaning of a rule (1) is that po is in the
solut ion whenever t he body is satisfied.

A (non disjunctive logic) program is a fin ite set of rules.
If the head of a rule is .L, we call the rule a constraint. If a rule (1)

contains an expression of the form not not Pi, then the rule is called
nested, ot herwise the rule is non nested or basic. If a logic program II
contains at least one nested rule, II is a nested program, otherwise is
non nested or basic. For instance, the program

p<- not not p
q <--not p.

(2)

is nested , while

is non nested or basic.

p~p

q~ notp.

2.2. ANSWER SETS FOR L OGIC PROGRAMS

(3)

In order to give the definition of an answer set we consider first the spe
cial case in which the program II does not contain the negation as failure
OpP:T;:JJ,nr nnt (J.P.. for P.ar.h Tll lP: (1) in IT, 11. = m. = J.-:) . l.P.t rr hP. S llf:h ;'\

program and let X be a set of atoms. We say that X is closed under II
if for every rule (1) in II, p0 E X whenever {Pt , P2, ... , Pk} ~ X. In the
n = m = k hypothesis , II has only one answer set, and it is the smallest
set of atoms closed under II. Computing such an answer set can be done
in linear time, via the Dowling-Gallier procedure (Dowling and Gallier,
1984), or via un it-propagation (assuming the symbol "~" is understood
as the standard material implication, and "," as conjunction).

Now consider an arbit rary program II. Let X be a set of atoms. A
rule

PQ~PJ , ... ,p,
belongs to the reduct IIX of II with respect to X if and only if there is
a rule (1) in II with X n {Pk+J, ... ,pm} = 0 and {Pm+L• ... ,Pn} ~X.
ax is a program without negation as failure. We say that a subset
X of the atoms in II is an answer set for II if X is an answer set for
ax (Gelfand and Lifschitz, 1988; Lee and Lifschitz, 2003).

As an example, let II be the program (2) and consider the set of
atoms {p}. The red uct II{P} is

p~ . (4)

The set {p} is the smallest set closed under (4) and hence it is also an
answer set of the program II. If we consider the set of atoms {p , q}, the
reduct II{p,q} is again (4). The set {p, q} is not the smallest set closed
under (4), and hence it is not an answer set of the program II.

Determin ing the existence of an answer set for a progran1 II is an
NP-complete problem. Indeed, checking if a set of atoms X is an answer
set of II can be done in linear t ime by first computing the red uct
ax and then computing the answer set of II X. NP-hardness can be
easily proven using standard red uctions of the SAT problem into logic
programs under answer set semant ics, see, e.g., (Janhunen, 2003).

2.3. COMPLETION

Consider a program II. For an atom Po the completion Comp(II, p0) of
II relative to Po is the formula

Po :: V (PI A ... A Pk A ""'Pk+l A ... A ~Pm A Pm+ l A ... A Pn)

where the disj unction extends over all rules (1) in II with head PO· The
completion Comp(II) of II consists of the formulas

k m n

V ~p; V V Pi V V ~Pi
i=J i.=k+l i=m+J

one for each rule (1) whose head is 1.; and of the formulas Comp(II,pa)
for each atom Po in II (Clark, 1978; Lloyd and Topor , 1984). For
instance, the completion of the program (2) consists of the formulas

p :: p
q :: ~p,

and (5) is a lso the completion of the program (3).

(5)

The following theorem, d ue to Marek and Subrahmanian (1989) for
basic programs and generalized in (Erdem and Lifschitz, 2001) to nested
programs, relates the answer sets of a progran1 to the models of its
completion . In the following, we say that a set of atoms X satisfies (or
is a model of) a set of formulas r if r is satisfied by the interpretation
wuich a:s:si~= Tr·uc bu >J,Jl abUUl p if auJ uu ly if p EX.

THEOREJ\11 1. Let II be a program. If X is an answer set of II, then
X satisfies the completion of II .

The set of atoms {p, q} does not satisfy the completion (5) of (2)
(resp. (3)) and thus it is not an answer set of (2) (resp. (3)) .

2.4. T IGHT P ROGRAMS

Theorem 1 can be strengthened in the case of tight programs. A pro
gram II is t ight if its dependency graph is acyclic. T he dependency
graph of a program II is the directed graph G such that

- the nodes of G are the atoms in II, and

- for every rule (1) in II, G has an edge from Po to each atom in
{PI,··· ,pk} ·

The following Theorem has been proved by Fages (1994) for basic
programs, and it h.as been generalized by Erdem and Lifschitz (2001)
to nested progran1s.

THEOREJ\11 2. Let II be a tight pmgram and X a set of atoms. X is
an answer set fo•· II iff X satisfies the completion of II.

Program (2) is tight, while program (3) is non tight. Hence, ac
cording to the above theorem, the answer sets of (2) coincide with the
models of (5) (and thus can be computed with SAT solvers) .

2.5. LOO P FORMU LAS

Theorem 1 states that if X is an answer set o f program II then X
satisfies Comp(II). T heorem 2 says that the converse is also tr ue if the
program is t ight. If the program is non t ight, Lin and Zhao (2002, 2004)
proved that to have the identity mapping between the answer sets of a
basic program II and the models of its completion, we have to consider
the loop formulas of II. Lee and Lifschitz (2003) extended the concept
of loop formulas to nested programs and proved that the san1e result
holds with the extended definition. To formally state this last result,
we need the following definit ions.

A loop of II is a nonempty set L of atoms such that for each pair
p, p' of atoms in L there exists a path of nonzero length from p to p' in
the dependency gra ph of II whose intermediate nodes belong to L.

G iven a loop L, we define R(L) to be the set of formulas

(pl II· ·· 1\ Pk II ~Pk+J II·· .II ~Pm II Pm+t ll. ··II Pn)

for all rules (1) in II , with Po E L and {p1 , ... , pk} n L = 0. The loop
formula associated with L is

(6)

where V L denotes the d isjunction of the atoms in L, and similarly for
V R(L).

THEOREJ\11 3. Let II be a pmgram. Let Comp(II) be the completion
of II. Let LF(II) be the set of all the loop formulas associated with the
loops of II. For each set of atoms X , X is an answer set of II iff X is
a model of Comp(IT) U LF(II).

Consider the non t ight program (3). Its completion is (5). The only
loop of the program is {p} and the loop formula associated with {p} is

p :::l 1.,

which is equivalent to --vp. Thus, the answer sets of (3) are the set of
atoms that satisfy (5) and also ~p.

3. SAT-b ased Answe r Se t Solvers

3.1. P REVIOUS APPROACHES

CMODELS (Lierler and Lifschitz, 2003) is an answer set solver based
on SAT which has evolved along the years and which, in its cur rent
version, incorporates a lso the procedure described in this paper and
in its predecessor (Giunchiglia et a!. , 2004) . The version of CMODELS
prior to (G iuuchiglia eta!., 2004) is rest r icted to t ight programs, and,
given a t ight program II, CMODELS

1. computes the completion Comp(II) of the progran1, and

2. calls a SAT solver to find the models of Comp(II) (corresponding
to t he answer sets of the input program). Before invoking the SAT
solver , it may be necessary to conver t the formulas in Comp(II)
to a set of clauses, as required by most SAT solvers. A clause is a
disj unction of literals , and a literal is an atom or the negation of
an atom.

The advantage of this method is that it uses SAT solvers as black boxes.
On t he other hand, it is restricted to t ight progran1s.

Theorem 3 lays the foundation for extending this method to non
t ight programs.

Consider a program II. To determine whether II has an answer set,
one possibility is to

1. compute the completion and the loop formulas of II, i.e. , the set
r = Comp(II) u LF(II) of formulas, and then

2. invoke a SAT solver to determine the models of (the clause conver-
sion of the formulas in) r.

This is an "eager" 1 approach which may work well in practice in some
domains, but the resulting propositional formula may be exponent ially
bigger than the input program.

ASSAT (Lin and Zhao, 2002; Lin and Zhao, 2004) is a SAT-based
system for basic programs which takes an alternative approacll. Indeed,
ASSAT adds loop formulas on demand, i.e., ASSAT

1 The terminology is borrowed from the one used in decision procedures for
separation Jogi<; where "eager11 approaches compiJe the input formula into an
equisatis6able propositional one, see, e.g., (Lahiri et al., 2002) .

1. Computes r = Comp(II).

2. Finds a model X of r by using a SAT solver (before this, it may
be necessary to conver t r to a set of clauses) . If no such model
exists then the input program does not have answer sets and the
procedure term inates returning False.

3. Checks if X is an answer set: As we have already said in section 2.2,
this can be done in linear t ime in the siz.e of II. If X is an answer
set, t hen the procedure terminates with returning True . Otherwise,
ASSAT

a) finds at least one loop formula which is not satisfied by X , and
adds it to r: As described in section 4, also this step can be
done in linear t ime in the size of II; and

b) goes back to step 2.

Lin and Zhao (2002, 2004) showed that ASSAT can often outper form
rival systems. However , ASSAT has the following two main drawbacks

1. ASSAT is not guaranteed to work in polynomial space. Lifschitz
and Razborov (2004) showed that there are progran1s II for which
LF(II) contains exponentially many formulas (unless P 11: NC1 f poly),
each of which cannot be derived from the others and Comp(II) . For
these programs II:

If II has an answer set, then ASSAT per formance on II depends
on how lucky the system is in generating the right model first.
In the best case it generates an answer set first. In the worst
case it blows up in space.

If II has no answer set, then ASSAT blows up in space. In fact,
adding and keeping already added loop formulas is essential
to guarantee that the SAT solver does not return an already
computed model, and thus to guarantee ASSAT term ination.

2. Consider ing two successive calls to the SAT solver , the computation
done for finding the first model is completely d iscarded , i.e. , not re
used by the SAT solver in the second call. Thus some branches of
the search t ree may get computed many t imes.

Further considering the task of computing all answer sets of a program
II, there are two ways for doing it in ASSAT:

1. Comp ute Comp(IT) u LF(IT) and t hen call a SAT enumer a tor , i.e., a

SAT solver able to return all the models of a propositional formula,
e.g., MCHAFF (Moskewicz et al. , 2001); or

2. In order to avoid the generation of the same model X, once an
answer set X is found, mod ify ASSAT procedure in step 3 by

a) adding to r one or more clauses ensur ing that the same answer
set X is not re-computed , and

b) going b ack to step 2.

For nested programs, the obvious clause to add to r is

V ~Av V A. (7)
AEX AS1X

For basic programs, (i.e., of the kind t hat ASSAT considers) we can
take advantage of the fact that the following anti-chain prope•·ty
holds: If X is an answer set, no st r ict subset or superset of X is an
answer set. For these programs it is thus sufficient to add to r one
or both of the clauses

V ~A, V A (8)
AEX Ar,£X

in order to ensure that the same answer set is not re-computed.
The advantage of adding (8) instead of (7) is that each clause in
(8) entails (7) and thus it prunes more search space.

The first approach is unfeasible if there are (exponent ially) many loop
formulas. T he second approach is unfeasible also when there are many
answer sets.

3.2. ASP-SAT WITH BACKT RACKING

The above drawbacks can be eliminated if we do not use a SAT solver as
a black-box. Instead, we can take advantage of that all the sta~of-the

art complete SAT solvers are based on the Davis-Logemann-Loveland
procedure (Davis et a l. , 1962). The basic observation is that the Davis
Logemann-Loveland procedure can easily work as a SAT enumerator .

Thus, given a program II, we may first compute the completion of
II, and then

genemte the models of Comp(II), and

test whether the generated models are answer sets of II.

We call ASP-SAT the resulting procedure, and it is represented - in
its simple backt racking version- in Figure 1. In the figure,

function ASP -SAT(II)
re t urn DLL(CNF(Comp(II)),0,II);

function DLL(r, S, II)
if (r = 0) t he n return test(S, II);
if (0 E r) t he n return False;
if ({l} E r) t he n return DLL(assign(l , r), 8 U {l}, II);
p := an atom occurring in r ;
re t urn DLL(assign(p, r),S u {p},II) or

DLL(assign(~p, r), 8 U { ~p}, II) .

Figure 1. The SAT-based ASP-SAT procedure for Answer Set P rogramming

1. Given a set of formulas r, CNF(r) returns a set of clauses
possibly with newly introd uced propositional variables-- such that,
for any interpretation J1 in the extended language, the following two
properties hold:

a) if J1 satisfies CNF(r) then the restriction of J1 to the language of
r satisfies r , and

b) if J1 satisfies r then there exists an interpretation in the lan
guage of CNF(r) which (i) e.':tends /1, and (ii) satisfies CNF(r).

An example of such a conversion is the "classical conversion" (which
given a formula in negative normal form recursively d istribut-es
conjunctions over disjunctions) , and the conversions based on "re
naming'', such as those described in (Tseitin, 1970; Plaisted and
Greenbaum, 1986; Sher idan, 2004).

2. l denotes a literal, and r a set of clauses;

3. S is an assignment, i.e., a consistent set of litera ls;

4. given an atom p, assign(p, r) is the set of clauses obtained from r
by removing the clauses to which p belongs, and by removing ~
from the other clauses in r. assign(~p, r) is defined similarly.

A key feature of ASP-SAT is t hat it is based on DLL, which, consid
ering its pseudo-code in the figure, is almost identical to the Davis
Logemann-Loveland procedure: T he only difference is that, when the
empty set of clauses is generated, DLL invokes the function test(S, II) in
st ead of just returning True. ASP-SAT thus follows a "lazy" approach
to the computation of answer sets based on SAT,2 where, intuitively

2 The terminology is again borrowed from t;he one used in decision prooodures
for separation logic, where I(Jazy" approaches abstract the input formula into a

speaking, the goal of the function test(S, II) is to return True if the
assignment S corresponds to at least one answer set of II, and False
otherwise. However , the function test(S, II) deser ves some fur ther com
ments. Assume P is the set of atoms in the progran1 II. When the
function test(S, II) is invoked, its argumentS is such that S n P satisfies
the completion of II and is thus a candidate for being an answer set.
However , it may be the case that S is not a total assignment, i.e., it
is possible that for some atom p E P, neither p nor ~p are in S . If
p is one such atom, a lso (S n P) U {p} satisfies t he completion of II
and is thus anot her candidate for being an answer set. In general, an
assignment S can potentially correspond to exponent ially many set of
atoms satisfying the completion of II, and each of them is a superset
of the atoms in S n P. However, if II is a basic program, none of t hese
str ict supersets is an answer set of II, as established by the following
proposition.

P ROPOSIT ION 4. Let II be a bas•c program. Let X be a set of atoms
satisfying Gomp(II). If XC X' then X ' is not an answer set of II .

Pmof We are given that X satisfies Gomp(II). From complet:on
construction, it follows that X is closed under rrx. S ince X C X' and
II is basic, rrx' ~ IIX. He:tce X is closed under rrX', and thus X' is
not the smallest set closed under rrx'. <>

Thus, according to the above proposit ion, if II is basic, test(S, II)
has j ust to check if S n P is an answer set of II: Any set of atoms
e.xtending S n P is not an answer set.

We are now ready to state our main Theorem in the case of basic
programs.

THEOREJ\11 5 (Soundness and completeness for basic programs). Let II
be a basic pmgram in the set P of atoms. Let test(S, II) be a func
tion returning True if S n P is an answer set of II, and False other
wise. ASP-SAT(II) retu•= True if II has an answer set, and False
otherwise.

propositional one and refine the propositional mode] if it does not correspond to
a model of the o riginal formula. see, e.g., (Armando et al., 1999; de Moura et al.,
2002; Barrett et al., 2002; Armando et al., 2005). More reoently (Nieuwenhuis and
Oliveras, 2005) s howed that better performances can be obtained by using a lazy
approiKh in w hich the a.:s:rignment ~~ ex tended on the ba.:si:s o f t he :semantic~ of
the original formu)a in separation logic. In our sett;ing, t his wou]d correspond to
assign some atoms - not entailed by the current assignment and the completion
of the input program- but entailed by the current assignment, the completion of
the input program and t he set of loop formulas: W hether this can lead to better
performances is still an open research issue.

Pmof Soundness is trivial. For completeness, assume that ASP
SA T(II) returns False. Let P be the set of atoms in II. Let r be the
set of assignments S that have been checked, i.e., such that test(S, II)
has been invoked. The fact that II has no answer sets follows from the
following properties

1. The formula vc 1\ pi\ ~p)

SEf' p:p€S,p€P p:-p€S,p€P

is logically equivalent to the completion Comp(II) of II (Proposi
t ion 5 in (Giunchiglia et al. , 2002), restated as Lemma 4 in (Ar
mando et a!., 2005)).

2. The set of answer sets of II is a subset of { S n P : S E r} (easy
consequence of T heorem 1 and Proposition 4). <>

Proposition 4 does not hold for arbitrary programs. In general, given
a nested program II , it is possible that two sets X and X ' of atoms are
such that

X satisfies the completion of II but is not an answer set of II, and

X' is a superset of X and is an answer set of II.

This is illustrated by the following program:

PL ~ not not PJ
P'2 ~ PL
P'2 ~ P'2·

(9)

The completion of the program is {p 1 = PL, P'2 = (PI v P'2}. The set of
atoms {P2} satisfies the completion but is not answer set. T he set of
atoms {PhP'2} is a superset of {P'2} and is also an answer set of (9).

Thus, in the general case, whenever test(S, II) is invoked, every set
X of atoms which is

1. a superset of S n P , and

2. a subset of {p : ~p ~ S,p E P }

has to be checked to see if it is an answer set of II.

THEOREM 6 (Soundness and completeness for arbitrary programs) . Let
II be a pmgmm in the atoms P . Let test(S, II) be a function 1-etuming
True if there e:cists a set X with S n P ~ X ~ {p : ~p ~ S, p E P} which
is an answer set of II, and False otherwise. ASP -SAT(II) returns True
if II has an answer set, and False othe7'V.Iise.

Pmof The proof is analogous to the one of Theorem 5, the only
difference is that, assuming

P is the set of atoms in II,

r is t he set of assignments S that have been checked, i.e., such
that test(S, II) has been invoked,

the set of answer sets of II is a subset of

{X : 3S E r.S n P <;; X <;; {p : ~p if S,p E P }},

as established by Theorem 1. <>

3.3. ASP-SAT WITH LEARNING

The ASP -SAT procedure in the previous subsect ion is based on DLL,
that is very s imilar to t he standard Davis-Logemann-Loveland proce
dure with simple chronological backtracking. It is thus not infrequent
for ASP-SAT to explore a possibly large subtree whose leaves are all
dead-ends because of some bad choices performed way up in the search
t ree. In SAT, the standard solut ion to t his problem is to backjump
over the choices that do not belong to the "reason" for the failure. In
tuitively, if S is an assignment which falsifies t he inp ut set r of clauses,
then a reason R for S is a subset of the literals in S such t hat any as
signment extend ing R falsifies r . (We say that a set S of literals falsifies
a set of formulas r if s u r is inconsistent). Reasons are in it ializ-ed as
soon as a failure is generated, and updated while backtracking. Many of
the cur rent state-of-the-art SAT procedures feature such backjumping
mechanism and extend it with learnir.g: Under certain conditions, a
reason R is converted into the clause (Vp€R ~pvV -.pERP) which is then
learned, i.e. , added to t he input set of clauses as additional constraint.
Since e.xponentially many d istinct realOons can be computed, suitable
criter ia are a lso used in order to forget (i.e., remove) clauses corre
sponding to reasons, thus maintain ing the SAT solver in polynomial
space.

It is out of the goals of this paper to describe how learning is incor
porated in the Davis-Logemann-Loveland procedure: See, e.g., (Dixon
et a l. , 2004) for a high-level descript ion of learning including soundness
and completeness statements of the result ing procedure, (Silva and
Sakallah, 1996; Bayardo, J r . and Schrag, 1997; Zhang et al. , 2001) for
more detailed descript ions of different learning mechanisms. For our
purposes, it suffices to say that a SAT solver with learning can still be
used as underlying procedure for ASP-SAT . The only difference with

respect to the procedure in Figure 1 is in the test procedure. In fact,
as we outlined above, whenever we have a failure we have to have also
a cor respond ing reason. In our case, if tes«,8, II) returns False , it has
also to return a subset R of the atoms in 8 such that for any total
assignment S' e.xtending R and not falsifying the completion of II, the
set of atoms in 8' is guaranteed to be not an answer set of II. One such
set R is 8 . However , in order to maximize the effects of the backjump ing
and learning mechanisms in the SAT solver , it is important that R be
as small as possible. In the case of a basic program, one smaller such
set is the set of atoms in 8 (see Proposit ion 4). However , it is possible
to take advantage of loop formulas, and - in practice- return reasons
which are often less than 1% of the s ize of 8 .

To illustrate how loop formulas can help for computing small rea
sons, consider a call to test(8, II), and let P be the set of atoms in II. We
assume that 8 does not correspond to any answer set of II, otherwise
test(8, II) has j ust to return 'Jlroe and the computation of a reason does
not make sense.

For simplicity, assume that 8 is a total assignment. The idea is to
find a loop formula F which is falsified by 8, and return a subset S'
of S necessary to falsify F: Since every answer set of II has to satisfy
all t he loop formulas of II, the set of atoms in any superset of 8' is
guaranteed to be not an answer set of II. Important is the fact that
determining such a set 8' can be done efficiently, i.e., in linear t ime in
the size of II, as detailed in the next section.

If 8 is not total but II is basic, then - thanks to Proposition 4- we
can j ust consider the total assignment 8 U { ~p : p E P,p ~ 8 }.

Now assume that II is nested and that 8 is not total. Assume for
simplicity that there is only one atom p E P such that neither p nor
~p is in 8 . Let 81 = S u {p} and 82 = S u { --p}. Both S t and 82 are
total. Fur thermore, sl n p and 82 n p are not answer sets, and we can
compute 8(<; 8 t and 82 <; 82, each falsifying a loop formula of II as
in the previous case. If p ~ 8; (resp. ~p ~ 82) then 8; (resp. 82) is
also a subset of S and can be returned . If p E 8(and ~p E 82 we can
safely return 8" = 8; U S2 \ {p , ~p}: 8" <; 8 and no set e.xtending 8"
can correspond to an answer set. T he above proced ure can be easily
e.xtended to the case in which there are more than one atoms p E P
with {p, ~p} n 8 = 0.

Notice that S may be a non total assignment because in ASP -SAT
test(8, II) is invoked whenever the input set of clauses is empty. Indeed,
many SAT solvers - including MCHAFF- have a different termination
condition for True: True is returned whenever either p or ~p is in S,
for each atom p in t he input set of clauses r. Assuming that all the

atoms in II occur also in r , the above termination condition for True
ensures that S is total.

We want to remark that in order to guarantee the terminat ion of
our proced ure ASP-SAT(II), it is not necessary to store the reasons re
turned by test(S, II): On the other hand, learning (a polynomia l amount
of) reasons can improve performances of the procedure. Consider in fact
the program II~;; consisting of the rules

Pi ~ Pi+ J Pi+ J ~Pi

where i E {0, 2, ... , 2k- 2}, and of the constra int

J. ~not pO, not PI , . .. , not P"2k- l ·

II~;; has no answer set, while Gomp(II~;) has 2k - 1 models. Assuming
CNF(Gomp(IIk)) consists of the clauses

~Pi VPi+l ~Pi+ t V Pi (10)

(i E {0,2, ... ,2k-2}), and

pO Vp1 V ... Vp-21;;-1 ,

the following facts hold (in this paragraph, for simplicity, we assume
that the clauses corresponding to the reasons returned by test(S, II~;;)
are learned and never forgotten):

A naive implementation of test(S, II~;;) which returns S as reason
for its failure, will cause the generation and rejection of exponen
tially many sets of atoms, one for each set of atoms satisfying the
completion of Ilk;

Since II~;; is basic, test(S, II~;;) may return the set of atoms in S
as reason for its failure. Depending on the order in which the
assignments are generated and then tested, d ifferent things can
happen, ranging in between the following two extreme cases:

1. In the best case, the assignments contain ing exactly one pair
{Pi,Pi+i } (i even) are generated (and then rejected) first: In
this case, the clause (~p; v ,Pi+J) is learned, and , together
with (10) , this implies that any other assignment generated
afterwards will contain both ,Pi and ~Pi+J . After the k sets
with two positive atoms are generated, the resulting set of
clauses is inconsistent and no more assignments are generated.

2. In the worst case, the assignments contain ing a maximum
number of posit ive atoms in P are generated (and then re
jected) first: The first assignment that will be generated is

{po,pt, ... ,P'2k- t }, and the corresponding learned clause is ~poV
-p1 V ... v ~p-2k-b and it is easy to see that exponentially
many assignments will be generated before determining the
non e.xistence of answer sets.

An implementation of test(S, II) that returns a subset of S falsify
ing one of the loop formulas is guaranteed to test k assignments.
This is d ue to the fact that Ilk has k loops, {Pi, Pi+l }, with i
even. Given a loop {Pi, Pi+l }, its loop formula is (p; V Pi+J) :::> 1.,
cor responding to

(11)

Given a call to test(S,II), (i) a loop formula of the form (11)
falsified by S is computed ; (ii) the two possible subsets of S falsi
fying (11) are computed, i.e., {Pi} and {Pi+J }; (iii) one of them is
returned as reason; (iv) assuming {pi} is the returned reason, the
clause {~Pi } is learned; and (v) after backtrackingfbackj umping,
unit-propagation immediately assigns both Pi and Pi+J to False.

After k calls to the testf.S, II) procedure, the resulting set of clauses
is unsatisfiable.

3.4. COMPUTATIONAL PROPERTIES OF ASP-SAT

From a computational perspective, the ASP -SAT procedure in Fig
ure 1 has the following features:

1. It per forms the search on Comp(II) and thus does not introd uce
any e.xtra var iables except for those possibly needed by the clause
form transformation.

2. It is guaranteed to work in polynomial space.

3. It can deal with both tight and non t ight programs: In the case
of tight programs, for each call to test(S, II), the set of atoms of
II which are also in S, is guaranteed to be an answer set of II,
and thus ASP-SAT behaves as a standard SAT solver runn ing on
CNF(Comp(IT)).

If the underlying SAT solver uses learning, then all the above features
still hold (assuming that the SAT solver itself works in polynomial
space).

Compared to the version of CMOD ELS prior to (Giunchiglia et al. ,
2004), ASP -SAT is not restr icted to work on t ight programs.

Compared to ASSAT, ASP-SAT is guaranteed to work in polynomial
space and has also the following advantages:

It is easily modifiab le to return all the answer sets: Assuming the
solver is based on back-tracking, the only thing that is needed is to
mod ify test(S, II) in order to

1. pr int the set of atoms determined to be an answer set, and

2. return False.

Assuming the solver is based on learning, test(S, IT) has to

1. pr int the set of atoms determined to be answer sets, and

2. return False and a reason R <;; S such t hat each assignment
extend ing R corresponds to already computed answer sets. If
II is a basic program then the anti-chain property holds for
II: As a consequence, the set of atoms in S n P is one such a
reason, and the subset of S consisting of the negation of the
atoms in P is another possibility. If II is a nested program, the
set S itself has to be returned.

No computation is ever repeated. When test(S, IT) fails, instead of
restarting the search from scratch as done in ASSAT, the compu
tation is restarted from the same point in the search tree where
test(S, IT) was called : The search then continues from this point
following the depth-first search schema of the algor ithm.

On the other hand, ASSAT advantage over ASP-SAT is that the SAT
solver is used as a black-box without any need of even minor modifica
t ions.

Compared to other state-of-the-art answer set solvers like SMODELS,
SMODELSoc and DLV, ASP -SAT has the advantage of being SAT-based,
and thus it can leverage on the great an10unt of knowledge available in
SAT. For instance, we are not aware of any non SAT-based answer set
solver using the analogous of two-litera l watching data structures for
efficiently pruning the search tree while descending it.

4 . Imple me ntat ion in C mode ls

4.1. INTEGRATION IN CMODELS

We have integrated our implementat ion of ASP-SAT in CMODELS.
CMODELS2 is the name that we use for the resulting system.

T he input language of CMODELS2 is a grounded logic progran1 that
can be generated by the front-end LPARSE (Syrjanen, 2003), and is the
same as the input language of SMOD ELS, SMODELScc and ASSAT. T he

input may thus contain basic rules as well as choice, cardinality and
weight constraint rules (Syrjanen, 2003, Sections 5.3, 5.4) . A choice rule
has the form

{1101, ... ,110; } ~ P1, ... ,p1;;, not Pk+1, ... , not Pm

where each p with a subscript is an atom. The intuitive meaning of a
choice rule is that any atom contained in {1101, ... , 110i } may or may
not belong to the solution whenever the body is satisfied . A weight

constraint rule is an expression of the form

110 ~ L{PJ = WJ, ... ,pi;;= Wk, not Pk+J = Wk+J , .. . , not Pm = Wm}U

where L,U,wt , ... Wm are integers, and each Pi (i = o, ... ,m) is an
atom. The intuit ive meaning of such rule is that 110 is in the solut ion if
the sum of the weights of the satisfied literals in the body of the rule is
between L and U . A cardina.Ji ty constraint rule is a weight constra int
rule in which all the integers in { w1, ... , wm} are equal to 1.

It is out of the scope of this paper to describe the semantics of
programs with these rules in details, see, e.g., (Simons et al. , 2002). For
our goals, it is sufficient to say that in CMODELS2 weight constra int and
choice rules are eliminated by introd ucin g a tn:iliary atoms and nested
rules as described in (Lifschitz et a l. , 1999; Ferraris and Lifschitz, 2005).

Tradit ionally, CMODELS was restr icted to find answer sets for t ight
programs, via the following steps (see (ILierler and Lifschitz, 2003) for
more details):

1. Simplification of the input LPA RSE pmgram, performing operations
similar to those involved in SMODELS.

2. Elimination of choice and weight constra ints rules in favor of nested
rules.

3. Verification t hat the result ing program (possibly with nested rules)
is t ight.

4. Construction of the program's comp letion, conversion to a set of
clauses, and call to a SAT solver. The clause conversion takes linear
time and introduces up to m new atoms, where m is the number
of rules in the program.

In CMODELS2, step 3 is not needed anymore (and is no longer per
formed) since a tight program can be considered as a particular case of
a non tight one in which each call to test(S, II) succeeds.

4.2. ASP-SAT IMPLEMENTATION

ASP -SAT is implemented on top of the SIMO system (Giunchiglia
et al. , 2003). SIMO is a MCHAFF-like SAT solver and thus features
un it-propagat ion based on a two-literal watching data structure, 1-
UIP learning and VSIDS heuristics (see (Moskewicz et al. , 2001) for a
descript ion of these techniques). However , it does not feature the low
level opt imizations of MCHA FF, and thus it is on average within a factor
of 3 slower than MCHAFF. We have used SIMO because is the system
we know better , and this allowed us to a relatively easy integration
of the other search strategies and heur istics used for the experimental
analysis.

With reference to Figure 1, in order to use SIMO as a search engine
in an ASP solver, we had to modify it in order to

1. call test(S, II) whenever Troe was returned, and

2. guarantee that each set S of litera ls in test(S, II) is total.

Consider ing the second task, SIMO - like all the MCHAFF-based SAT
solvers- returns True when all the atoms in the inp ut set of clauses
are assigned and no empty clause has been generated . However , SIMO
input set of clauses may not contain all the atoms in the input program.
Indeed, as a preliminary step and before the search starts, SIMO (and
many other SAT solvers as well) pre-processes the input set of clauses
and

1. eliminates tautological clauses (i.e., clauses wit h both an atom and
its negation as disjuncts),

2. assigns pure literals, i.e. , each atom p is assigned to True if ~p does
not belong to any clause in the input formula, and similarly for ~p.

These operations are not harmful in SAT solving. However, if the SAT
solver is used - as in our case- as basis for an answer set solver , both
operat ions may lead to incorrect results. Consider in fact the program

PI <- not not PI
P2 <-PI
P2 <- P2
J. <- not Pt , not P2

which has {Pt ,p2} as answer set. The complet ion of the program is
{Pt = Pt ,p2 = (pl Vp2),p1 Vp-2}. Considering the straightforward trans
lat ion to a set of clauses, and after the elimination of the tautological
clauses,

1. only two clauses are left, i.e., (~Pt V P2), (p1 V P2), and

2. after p.2 is assigned d ur ing the pre-processing, the empty set of
clauses is generated.

The empty assignment is returned and is checked to see if it is an
answer set. Since it is not , False would be incorrectly returned. In
order to avoid such undesired behavior , SJMO pre-processing has been
modified in order to keep tautological clauses, and to not assign pure
literals.

In order to evaluate the in1pact of different search strategies and
heur istics in solving answer set programs, we have enhanced SJMO

with search strategies and heuristics other than those implemented by
MCHA FF. In particular, we implemented:

Failed-literal detection: Before branclung, for each unassigned atom
p, p is assigned to True and then unit-propagat ion is called again:
If a contradiction is found, p is said to be a faileD. literal, ~p can
be safely assigned, and unit-propagation is again performed. Ot h
erwise, ~p is checked following the same proced ure implemented
for p.

Standard backtracking: Learning is disabled , and recovery from
failure is performed by cllronologically backtracking to the latest
assigned branching literal.

The mut heur istic, based on the fa iled-litera l detection teclm ique.
Given an unassigned atom p, whlile doing failed-litera l on p we
count the number u(p) of un it-propagat ion caused, and then we
select the atom with maximum 1024 xu(p) x u(~p) +u(p) +u(~p).
The atom is assigned to True first ..

The above searcll strategies and heur istics are not novel: They are
st andard teclmiques in the SAT field , a nd are implemented by many
st ate-of-the-art SAT solvers. Indeed, current state-of-the-art SAT solvers
can be divided in two main categories:

"look-ahead" solvers, featur ing a rather sophisticated look-ahead
based on "failed literal" , a sinlple look-back (essent ially backt rack
ing) and a heuristic based on the information gleaned during the
look-ahead phase. T hese solvers M e best for dealing with "small
but relatively difficult" randomly generated k-cnf formulas. A solver
in this category is SATZ (Li and Anbulagan, 1997).

"look-back" solvers, featur ing a sin1ple but efficient look-ahead (es
sentially un it-propagat ion with 2 literal watclling) , a rather sophis
ticated look-back based on "1-UIP learning'' and a constant time

heur istic based on the information gleaned during the look-back
phase. T hese solvers are best for dealing with "large but relatively
easy" instances, typically encoding non random prob lems. A solver
in this category is M CHAFF (Moskewicz et al. , 2001) .

3 By combining SIMO original reasoning strategies with those newly
implemented, we can obtain both a MCHAFF-like and a SATz-like SAT
solver , and consequently, a "look-back" answer set solver , and a "look
ahead" answer set solver . Our goal is to confirm the expectations that

on randomly generated problems, look-ahead solvers are best, while

on large problems, look-back solvers are best

also in answer set programming. G iven that all the different search
strategies are implemented, combined and analyzed in a common plat
form, our results are not biased by differences in the quality of the
underlying implementations.

4.3. IMPLEMENTATION OF test(S, II)

Consider a call to test(S, II), i.e., such that S is a total assignment not
falsifying the completion of II. Let X be the set of atoms in S and in
II.

The primary goal of test(S, II) is

1. to ver ify if X is an answer set of II, and

2. to compute a subset R of S to be used as reason if the SAT solver
uses learning.

In our implementation, the computation of the reason in volves looking
for a loop formula of II which is falsified by S. To descr ibe the proce
dure, the following terminology will be used: In a graph, a loop L is
maximal if it is a strongly connected component, and is also terminating
(using standard definition) if there is no other maximal loop L' with a
path from L to L' .

Assuming learning is enabled, tesf1.S, II) consists of the following
steps:

1. Comp ute the reduct IIX of II wit h respect to X ;

3 The terminology "small but relatively difficult" and "large but relatively easy"
refer to the number of atoms and are used to convey the basic intuitions about
the instances. To get a more precise idea in SAT, consider that in the SAT2003
competition, instances in the random and industrial categories had , on average, 442
and 42703 atoms respectively (Le Berre and Simon, 2003) .

2. Compute the answer set X' of IIX in linear t ime via the Dowling
Gallier procedure (Dowling and Gallier, 1984);

3. If S' =X\ X' is empty then return True: X is an answer set of II
(X' is by construction guaranteed to be a subset of X). Otherwise,

4. Consider ing the dependency graph of II restricted to the nodes in
S', a terminating maximal loop L is computed, and the correspond
ing loop formula F is determined. X does not satisfy F: T his result
has been established in (Lin and Zhao, 2002) for basic programs,
and it has been generalized to include nested programs in (Lierler,
2005).

5. F has the form (6) and since X is a superset of L, X does not
satisfy each of th e formulas in R(L). Since each formula G in R(L)
is a conjunction o f literals, G is t raversed looking for a literal whose
complementary belongs to S. This literal is added to the returned
reason and the whole proced ure is iterated t ill all the formulas in
R(L) are analyzed .

Each of the above steps takes at most linear t ime in the size of the
program. T he above described procedure for computing a maximal
terminating loop fals ified by S is the same as the one descr ibed in (Lin
and Zhao, 2004), generalized to hand le also nested programs. T he key
difference between our approach and Lin and Zhao's is that they add
the whole loop formula to the input set of clauses and then call again
the SAT solver from scratch. Here, the loop formula is only used to
find a (small) subset of S to be used as reason: As we already said,
our procedure is guaranteed to be sound, complete and working in
polynomial space even assuming the entire set S is returned (thus,
without making any use of loop formulas) .

If learning is disab led (as in CMODELS2 version with backtracking),
step 3 in the above descript ion of test(S, II) is modified in order to
return True if X\ X' is empty, and False otherwise.

5. E xperime ntal Res u lts

5.1. SOLVERS, BENCHMARKS AND SETTING

In order to evaluate t he effectiveness of our approach, we comparatively
tested CMODELS2 against other sta~of-the-art systems on a variety
of benchmarks. The systems we considered are SMODELS version 2.27,

SMODELSoc version 1.08, ASSAT version 2.00, DLV release of 2005-02-
23.4 It worths remarking that while SMODELS, SMODELScc, ASSAT and
CMODELS2 use LPARSE as preprocessor , and thus can be run on the
same input files, DLV does not. T his explains why DLV has been run
only on a few benchmarks. Analogously, ASSAT can only deal with basic
programs and thus it has not been run on some instances. Finally, for
DLV we mention that it is a system specifically designed for disj unc
t ive logic programs, and that very d ifferent results can be obtained
depending on the specific encod ing being used .

Consider ing CMODELS2, we have the possib ility to combine different
look-ahead/ look-back search strategies and heuristics. In order to keep
track of which combination we are using, we will refer to a combina
t ion of search strategies and heur istics using an acronym where the
first, second and third letter denote the look-ahead, look-back and
heur istic used , respectively. We considered 4 combination of reasoning
st rategies

1. ulv: our default answer set solver , incorporating a MCHA FF-like look
back SAT solver , with standard Unit propagation , backtracking
enhanced with Learning, and VSIDS heuristic.

2. fbu: a standard SATz-like look-ahead solver, with un it propagation
enhanced with Failed literal detection, standard Back-tracking, and
the Unit heur istic.

3. flv: an hybr id solver , featur ing un it propagation enhanced with
Failed litera l detection, backtracking enhanced with !,earning, and
the VSIDS heur istic.

4. flu: another hybrid solver, featur ing unit propagat ion enhanced with
Failed litera l detection, backtracking enhanced with Learning, and
the Unit heur istic.

We considered only these 4 combinat ions of reasoning strategies and
heur istics because, besides of being th.e most significant, the other pos
sible combinations do not make even sense: VSIDS heuristic requires
"learning'' in order to be significant, while unit heur istic requires failed
literal. fbu and ulv are t he two solvers that we expect to per form best
on randomly generated programs and on large progran1s respectively.
Assuming that the expectations are met, the performances of the two
hybr id solvers are of interest in order to

4 See http :/ / vwv . tcs .hut .f i /Soft gar e/ smodel s / , ht tp://www . nku .
edu/-vardj l / Research/ soodel s_cc .html, http :/ / assat.cs . ust . hk/,
http ://vwv .dbai . tuvien .ac.at/ proj /dlv/

determine whether add ing a powerful look-back (resp. look-ahead)
to a look-ahead (resp. look-back) solver leads to better per for
mances on randomly generated (resp. large) programs.

get indications about which combination of reasoning strategy is
the most promising on non randomly generated and non large
programs.

All the solvers where run in their pla in (optimal) configuration un less
suggested by the authors. For examples, SMODELScc has been run with
option "-nolookahead" (look-ahead turned off) as e.xplicitly suggested
by the aut hors in the SMODELScc's home page. For ASSAT, we had to
increase its internal limit on the number of atoms in the (grounded)
logic program (vadable C_MAXATOM).

About the benchmarks, our test-set includes both t ight and non
t ight, both randomly generated and non randomly generated programs.
Each benchmark belongs to a class of publicly availa ble programs which
have been used before in the literature, or to a class of benchmarks for
which a generator is available. In this last case, we may have gener
ated bigger instances than those repor ted in the literature. In order
to validate our expectations , we d ivide the benchmarks in three cate
gories, being (i) ra ndomly generated programs, (ii) "large" programs
with more t han (approximately) 10000 atoms, and (iii) other problems
not falling in the p revious categories. We say that a program is basic
when each rule has the form (1) where n = m, and non basic when a
program contains choice rules or weight constraints. Recall that choice
and weight constra int rules are elim inated with the help of auxiliary
atoms and nested rules of the form (1).

The results of the solvers on the most difficul t instances of each
class is given by means of tables, as it is customary in the answer set
literature. In the tables,

1. The first column is a progressive number.

2. The second column is the ratio between number of rules and number
of atoms for random problems, and the name o f the benchmark in
case it is a non randomly generated program.

3. The third column contains the number of atoms (# VAR) after
ground ing. For non random problems, a "+" to the r ight of the
number indicates that the instance has answer sets.

4. The remaining columns are one per solver, and they ind icate its
per formances.

For each row, the best result is in bold, and the results within a factor
of 2 from the best are underlined.

F inally, all the tests were run on a Pentium IV PC, with 2.8GHz
proces~or, 1024l\11B RAJ\11, running Linu.x. For SMODELS, SMODELScc,
ASSAT and CMODELS2, the t ime taken by LPARSE is not counted.5

Further, each system was st opped atter 3tiUU seconds ot CPU time
on non random problems, and 600 seconds on random problems, or
when i~ exceeded all the available memory. In the tables, these cases
are denoted with "TIME" and "MEM" respec~ively. Otherwise, the
tables repor t the CPU times in seconds needed by each solver to solve
the problem. Some of the results here presented have also been pre
sented in (Giunchiglia et a l. , 2004; Giunchiglia and Maratea, 2005a;
Giunchiglia and Mara tea, 2005b): All the experiments have been re
launched. T his j ustifies the minor differences in the results, especially
with (Giunchiglia et a!., 2004), where the exper iments were conducted
on a Pentium IV P C, with l.SGHz processor, 512~m RAJ\11 DDR
266MH z, r unn ing Lin ux.

5.2. RAN DOMLY GENERATED PROGRAMS

Table I shows the results for "small" progran1s, randomly generated
according to two different methodologies:

1. Problems (1)-(10) are translation of randomly generated k-SAT
instances. A k-SAT inst ance consists of L distinct clauses, where
each clause is generated by randomly selecting k d ifferent atoms
and negating each with probability 0.5. The number of d istinct
possible atoms in a k-SAT instance is a prior i fixed and denoted
with N . Then, each k-SAT instance F is conver ted to a program
as follows

if C = (l 1 V ... V lk), we define sat2tlp(C) to be the rule l. ~
not l1, ... , not lk where not l; is p if l; = ~p and is not p if l;
is the atom p;

T hen, if F is a k-SAT instance, the translation ofF, is

UcEpsat2tlp(C) UUpEP{P ~not p',p' ~not p}

where, for each atom p E P, p' is a new atom associated to p.
Those benchmarks are tight , and have been used in (Faber et a l. ,
2001; Simons et al. , 2002; Ward and Schlipf, 2004).

5 Adding the times of LPARSE wou]d not change the picture for DLV when
compared to CMODELS2 and other systems.

TabJe I. Performances on randomly generated logic programs. Problems
(1) -(10) are t ight programs being the translation of 3-SAT benchmarks. Prob-
!ems (11)-(20) are randomly generated logic programs using Lin and Zhao's
methodology.

PB # VAR SMODELS SMODELScc ASSAT DLV ulv flv flu fbu

1 4 300 1.2 7.23 0.85 2.55 0.59 0.8 1.5 1.37

2 4.5 300 39.97 TIME T~IE 130.49 TIME TIME 115.29 40.38

3 5 300 7.57 149.37 T~IE 26.78 456.22538.89 17.64 11.32

4 5.5 300 2.26 33.12 94.78 7.37 72.83 53.26 4.42 3.59

5 6 300 1.05 12.72 22.5 3.26 24.73 21.89 1.83 1.63

6 4 350 4.11 12.6 13.4 49.3 2.2 5.74 11.48 8.85
7 4.5 350 318.1 TIME T~IE TIME TIME TIME T~1E 384.66

8 5 350 44.2 TIME T~IE 147.16 TIME TIME 134.34 54.07

9 5.5 350 12.66 252.11 T~IE 32.07 TIME 506.08 20.37 13.61

10 6 350 3.37 37.99 174.61 8.76 95.61 104.36 6.05 4.86

11 4 200 3.3 2.02 2.44 32.39 5.34 3.32 1.93 1.75

12 4.5 200 6.84 1.7 3.28 83.63 6.15 5.82 2.09 1.93

13 5 200 22.8 2.5 8.21 82.97 9.82 9.02 3.88 3.33

14 5.5 200 9.42 1.76 4.14 39.47 7.5 6.38 2.97 2.85

15 6 200 8.12 0.85 M 23.93 3.24 2.95 1.25 1.53

16 4 300 298.67 73.64 234.00 TIME 265.43 218.48 41.97 31.05
17 4.5 300 TIME TIME T~IE TIME TIME TIME 190.73 135.11

18 5 300 TIME 412.69 T~IE TIME TIME TIME 136.67 99.75

19 5.5 300 TIME 233.72 T~IE TIME TIME TIME 129.29 78.63

20 6 300 TIME 191.62 T~IE TIME TIME TIME 107.34 65.83

2. Lines (11) -(20) correspond to programs randomly generated ac
cording to the methodology proposed in (Lin and Zhao, 2003b).
Given a set P with N atoms and a posit ive number k, a randomly
generated rule has

a) the head which is randomly selected from P, and

b) the body consisting of k - 1 d ifferent atoms, each randomly
selected from P and negated with probability 0.5.

A randomly generated progran1 with L rules consists of L ran
domly generated distinct rules. In general these randomly generated
progran1s are non t ight.

Both categories of problems have been generated with k = 3 and L
varying from 0.5 X N to 12 X N with step 0.5. N has been fi..xed to 300
and 350 for the instances being the t ranslation of k-SAT problems, and
to 200 and 300 for the instances generated accord ing to Lin and Zhao's
methodology.

For each ratio L / N (indicated in the column "PB"), we generated
10 instances, and t he table presents the med ian results for the most
difficult 5 ratios (the other being quite easily solved by all the systems).

On these benchmarks fbu has the overall best per formances: it is
almost always the fastest system or within a factor of 2 from the fastest.
SMODELS is faster than fbu in the median case when considering the
t ranslat ion of k-SAT inst ances. However , on these benchmarks, SMOD
ELS times out on 2 progra1ns when N = 300, while fbu times out only on
1 program.6 SMODELS' good per formances on these benchmarks are not
surprising given that also SMODELS im plements failed literal detection,
together with a heur ist ic sim ilar to our un it heuristic. However , consid
ering the programs generated according to Lin and Zhao's methodology,
we see that SMODELS is not competitive with tbu which (together with
flu) scales much better than all the r ival systems.

Consider ing CMODELS2's combinations, fbu is the fastest (confirm
ing expectations), but a lso flu performs quite well. Coupling these facts
with the bad performances of flv, it emerges that the unit heur istic is
very effective on these benchmarks and makes learning useless.

5.3. LARGE PROGRAMS

Table II shows the results when consider ing large (i.e., with approxi
mately 10.000 or more atoms) programs. As in the previous subsection,
the table is divided in two parts:

1. Progran1s (21)- (26) are tight: In particular (21)-(23) and (24)-(26)
encode respectively blocks world planning and 4-colorab ility prob
lems in a graph with V verte.xes. V is the number in the label "4cV"
in column PB. All the t ight programs but bw*e9 have answer sets
and are available at SMODELS' web site.

2. Progran1s (27)-(39) are non tight . In particular, we consider Hamil
tonian circuit problems on complete graphs, using both the basic
encoding of Niemela (1999) (programs (27)-(31)), and the non ba
sic encoding (programs (32)-(36)) from htt p : I I=. cs. engr. uky.

6 (ncreasing N to 400 we get t he same picture: SMODELS is faster than fbu in the
median case, but it times out on 11 programs, while fbu times out on 10. \Ve decided
not to show the resul ts for N = 400 because most o f t he o ther solvers times out also
in the median case for most of t he ratios L/ N.

Table I I. Performances on large programs. Problems (21)- (26) are tight. Problems
(27)- (39) are non tight.

PB #VAR SMODELS SMODELScc ASSAT DLV ulv flv flu fbu

21 bw*d9 9956+ 6.76 7.63 1.72 1.02 5.84 2.69 2.75

22 bw*e9 12260 4.3 4.51 4.22 0.98 1.91 1.92 1.93

23 bw*eiO 13482+ 11.15 12.43 2.66 1.29 7.51 5.03 4.95

24 4c1000 14955+ 22.28 4.95 0.6 0.48 37.86 15.41 15.23
25 4c3000 44961+ 202.84 1143.13 2.19 8.86 369.27 144.12 142.83

26 4c6000 89951+ 856.13 TIME 14.85 99.50 T IME 583.55 578.98

27 np60c 10742+ 242.61 30.81 84.87 361.80 2.83 1611.32 44.12 44.11

28 np70c 14632+ 557.08 55.31 520.80 798.96 4 .69 T IME 97.44 97.87

29 np80c 19122+ 1001.88 00.59 53.25 1587.60 7 .2 T IME 195.08 100.49

30 np90c 24212+ 2064.61 144.72 1416.24 2807.84 10.42 T IME 364.54 357.92

31 np100c 29902+ 3573.19 215.37 TIME TIME 14.23 T IME 610.2 608.96

32 np60c 10683+ 7.05 3.82 3.55 340.86 8.03 7.82

33 np70c 14563+ 15.67 5.92 10.54 782.69 15.39 14.92

34 np80c 19043+ 32.29 9.01 15.05 1538.86 23.63 25.94

35 npOOc 24123+ 53.21 14.13 32.19 2918.82 38.75 50.08

36 np100c 29803+ 83.11 14.95 34.18 T IME 59.15 62.64

37 mutex4 14698+ 14.14 5.35 0.54 367.89 0.46 28.29 28.3 28.26

38 mutex3 278074+ 163.94 110.27 MEM TIME TUVIE TIME TIME

39 phi3 16930+ 3.23 3.04 53.28 1.43 55.62 12.15 TIME

edu/ai /benchmark- s ui t e/ham- cyc. sm. The remaining 3 programs
in the table are related to the problem of checking requirements in
a determin istic automaton and are descr ibed in (~te!anescu et a!.,
2003). The first of these 3 programs is the biggest instance in the
sni t.P. o f t.hP. "TD F D" prohlP.ms, wh iiP. t.hP. othP.r two progr".ms h P.long
to the "Morin" suite.

Overall, the picture that emerges is that u lv is the fastest system:
Even though SMODELS is the only system that never t imes out, it is
far slower than ulv (and other systems as well) on many problems. The
good per formances of ulv are particularly remarkable given that the
test suite conta ins Hamiltonian circuit problems, and these benchmarks
have e.xponentially many loops. Thus, one would expect these problems
to be d ifficult for ASSAT , but also for all CMODELS2 versions in the case

it will generate and then reject (exponentially) many candidate answer
sets. As it can be observed, this is not the case, at least for ulv. Finally,
the table also shows an instance on which ASSAT blows up in memory:
As a matter of facts , ASSAT exceeds all the available memory also on
other instances, here not shown because all the other systems t ime out
on them.

Consider ing the different CMODELS2 versions - beside the fact that
ulv is the best version- by comparing ulv and flv we see that adding
failed-literal usually causes a significant degradation in the per for
mances. These results match the e.xpectations. Indeed , ulv (and also
ASSAT) uses a MCHAFF-like solver and performs a few operat ions at
each (branching) node: For (very) large programs, even a linear-time
(in the number of atoms) operation can be prohibit ive if per formed
at each branching node. Interestingly, consider ing flv, flu and fbu we
see that it is almost always the case that the last system performs
better than the second, and that the second is better than the first.
On these benchmarks, adding learning to a look-ahead solver does not
help. However , the gap between fbu and flu is not big. T hus , add ing
learning to fbu does not help, but does not hur t too much : We believe
that this is due to the lazy data structures used by all the CMODELS2
versions, which are fundamental to keep low the burden of managing
learned clauses.

5.4. NON RANDOM, NON LARGE PROGRAMS

Table III contains the results on non random, non large logic programs.
In more details,7

1. Benchmarks (40)- (48) and (73)- (77) are respectively t ight and non
t ight bounded model checking (Bl\IIC) problems of asynchronous
concur rent systems, as descr ibed in (Heljanko and Niemela, 2003).
These problems are about proving propert ies in a given number of
steps, represented as the last number in the instance name.

2. Benchmarks (49)- (54) are about the Schur numbers problem, ex
pressed as basic (49)- (51) and non basic (52)-(54) programs respec
t ively. T he label "schurX.K-N" refers to a problem where, given a
posit ive integer n , the set of integers N defined as N = { 1, 2, ... n }
has to be partitioned into K bins such that each bin is sum- free,

---=--
7 Benchmarks (40)-(48), (73)-(77) and the generator are available at ht tp :

I /llw. t cs . hut . f i/"kepa/oxperiment s / boundsmodel s / . Benchmarks (49)-(57) are
available at the ASPAMGL'S web page ht t p: / / asparagus. cs . uni- pot sdac .de/.
Benchmarks (58)-(60) belong to the SMODELS test suite and are publicly available at
ht tp :/ / INti . t cs . hut . f i/Sof t ware/ smodel s / test s/, encoding by Niemela (1999).

Table Il l. Performances on non random , non large programs. Benchmarks
(40)-(60) are t ight, while the o thers are non t ight.

PB # VAR SMODELS SMODEL.See ASSAT DLV

40 d· 12•i+9 J 186 368
41 k• ;•29 3 199 990.95

42 k's'29 3 169 999.46
43 m•3•;•10 1933+ 10.98
44 m•4•i•J2 3475+ LL32.J6
45 m•4•s•8 J586+ 89.26
46 q• i• J7 220 1 5L7.64
47 e•3•i• t5 7832+ 35.58
48 e•4•i• t3 6447 22 1. 18

435.48

20.88
16.89

1.65
3 .82
1.3

53.71
77.00
56.2 1

ulv ftv ffu fbu

223.93 290.15 353.53 T IME

415.54 204.87 44.14 589.45
353.69 1028.77 59.99 T IME
16.23 32.23 26.71 16.55

1063.15 867.49 T IME 3229.99

17.02 27.59 421.30 327.55

1539.96 505.15 259.05 816.26
479.28 TIM E 7.15 6.87
87.63 567.27 20.02 19.41

49scllurl.4-43 736+ 0.43 0.95 0.67 590.57 1.4 2.07 0.82 0.88

50scllurl.4-44 753+ 0.44 91.25 1.07 T IME 5.97 5.62 92.63 43.0 1
51scllurl.4-45 779 571.J7 111 0.68 434.93 T IME 229.04 4 17.34 244.35 116.51

52 scllur2.4-43 564+ 0.33 0.56

53 scllur2.4-44 577+ 82.72 47.78
54 scllur2.4-45 590 578.73 672.86

55 15puz.l8 5945+ 17.55
56 15puz.l 9 6258+ 20.94
57 15puz.20 6571 79.27

6.94
7. 14

8.22

I. 27 1.04 0.4 0.38
6.14 2.8 47.99 18.93

226.69 392.78 148.39 63.2

1.06 141.68 0.98

3.61 208.4 1 1.35

4.59 TIME 1.28

2.9 9.85 9.24
2.93 11.65 10.76

10.22 64.54 82.68

58 pige.9.JO 210 44.77
59 p;ge.l0.1 I 253 484.63

60 p;ge.51.50 5252+ 106.79

65.91 1 .1
1029.38 23.83
24.29 2.49

1.26 4.33 1259.84 32.06
12.41 55.46 T IME 339.06

1.63 221.33 6.85 7.26

61

62
63
64

65
66

67

68
69
70

71
72

8 i-J
JJ i-J

8 ;
Jl i

8 ;+ I
ll ;+ I

8 i-J
JJ i-J

8 ;
Jl i

8 ;+ I
II ;+ I

2329 7.48

4760 36.18

2627+ 17.35
5301+ 37.71

2925+ 12.08
5842+ 54.30

1897 0.53

3812 1.6
2 132+ 0.76
4233+ 1.85

2367+ 1.8
4654+ 2.5

73 d'1o•;• 12 1488+ 132.72

74 d 'IO's'9 1 140+ 9.75
75 d '12's' IO 15 ll+ 296.45
76 d•8•i• JO J003+ L76

77 d '8's'8 819+ 0.73

7.17

35.53
9.30
43.90

15.17
62.39

0.66

1.96
0.8
2.57

1.05
4.12

2 .25
3 .11
1.1

2.42
0.14

0.86

3.15
0.08
3.59

1.09
3.9

0.49 0.85 0.84 0.8 1

1.64
0.63
2.16
1.34

2.49

0.15

0.39
0.22
0.52
0.68

0.6

4.92
1.27

15.55

4.31
24 .27

0.29

1.71
0.42
6.76

1.65
10.42

488.76 12 12.89

6.38 19.31
53.2 165.9

12.28 25.03
0.47 3.73

2.47
0.89
6.07
1.34

22.01

0.27
0.75
0.27

1.9
0.47

5.26

2.44
0.88
5.79
1.37

19.71

0.27

0.7

0.3
1.88
0.49

5.21

152.8 T IME
87.64 T IME

733.9 T IME

1.21 11.86
2.38 1221.53

i.e., for each ZEN and YEN (i) Z and Z+Z are in d ifferent bins,
and (ii) if Z and Y are in the sanH? bin, then Z+ Y is in a different
bin. We denote with X=1 the bruoic encoding and with X=2 the
non basic encoding.

3. Benchmarks (55) (57) arc progran:s encoding the 15 puzzle prob
lem. In a label "15puz.M" , M denoted the number of moves in which
the final configuration has to be reached. T he init ial configuration
is not fixed and varies from program to program.

4. Benchmarks (58)-(60) are t ight programs encoding pigeons prob
lems. In a label "p ige.h.p" , h denotes the number of holes and p
the number of pigeons.

5. Benchmarks (61)-(72) are blocks world planning problems encoded
as basic programs in lines (61)-(66), and as non basic programs
in lines (67)- (72)) , the formulations due to Erdem (2002). In the
Lable:s, iu tln~ culutuu P B Lln~ "8" or ul l ~~ repr~eul~ Lit~ uuu tbe r o f
blocks; while an "i" (standing for "number of steps") means that
the instance corresponds to the problem of finding a plan in "i"
steps, where "i" is the minimum :nteger for which a plan exists.
Thus, the instances with "i" and "• + 1" in the label admit at least
one answer set, while those with "i - 1" do not have answer sets.
Technically speaking, these progran1s are non t ight. However, t hese
proble1ns are "t ight on their completion models" (Babovich et al. ,
2000): If II is one such program, each model of the completion of
II is guaranteed to be also an answer set of II.

For these benchmarks results are mixed: On Bl\IIC problems, SMODELScc
has the best performances overall, while on the other benchmarks it is
ulv which has the best performances overall. What is most interest ing
is that there is no version of CMODEL~2 dominating the others on the
BMC problems. Given this fact and SMODELScc good performances on
BMC instances, we believe that on non random, non large problems
the "overall best" solver is somewhere in between ulv and fbu, i.e., that
it can can be obtained by adding a little bit of failed-literal detection
to ulv. This can be done is severa l ways, e.g., by checking if a literal
is failed only if it belongs to a pool of "most promising" literals (as,
e.g., it is done by SATZ), or by checking all the literals but not at each
branching node. All of this is subject of future research.

It is also wor th noting that, overall, flu is better than flv: This can
be explained by the bad interaction between failed-literal and VSIDS.
For non random, large formulas, this phenomena was already showed
to hold in SAT (Giunchiglia et al., 2000).

5.5. CMODELS2 AN D THE OTHER SYSTEMS

Given the results of the experimental analysis, we now sum up what
we consider to be the advantages and disadvantages of each system we
considered, both from a theoretical and a pract ical point of view, when
compared to CMODELS2.

SMODELS (Simons et al. , 2002). SMODELS is a system for non d is
junctive answer set programming. Its algorithm has been inspired by
Davis-Logemann-Loveland proced ure, and incorporates powerful prun
ing techniques.

SMODELS is also the basic engine for the solver for d isjunctive logic
programming called GNT (J anhunen and Niemela, 2004; Janhunen et al.,
2005). A key feat ure of SMODELS is that it is a native system, i.e.,
it works directly on the input logic program. Because of this, it can
take advantage of the structure of the progran1, e.g., by keeping more
compact representations of the rules than CMODELS2, which comp iles
down everything to a set of clauses. However , it does not incorporate
some of the most recent advances, e.g., learning. T he experimental
results for SMODELS are still positive overall, being among the best
solvers in al l the categor ies of problems we considered.

SMODELSoc (Ward and Schlipf, 2004). SMODELScc is SMODELS enhanced
with clause-learning (Moskewicz et al., 2001) and a BERKMIN-like
heur istic (Goldberg and Novikov, 2003). SMODELScc inher its from SMOD
ELS its compact data-structures for rules. However , d ue to such com
pactness, t he incorporation of learning in SMODELS required the con
st ruct ion of an implication graph, and this operation turned out to
be relatively complex and costly when compared to the analogous
construction in a SAT solver. Indeed, SMODELScc cannot deal with
programs containing weight constra int rules, and this also witnesses
the difficulty of implement ing learning on top of SMODELS compact
data structures for such rules. On the other hand, learning comes for
free with our approach. Further , with relatively lit t le additional pro
granlming effor t, our procedure can be based on the latest SAT tools.
We used our tool SIMO to validate t he viability and effectiveness of the
approach, and obtained a solver with, e.g., learning and un it propaga
t ion based on lazy data structures using a two literal watching schema.
Mod ifying SMODELS or SMODELScc in order to use lazy data structures
would require a rewrit ing of significant portions of the solvers. From a
practical point of view, SMODELScc is quite effective, especially on some
classes of non t ight programs.

DLV (Leone et a l. , 2005). DLV is the state-of-the-art system in d isj unc
t ive logic programming, with techniques especially tailored for this class
of programs. Also DLV is a native system and its algorithm is based on
the Davis-Logemann-Loveland procedure.

However , since it can deal with the more expressive class of d isj unc
t ive programs, it needs a co-NP check to test if a candidate model is
indeed an answer set. The check is per formed only if needed: In the
case of non disj unctive programs (the ones this paper faces), it is not
applied.

DLV has same peculiarities: Dur ing the comp utat ion , it uses a four
valued interpretations for atoms. The t ruth values considered are True,
Fal.se, "undefined" and "must be t rue"; a "must be true" atom is like an
atom assigned to True but it is missing a "suppor ting" rule that must
be determined later on. Moreover , DLV heur istic is guided by a pre
selected list of litera ls (PT-litera ls) with the aims of maintaining the
candidate model as minimal as possible. DLV key strength is that it can
deal with disjunctive logic programs. However, on the restr icted class
of non d isjunct!ve logic programs, its performances are not impressive,
at least on the benchmarks that we considered and with the encodings
that we used.

ASSAT (Lin and Zhao, 2002; Lin and Zhao, 2004). ASSAT has been the
first ASP SAT-b ased system non restricted to t ight programs. T he SAT
solver is used as a black box and thus ASSAT inherits all the op t imiza
t ions implemented in it . ASSAT uses MCHA FF (Moskewicz et al. , 2001) as
SAT solver. As we have seen, ASSAT is quite effect ive especially on non
random programs. From a theoretical perspective, the main drawback
of ASSAT is that it is not guaranteed to work in polyn omial space. This
fact also emerges in some of the benchmarks that we considered and
for which ASSA'Ir exhausted all the available memory. From a practical
point of view, ASSAT is limited to basic programs and cannot handle
choice, cardinality and weight constra int rules.

CMODELS2. CMODELS2 is a SAT-based system designed after ASSAT in
order to solve its theoretical drawbacks. CMODELS2 incorporates vari
ous solvers. fbu is our default choice for randomly generated programs,
and ulv is our default for non random programs. The exper imental anal
ysis showed that on random problems fbu has the best per formances
overall of all the solvers that we considered, and the same ho Ids for
ulv when considering large problems. On the other benchmarks , ulv is
competit ive wit h the best of the other solvers. These results show the
effectiveness of our SAT-based approach. These results are part icularly

remarkable given that our two solvers implement relatively simple SAT
strategies, if compared to the ones that are now available, some of which
already incorporated by various answer set solvers. For instance, ulv
uses MCHAFF heur istic, while Berkmin heuristic (used by SMODELScc)
is considered to be better . In fbu each not yet assigned literal is checked
to see if it is failed , and these checks are per formed before each branch
ing: SMODELS and SMODELScc implement the cor respondent strategy
of failed-literal, but they check only a subset of the unassigned literals
(and the unchecked are guaranteed to be not failed). We expect that the
incorporation of Berkmin heur istic and SMODELS failed literal detection
strategy in ulv and fbu respectively will lead to fur ther improvements
in the per formances when run on the respective applica tion domains.

6. Conclus ions and fut ure work

We have presented a SAT-based procedure that (i) can deal with any
logic program (ii) works on a propositional formula without additional
var iables exoept for those introduced dur ing the clause form conversion,
(iii) is guaranteed to work in polynomial space. Fur thermore, ASP
SAT \,;t;LU be ea:sily utotlifietl iu onJe r Lv w tup uLe all a.tJ.:swer :set:s (:still
working in polynomial space). We have shown how to imp lement ASP
SAT on top of current sta~of-the-art solvers with/without learning.
The experimental evaluation shows that:

1. CMODELS2 is competitive with other state-of-the-art systems;

2. depend ing on the type of program different search strategies are
best.

This suggests that future development of answer set solvers should be
done by focusing on certain classes of problems. In our analysis we iden
t ified two classes of programs that need completely d ifferent strategies,
i.e. , random and large progra1ns. This also implies that benchmarking
should be done by considering the application domain which they have
been developed for . T his reflects what is nowadays a standard in the
SAT competit ion, where there is a t rack for solvers designed for random
problems, and a separate t rack for solvers designed for large ind ustr ial
benchmarks. Solvers get designed and specialized for one track, and
indeed the top performers in one t rack behave very badly in the other.

Consider ing the future, there are several d irections in which this
work can be improved.

First CMODELS2 can be improved as a solver for non disj unctive
programs. This can be done by improving the SAT solving part, i.e.,
DLL, or the checking procedure, i.e. , test.

As anticipated in the previous section, we believe that DLL perfor
mances can be improved by implementing better failed literal detection
st rategies and/ or heur istics. About the heur ist ics - besides those de
rived from t he SAT literature as BERKMJN 's- we believe that it is
possible to design heur istics tailored for answer set solving. One such
heur istic assigns atoms to False while branching: Intuit ively, we would
like to generate assignments with as many atoms as possible assigned to
Fal.se, thus going through min imality. A first, simple implementat ion
of this heuristic, prod uces dramatic speed-ups on some domains (for
instance, ulv is able to solve all the non tight problems in Table II in
a few seconds, including the mutex3 instance, i.e., the only instance
on which ulv t imes out) , but it seems to badly interact with learning
in some other domains. Another possibility is to incorporate another
SAT solver with the latest advancements, e.g., :MJNJSAT (Een and
Sorensson, 2003) the winner of the last SAT competition.

Consider ing the checking procedure test, recently Gebser and Schaub (2005)
introduced the notion of "active elementary loop with respect to an
assignment 8", and they showed that the cor respond ing loop formula
is falsified by S, like the formula associated to a maximal terminat-
ing loop . One crucial difference between an active elementary loop
and a maximal terminating one is that no sub-loop of an active el
ementary loop is also falsified by S. A maximal terminating loop on
the other hand is not always an active elementary loop of the pro-
granl. It is still an open question whether the use of active elementary
loops in SAT-based proced ures like CMODELS2 or ASSAT improves their
performances.

Another direction of work is to e.' "tend CMODELS2 ideas in order to
deal with disj unctive logic progran1ming where, as for DLV, the co-NP
check involves the use of a SAT solver. A preliminary implementat ion
and analysis are encouraging (Lieder, 2005), but more work has to be
done in order to improve the overal l efficiency of t he solver.

Acknow led geme n ts

We are grateful to Paolo Ferraris, Nicola Leone, Vladimir Lifschitz
and the anonymous reviewers of this paper for their helpful comments
and/or discussions on the subject of the paper; to Esra Erdem and
Keijo Heljanko for provid ing us with the benchmarks; and to Francesco
Calimeri for his suppor t on DLV. This work is par tially suppor ted by
MIUR (Italian Ministry of Ed ucation, University and Research), and
Te.xas Higher Education Coord inating Board under Grant 003658-0322-
2001.

Refere nces

Armando, A., C. Castellini, and E. Giunchiglia: 1999, 'SAT-based procedures for
temporal reasoning'. In: Lecture Notes in Computer Science, Vol. 1800. pp.
97- 108.

Armando, A., C. Castellini, E. Giunchiglia, and M. Maratea: 2005, 'The SAT-based
Approach to Separation Logic'. Journal of Automated Reasoning. To appear.

Babovich, Y., E. Erdem, and V. Lifschitz: 2000, 'Fages' Theorem and Answer Set
Programming'. In: Proc. NMR.

Baral, C. Gelfond, M. and R. Scher I: 2004, 'Using answer set programming to answer
complex queries'. In: Workslwp on Pragmatics of Question Answering at HLT
NAACI2004.

Barrett, C. W., D. L. Dill, and A. Stump: 2002, 'Checking Satisfiability of First
Order Formulas by Incremental Translation to SAT'. In: E. Brinksma and 1< . G.
Larsen (eds.): 14tlt International Conference on Computer Aided Verification
{CAV), Vol. 2404 of Lecture Notes in Computer Science. pp. 236- 249, Spr inger.
Copenhagen, Denmark .

Bayardo, J r., R. J . and R. C. Schrag: 1997, ' Using CSP Look-Back Techniques to
Solve Real-World SAT Jnstanoes'. In: Proceedings of the 14th National Con
ference on Artificial Intelligence and 9tlt Innovative Applications of Artijicwl
Intelligence Conference {AAAI-97/ IAAI-97). Menlo Park, pp. 203- 208, AAAI
Press.

Ben- Eliyahu, R. and R. Dechter: 1996, 'Propositional Semantics for Disjunctive
Logic Programs'. Annals of Mathematics and Artificial Intelligence 12, 53-87.

Clark, 1< .: 1978, '1\egation as failure'. In: H. Gallaire and J . Minker (eds.): Logic
and Data Bases. 1\ew York: Plenum Press, pp. 293-322.

Stetllnescu, A., J. Esparza, and A. Muscholl: 2003, 'Synthesis of Distributed Alg<>
rithms Using Asynchronous Automata'. In: Proceedings of CONCUR'OS, Vol.
2761. pp. 27- 41, Springer.

Davis, M., G. Logemann, and D. W. Loveland: 1962, ' A mach ine program for
theorem proving'. Communication of ACM 5(7), 394- 397.

de Moura, L., H. Rue6, and S. Sorea: 2002, ' Lazy Theorem Proving for Bounded
Model Checking over Infinite Domains'. In: A. Voronkov (ed.) : Automated Deduc
tion - CADE-18, Vol. 2392 of Lecture Notes in Computer Science. pp. 438-455,
Springer-Verlag.

Dixon, H. E., M. L. Ginsberg, E. M. Luks, and A. J. Parkes: 2004, 'Generalizing
Boolean Satisfiability II: Theory.'. J . Artif. Intell. Res. {JAIR} 22,481- 534.

Dowling, W. and J. Gallier: 1984, 'Linear-timealgorithms for testing thesatisfiability
of propositional Hom formulae' . Journal of Logic Programming 3, 267- 284.

Een, N. and N. SOrensson: 2003, 'An Extensible SAT-solver ' . In: Theory and Appli
cations of Satisfiability Testing, 6th International Conference, SAT ll003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers. pp. 502- 518.

Erdem, E.: 2002, 'Theory and applications or answer set. programming•. Ph.D. thesis,
University of Texas at. Austin.

Erdem, E. and V. Lifschitz: 2001, ' Fages' theorem for Programs wi th Nested
Expressions•. In: Proc. International C(rtlference on Logic Programming. pp.
242- 254.

Faber, \V., N. Leone, and G. Pfeifer: 2001, 'Experimenting with Heuristics for
Answer Set Programming.'. In: IJCA I. pp. 635-640.

Fages, F.: 1994, (Consistency of Clark's completion and existence of stable models•.
Journal of Methods of Logic in Computer Science 1, 51-60.

Ferraris, P. and V. Li fschit,z: 2005, '\Veight constraints as nested ex pressions 1
• Theory

and Practice of Logic Programming 5, 45- 74.
Gebser, M. and T . Schaub: 2005, ' Loop5: Relevant or Redundant?'. In: Proc of 8th

International Conference on Logic Programming and N mJmonotonic Reasoning.
pp. 53-65, Springer-Verlag.

Gelfond, M. and V. Lifschitz: 1988, 'The stable model semantics for logic program
ming' . In: R- Kowalski and 1<. Bowen (eds.) : Logic Programming: Proc. Fifth
lnt'l C<mf. and S1J111p. pp. 1070-1080.

Gelfond, M. and V . Lifschitz: 1991, 'Classical negat ion in logic programs and
disjunctive databases•. New Genemtion Computing 9 , 365-385.

Gent, 1., H. V. Maaren, and T. Walsh (eds.): 2000, SAT!lOOO. Highligh.U of
Satisfialnlity Research in the Year 2000. lOS Press.

Giunchiglia, E., F. G iunchiglia, and A. Tacchella: 2002, 'SAT- Based Decision Proce
dures for Classical Modal Logics'. Journal of Automated Reasoning 28, 143-171.
Reprinted in (Gent et al., 2000).

Giunchiglia, E. and M. Maratea: 2005a, 'On the relation between SAT and ASP pro.
oedures (or, between smodels and cmodels)'. In: Proc. of the 21th lruemati<mal
Conference on Logic Programming (ICLP). pp. 37-51, Springer.

Giunchiglia, E. and M. Maratea: 2005b, 'Evaluating Search Strategies and Heuristics
for Efficient Answer Set Programming'. In: Advanced in Artificial Intelligence:
Conference of the ltaJian Associati<m for Artificial Intelligence, Al*IA '05,
Milan, Italy, September !20-!29, 2005: proceedings. pp. 37- 51, Springer.

Giunchiglia, E., M. Maratea, and Y. Lier ler: 2004, 'SAT- Based Answer Set Pro.
gramming'. In: Proceedings of the Nineteenth National C<mference <m Artificial
Intelligence, Sixteenth Conference on Innovative Applications of Artificial Intel
ligence, July 25-!29, 12004, San Jose, CaJifomia, USA. AAAI Press/ The MIT
Press.

Giunchiglia, E., M. Maratea, and A. Tacchella: 2003, '(ln)Effectiveness of Look
Ahead Techniques in a Modern SAT Solver' . In: 9th International Conference
on Principles and Practice of Constraint Programming (CP-03}. pp. 842- 846.

Giunchiglia, E., M. Maratea, A. Tacchella, and D. Zambonin: 2001, 'Evaluating
Search Heuristics and Optimizat;ion Thchniques in PropositionaJ Satisfiability. •.
In: Automated Rea.s<ming, First lntemationaJ Joint Conference {IJCAR}, Vol.
20&3 of Lecture Notes in Computer Science. pp. 347- 363, Springer Verlag.

Goldberg, E. and Y. Nov ikov: 2003, 'BerkMin: A fast and robust SAT solver '. In:
Proc. of the Design, Automation and Test in Europe C<mference and Exposition
2003. pp. 142- 149, LEEE Computer Society.

Heljanko, 1<. and I. Niemela: 2003, 'Bounded LTL Model Checking with Stable
Models'. Theory and Practice of Logic Programming 3(4&5), 519-550. Also
available as (CoRR: arXiv:cs.L0/0305040).

Janhunen, T.: 2003, 1-'franslatability and intranslatability resul ts for certain cJasses of
logic programs'. Ser ies A: Research report 82, Helsinki Un.iversity o f Thchnology,
Laboratory for Theoretical Computer Science, Espoo, FinJand.

Janhunen, T.: 2004, ' Representing Normal Programs with Clauses'. In: In Proc. of
16th European Conference on ArtificiaJ lnteJligence, EGA ! !200./c. pp. 358-362,
lOS Press.

Janhunen, T . and I. Niemela: 2004 , 'GnT - A solver for d isjunctive logic program
ming' . In: Proc. of the 7th lntemation Conference on Logic Programming and
Nonmonotonic Reasoning {LPNMR). pp. 331- 335, Springer-Verlag.

Janhunen, T ., I. Niemela, D. Seipel, P. Simons, and J .-H. You: 2005, 'Unfolding
Part iality and Disjuntion in Stable Model Semantics' . Accepted to the A CM
1tunsaction on Carnputati<mal Logic.

Lahiri, S. K., S. A. Seshia, and R.. E. Bryant : 2002, 'Modeling and Verification
of Ou~of-Order Microprocessors in UGLID' . In: F<mnal Methods in Computer
Aided Design, 4th. International Conference, FMGAD ll002, Portland, OR, USA,
November 6-8, ll002, Proceedings. pp. 142- 159.

Le Berre, D. :.md L. Simon: 200:1, 'The essentials o f t he SAT10:l Competition•.
In: Theqry and Applications of Satisfiability Testing, 6th International Confer
ence, SAT 12009. Santa M argherita Ligure, Italy, May 5-8, 2003 Sekcted Revised
Papers, Vol. 2919 of LNGS.

Lee, J. and V. Lifschitz: 2003, 'Loop formulas for disjunctive logic programs•. In:
Proc. ICLP-OS.

Leone, N., G. P feifer, W. Faber, T . Eiter, G. Gottlob, S. Perri, and F. Scarcello:
2005, 'The DLV System for I<noiVledge Representation and Reasoning' . Accepted
to AGM Thansaction on Computational Logic {ToCL).

Li, C. M. and Anbulagan: 1997, ' Heuristics Based on Unit Propagation for Satisfi
abilicy Problems' . In: Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJGA I-!J7). San francison, pp. 366- 371, Morgan
Kaufmann Publishers.

Lierler, Y.: 2005, 'Disjunctive Answer Set Programming v ia Satisfiability!. In:
Answer Set Progrnmming, Vol. 142 of CEUR Workshop Proceedings.

Lierler, Y. and V. Lifschitz: 2003, 'ComputingA nsiVer Sets Using Program Comple
tion•. AvaiJable at http: I / vww . cs . utexas . edu/users/ tag/cm•)del s . htcl.

Lifschitz. V.: 1996. ' Foundations of loe:ic proe:rammine:'. In: G. BreiVka (ed.) :
Principles of Kn<YWledge Representation. CSLI Publications, pp. 69- 128.

Lifschitz, V. and A. Razborov: 2004 , 'Why are there so many loop formulas?'. ACM
'Ihlnsactions em Computational Logic. To appear.

Lifschitz, V., L. R. Tang, and H. Turner: 1999, 1Nestedexpressions in logic programs•.
Annals of Mathematics and Artificial Intelligence 25, 369-389.

Lin, F. and J. Zhao: 2003a, 'On Tight Logic Programs and Yet Amther Translation
from Normal Logic Programs to Propositional Logic'. In: Proc. IJGAJ.

Lin, F. andY. Zhao: 2002, 'ASSAT: Computing Answer Sets of a Logic Program by
SAT Solvers'. In: Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applica!ions of Artificial
Intelligence {AAAI/ IAAI-02). Menlo Pare, CA, USA, pp. 112- 118, AAAI Press.

Lin, F. and Y. Zhao: 2003b, 'Answer Set Programming Phase Transition: A study
on Randomly Generated Programs'. In: Proc. IGLP.

Lin, F. and Y. Zhao: 2004, 'ASSAT: computing answer sets of a logic program by
SAT solvers.'. Artificial Intelligence 157(1-2), 115- 137.

Lloyd, J. and R. Topor: 1984, ' Making Prolog more expressive'. Journal of Logic
Programming 3, 225-240.

Marek, V. and V. Subrahmanian: 1989, 'The Relationship Between Logic Program
Semantics and Non-Monotonic Reasoning' . In: G. Levi and M. Martelli (eds.) :
Logic Programming: Proc. Sixth lnt'l Conf. pp. 600-617.

Marek, V. and M. Truszczynski: 1999, 'Stable models as an alternalive programming
paradigm1

• ln: The Logic Programming Paradigm: a!l5 . Years perspective, Lecture
Notes in Computer Science. Springer Verlag.

Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik: 2001,
'Chaff: Engineering an Efficient SAT Solver ' . In: Proceedings of the 38th Design
Automation Conference {DAC'Ot). pp. 530-535.

Niemela, 1. : 1999, 1Logic programs with stable model semantics as a constraint
programming paradigm'. Annals of Matltematics and Artificial Intelligence 25,
241- 273.

Nieuwenhuis, R. and A. Oliveras: 2005, 'DPLL(T) with Exhaustive Theory Propaga
tion and Its Application to Difference Logic.'. In: Computer Aided Verification,
17th lruernational Conference, CA V 2005, Edinburgh, Scotumd, UK, July 6-10,
2005, Proceedings. pp. 321- 334.

Nogueira, M., M. Balduccini, M. Gelfand, R. Watson, and M. Barry: 2001, 'A n A
Prolog decision support system for the space shuttle'. In: Work~ng Notes of the
AAAI Spring S1flllposium on Answer Set Programming.

Plaisted, D. and S. Greenbaum: 1986, 'A Structur<>-preserving Clause Form
Translation'. Jounwl of Symbolic Computation 2, 293- 304.

Sheridan, D.: 2004, 'The Optimality of a Fast CNF Conversion and its Use
with SAT'. In: Proceedings of SAT, International Conference on Theory and
Applications of Satisfiability Testing, Vancotroer {Canada}.

Siekmann, J . and G. Wrightson (eds.): 1983, Automation of Reasoning: Classical
Papers in Computational Logic 1967- 1070, Vol. 1-2. Springer-Verlag.

Silva, J . P. M. and K. A. Sakallah: 1996, 'GRASP - A new Search Algor ithm for
Satisfiability'. Thchnical report, University of ~vtichigan.

Simons, P., I. Niemela, and S. T imo: 2002, 'Extending and Implementing the Stable
Model Semantics'. Artificial lruelligence 138(1-2), 181- 234.

Syrj anen, T.: 2003, 'Lparse Manual8 '.

Tseitin, G.: 1970, 'On the Complex ity of Proofs in Propositional Logics1
• Sem-inars

in Matltematics 8. Reprinted in (Siekmann a.nd Wrightson, 1983).
Ward, J. and J. S. Sch lipf: 2004, 'Answer Set Programming with Clause Learning.'.

In: Logic Programming and N<mmmwtonic Reasoning, 7th International Confer
ence, LPNMR 2004, Fort Lauderdale, FL, USA, January 6-8, !2004, Proceedings.
pp. 302- 313.

Zhang, L., C. F. Madigan, M. W. Moskewicz, and S. Malik: 2001, 'Efficient Conflict
Driven Learning in a Boolean Satisfiability Solver'. In: lnternati<mal Conference
on Computer-Aided Design {ICCAD '01). pp. 279-285.

8 ht tp://vvv . t cs . hut. f i / Sof t ware/ s model s / l parse .ps .gz .

	Answer Set Programming based on Propositional Satisﬁability
	Recommended Citation

	tmp.1383866275.pdf.iNC9W

