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Abstract. Answer Set Programming (ASP) emerged in the late 1990s as a new 
logic programming paradigm which has been su~fulJy applied in various appli
cation domains. Ah~) motivated by the availability of efficient solvers for pro~ 
sitional satisfiability (SAT), various reductions from logic programs to SAT were 
introduced in the past. All t hese reductions either are limited to a subclass or 
logic programs, or introduce new var iables, or may produce exponentially bigger 
propositional formulas. 

In t his paper, we present a SAT-based procedure, called ASP-SAT, that (i) deals 
wit h any (non disjunctive) logic program, (ii) works on a propositional formula 
wit hout addi tional variables (except for those possibly introduced by the clause 
fonn t ransformation:!, and (iii) is guaranteed to work in polynom:al space. From a 
theoretical perspective, we prove soundness and completeness of ASP-SAT. From 
a practical perspective, we have (i) implemented ASP-SAT in CMODELS, (ii) ex
tended the basic procedures in order to incorporate the most popular SAT reasoning 
st.rnt.~P-", nnrl (iii) mnrhu~t.M ~n P.¥t.P.n.!'<iVP mmpn.rn.t.ivP n.nnlysiR involv ing also nt.hP.r 
sta~of-th~art answer set solvers. The experimental analysis shows t hat our solver is 
competitive with the other solvers we considered, and that the reasoning strategies 
that work best on 11small but hard 1

' problems are ineffective on 11big but easy11 

problems and vice versa. 

K eywords: Answer Set Programming, Propositional Satisfiabilit)· 

1. I ntroduction 

Answer Set Programming (ASP) emerged in the late 1990s as a new 
logic programming paradigm (Marek and 'fruszczynski, 1999; Niemela, 
1999), and bas been successfully applied in various domains including 
space shuttle control (Nogueira et a l. , 2001), planning (Lifschitz et al. , 
1999), and the design and in1plementation of query answering systems 
(Baral and Scher!, 2004). Syntactically, ASP programs look uke Pro-



 

 

log programs, but they are t reated by rather d ifferent computational 
mecharusms. Indeed, ASP systems like CMODELS (Lied er and Lifschitz, 
2003), SMODELS (Simons et al., 2002), SMODELScc (Ward and Schlipf, 
2004), DLV (Leone et al., 2005), and ASSAT (Lin and Zhao, 2002; Lin 
and Zhao, 2004) interpret logic programs via t he answer set semantics 
(Gelfond and Lifschitz, 1988; Gelfond and Lifschitz, 1991). T he goal is 
to find the "models" (called answer sets) of the program, and not to 
evaluate whether a query is true or not, as in standard Prolog systems. 
The ASP approach is thus similar to propositional sat isfiability check
ing, where propositional formulas encode the problem and models of 
the formula correspond to the solutions of the problem. 

Propositional satisfiability (SAT) is one of the most intensely studied 
fields in Artificial Intelligence and Computer Science. Various proce
dures that can deal with thousands of variables are now available (see, 
e.g., (Le Berre and Simon, 2003)) . Also motivated by the availability 
of efficient SAT solvers (such as SATZ (Li and Anbulagan, 1997) and 
MCHAFF (Moskewicz eta!., 2001)) , various red uctions from logic pro
grams to SAT were introduced in the past. T he most popular of such 
reductions is Clark's completion (Clark, 19'78). Pages (1994) showed 
that if a logic program is "tight" then its answer sets are in one-to
one correspondence with the models of its Clark's completion. From a 
theoretical point of view, Fages' result was then generalized to include 
programs with infinitely many rules (Lifschitz, 1996) , programs tight 
"on their completion models" (Babovich et al., 2000), programs with 
nested expressions in t he bodies of the rules (Erdem and Lifschitz, 
2001), and disjunct ive programs (Lee and Lifschitz, 2003). From a 
practical point of view, computation of answer sets for tight programs 
viR C:bu k 's mmp lP.t.ion ><nrl SA'T' solving h"s h P.P.n Rrst. implP.mP.nt.P.rl in 

CMODELS, and has been also shown to be effective on many classes of 
problems. Still , these results do not apply to the whole class of logic pro
grams. In general, it is well known that each answer set corresponds to a 
model of its completion, but the converse is in general not t rue (Marek 
and Subrahmanian , 1989). 

Ben-Eliyahu and Dechter (1996) gave a translation from a class of 
disjunctive logic programs to SAT: Their t ranslation may need O(n2) 

new variables and O(n3) new clauses, where n is the number of atoms 
in the logic program. Lin and Zhao (2003a) introduced a translation 
which needs the introduction of O(n2 + m) new variables and O(n X m) 
new clauses, where m is the number of rules in the logic program. Jan
hunen (2004) presented an optimized encoding wl:ich is sub-quadratic 
in both size and number of atoms. Lin and Zhao (2004) repor t that the 
grounding of a program correspond ing to the computation of a Hamil
tonian path in a complete graph with 50 nodes, ;>rod uces a program 



 

 

with 5000 atoms and 240000 rules, and in a complete graph of 60 nodes 
produces a progran1 with 7000 atoms and 420000 rules. For problems 
like these, the number of variables or clauses in the result ing formula 
may become prohibitive. 

The only reduction to SAT whicll does not need extra variables has 
been proposed by Lin and Zhao (2002, 2004) . The drawback of thls 
reduction is that it may blow up in s pace, i. e., the resulting number of 
clauses can be exponent ial. This is not by chance. A recent result by 
Lifschitz and Razborov (Lifscllitz and Razborov, 2004) shows that -
assuming P g; NC1 /poly, a conjecture from computational comp lexity 
theory widely believed to be tru~ whenever we t ry to translate a logic 
program to a set of clauses 

either we have to introduce new variables, 

or an exponential blow up may occur . 

Despite the potential exponential blow up, system ASSAT based on such 
a reduction outperforms state-of-the-art ASP systems like SMODELS 

and DLV on many interesting problems. 
In this paper we present a procedure, called ASP-SAT, that 

1. deals with any (not necessarily t ight) logic program, 

2. works on a propositional formula without addit ional variables (ex
cept for those possibly introduced by t he clause form transforma
t ion), and 

3. is guaranteed to work in polynomial space. 

From a theoretical perspective, we prove the soundness and complete
ness of ASP -SAT. We also show how to extend this basic proced ure 
in order to compute all answer sets still working in polynomial space. 

From a practical perspective, we have implemented ASP -SAT in 
CMODELS. We call the resulting system CMODELS2. Given the SAT
based nature of our proced ure, we have been able to in1plement - with 
a relatively small effort- several searcll strategies and heur istics which 
have been shown effective in the SAT literature. Then, we experimen
tally analyze whicll combinat ions of reasoning strategies work best on 
which problems. In particular, 

We inlplemented various "look-allead" strategies (used while de
scending the search t ree); "look-back" strategies (used for recov
ering from a failure in the search tree); and "heuristics" (used for 
selecting the next literal to brancll on) . 



 

 

We considered CMODELS2 with various combinations of strate
gies, and other state-of-the-art systems like SMODELS, SMODELScc, 

ASSAT , and DLV . 

We conducted an extensive exper imental analysis, involving all 
the above ment ioned versions of CMODELS2 and systems, and a 
wide variety of t ight and non tight programs, ranging from "small" 
randomly generated programs wit h a few hundred atoms, up to 
"large" programs with tens of thousands variables. 

Our experimental results show t hat the look-back (resp . look-ahead) 
version of CMODELS2 has a clear edge over t he other state-of-the-art 
systems that we considered on large (resp. small randomly generated) 
problems. T he look-back version of CMODELS2 is very competitive also 
on the other non random, non large progran1s that we considered. 

If we focus on the performanoes of the various versions of CMOD

ELS2, the experimental results also point out that: 

l. On the small randomly generated problems, "look-ahead solvers" 
(featur ing a rather sophist icated look-ahead based on "failed lit
era l", a simple look-back strategy -essentially backtracking- and a 
heuristic based on the information gleaned d ur ing the look-ahead 
phase) are best. 

2. On the large problems, "look-back solvers" (featur ing a simple but 
efficient look-ahead strategy -essentially un it-propagation with 2 
literal watching- , a rather sophisticated look-back based on "learn
ing" and a constant t ime heur istic based on the in formation gleaned 
during the look-back phase) are best. 

3. Add ing a powerful look-back (resp. look-ahead) to a look-ahead 
(resp. look-back) solver does not lead to better performances if the 
resulting solver is run on the small (resp. large) problems that we 
considered. 

t:sing the terminology in (Giunchiglia et a l. , 2001), our comparison is 
"fair" because all t he reasoning st rategies are realized on a common 
platform and thus the experimental evaluation is not biased by the 
differenoes due to the quality of the implementation, and is "signif
icant" because CMODELS2 implements cur rent state-of-the-ar t look
ahead/look-back strategies and heur ist ics. We believe that these re
sults have important consequences bot h for developers and a lso for 
people interested in benchmarking ASP systems. For instance, our 
results say that we can hardly expect to develop a solver with the 
best performances on all the categor ies of problems. As a consequence, 



 

 

 

developers should focus on specific classes of benchmarks (e.g., on 
randomly generated programs), and 

benchmarking should take into account whether solvers have been 
designed for specific classes of programs: Indeed, it hardly makes 
sense to run a solver designed for random (resp . large) programs 
on large ( resp. random) programs. 

The paper is structured as follows. In Section 2 we introduce the 
definitions, terminology and results at the basis of our work. Then, in 
Section 3 we present ASP-SAT in its basic backtracking version, and 
we prove its sound ness and completeness. V.fe also discuss in details 
what needs to be done in order to implement ASP -SAT on top of a SAT 
solver with learning. In Section 4 we show how we implemented ASP
SAT in CMODELS. Section 5 contains t he experimental, comparative 
evaluat ion. We end the paper with the conclusions and future work in 
Section 6. 

A preliminary version of this paper is (Giunchiglia et al., 2004). 
This paper contains a lso results presented in (Giunchiglia and Maratea, 
2005a; Giunchiglia and Maratea, 2005b). 

2. Formal Background 

2.1. SYNTAX OF LOGIC P ROGRAMS 

A rule is an expression of the form 

p0 <-- Pl , ... ,pk, not Pk+J, ... , not Pm , not not Pm+l , ... , not not Pn 
(1) 

(0 :::; k:::; m:::; n) where Po is an atom or the symbol .L (.L is the logical 
symbol standing for the empty disj unct ion, i.e. , False) , Pl,P2, . .. ,pn 
are atoms, and the symbol not is the "negation" as failure operator. 
p0 is the bead of the rule, and the expression at the right of the arrow 
is the body. The intuitive meaning of a rule (1) is that po is in the 
solut ion whenever t he body is satisfied. 

A (non disjunctive logic) program is a fin ite set of rules. 
If the head of a rule is .L, we call the rule a constraint. If a rule (1) 

contains an expression of the form not not Pi, then the rule is called 
nested, ot herwise the rule is non nested or basic. If a logic program II 
contains at least one nested rule, II is a nested program, otherwise is 
non nested or basic. For instance, the program 

p<- not not p 
q <--not p. 

(2) 



 

 

 

is nested , while 

is non nested or basic. 

p~p 

q~ notp. 

2.2. ANSWER SETS FOR L OGIC PROGRAMS 

(3) 

In order to give the definition of an answer set we consider first the spe
cial case in which the program II does not contain the negation as failure 
OpP:T;:JJ,nr nnt (J.P.. for P.ar.h Tll lP: (1) in IT, 11. = m. = J.-:) . l.P.t rr hP. S llf:h ;'\ 

program and let X be a set of atoms. We say that X is closed under II 
if for every rule (1) in II, p0 E X whenever {Pt , P2, ... , Pk} ~ X. In the 
n = m = k hypothesis , II has only one answer set, and it is the smallest 
set of atoms closed under II. Computing such an answer set can be done 
in linear time, via the Dowling-Gallier procedure (Dowling and Gallier, 
1984), or via un it-propagation (assuming the symbol "~" is understood 
as the standard material implication, and "," as conjunction). 

Now consider an arbit rary program II. Let X be a set of atoms. A 
rule 

PQ~PJ , ... ,p, 
belongs to the reduct IIX of II with respect to X if and only if there is 
a rule (1) in II with X n {Pk+J, ... ,pm} = 0 and {Pm+L• ... ,Pn} ~X. 
ax is a program without negation as failure. We say that a subset 
X of the atoms in II is an answer set for II if X is an answer set for 
ax (Gelfand and Lifschitz, 1988; Lee and Lifschitz, 2003). 

As an example, let II be the program (2) and consider the set of 
atoms {p}. The red uct II{P} is 

p~ . (4) 

The set {p} is the smallest set closed under ( 4) and hence it is also an 
answer set of the program II. If we consider the set of atoms {p , q}, the 
reduct II{p,q} is again (4). The set {p, q} is not the smallest set closed 
under (4), and hence it is not an answer set of the program II. 

Determin ing the existence of an answer set for a progran1 II is an 
NP-complete problem. Indeed, checking if a set of atoms X is an answer 
set of II can be done in linear t ime by first computing the red uct 
ax and then computing the answer set of II X. NP-hardness can be 
easily proven using standard red uctions of the SAT problem into logic 
programs under answer set semant ics, see, e.g., (Janhunen, 2003). 



 

 

 

2.3. COMPLETION 

Consider a program II. For an atom Po the completion Comp(II, p0 ) of 
II relative to Po is the formula 

Po :: V (PI A ... A Pk A ""'Pk+l A ... A ~Pm A Pm+ l A ... A Pn) 

where the disj unction extends over all rules (1) in II with head PO· The 
completion Comp(II) of II consists of the formulas 

k m n 

V ~p; V V Pi V V ~Pi 
i=J i.=k+l i=m+J 

one for each rule (1) whose head is 1.; and of the formulas Comp(II,pa) 
for each atom Po in II (Clark, 1978; Lloyd and Topor , 1984). For 
instance, the completion of the program (2) consists of the formulas 

p :: p 
q :: ~p, 

and (5) is a lso the completion of the program (3). 

(5) 

The following theorem, d ue to Marek and Subrahmanian (1989) for 
basic programs and generalized in (Erdem and Lifschitz, 2001) to nested 
programs, relates the answer sets of a progran1 to the models of its 
completion . In the following, we say that a set of atoms X satisfies (or 
is a model of) a set of formulas r if r is satisfied by the interpretation 
wuich a:s:si~= Tr·uc bu >J,Jl abUUl p if auJ uu ly if p EX. 

THEOREJ\11 1. Let II be a program. If X is an answer set of II, then 
X satisfies the completion of II . 

The set of atoms {p, q} does not satisfy the completion (5) of (2) 
(resp. (3)) and thus it is not an answer set of (2) (resp. (3)) . 

2.4. T IGHT P ROGRAMS 

Theorem 1 can be strengthened in the case of tight programs. A pro
gram II is t ight if its dependency graph is acyclic. T he dependency 
graph of a program II is the directed graph G such that 

- the nodes of G are the atoms in II, and 

- for every rule (1) in II, G has an edge from Po to each atom in 
{PI,··· ,pk} · 



 

 

The following Theorem has been proved by Fages (1994) for basic 
programs, and it h.as been generalized by Erdem and Lifschitz (2001) 
to nested progran1s. 

THEOREJ\11 2. Let II be a tight pmgram and X a set of atoms. X is 
an answer set fo•· II iff X satisfies the completion of II. 

Program (2) is tight, while program (3) is non tight. Hence, ac
cording to the above theorem, the answer sets of (2) coincide with the 
models of (5) (and thus can be computed with SAT solvers) . 

2.5. LOO P FORMU LAS 

Theorem 1 states that if X is an answer set o f program II then X 
satisfies Comp(II). T heorem 2 says that the converse is also tr ue if the 
program is t ight. If the program is non t ight, Lin and Zhao (2002, 2004) 
proved that to have the identity mapping between the answer sets of a 
basic program II and the models of its completion, we have to consider 
the loop formulas of II. Lee and Lifschitz (2003) extended the concept 
of loop formulas to nested programs and proved that the san1e result 
holds with the extended definition. To formally state this last result, 
we need the following definit ions. 

A loop of II is a nonempty set L of atoms such that for each pair 
p, p' of atoms in L there exists a path of nonzero length from p to p' in 
the dependency gra ph of II whose intermediate nodes belong to L. 

G iven a loop L, we define R(L) to be the set of formulas 

(pl II· ·· 1\ Pk II ~Pk+J II·· .II ~Pm II Pm+t ll. ··II Pn) 

for all rules (1) in II , with Po E L and {p1 , ... , pk} n L = 0. The loop 
formula associated with L is 

(6) 

where V L denotes the d isjunction of the atoms in L, and similarly for 
V R(L). 

THEOREJ\11 3. Let II be a pmgram. Let Comp(II) be the completion 
of II. Let LF(II) be the set of all the loop formulas associated with the 
loops of II. For each set of atoms X , X is an answer set of II iff X is 
a model of Comp(IT) U LF(II). 

Consider the non t ight program (3). Its completion is (5). The only 
loop of the program is {p} and the loop formula associated with {p} is 

p :::l 1., 



 

 

which is equivalent to --vp. Thus, the answer sets of (3) are the set of 
atoms that satisfy (5) and also ~p. 

3. SAT-b ased Answe r Se t Solvers 

3.1. P REVIOUS APPROACHES 

CMODELS (Lierler and Lifschitz, 2003) is an answer set solver based 
on SAT which has evolved along the years and which, in its cur rent 
version, incorporates a lso the procedure described in this paper and 
in its predecessor (Giunchiglia et a!. , 2004) . The version of CMODELS 
prior to (G iuuchiglia eta!., 2004) is rest r icted to t ight programs, and, 
given a t ight program II, CMODELS 

1. computes the completion Comp(II) of the progran1, and 

2. calls a SAT solver to find the models of Comp(II) (corresponding 
to t he answer sets of the input program). Before invoking the SAT 
solver , it may be necessary to conver t the formulas in Comp(II) 
to a set of clauses, as required by most SAT solvers. A clause is a 
disj unction of literals , and a literal is an atom or the negation of 
an atom. 

The advantage of this method is that it uses SAT solvers as black boxes. 
On t he other hand, it is restricted to t ight progran1s. 

Theorem 3 lays the foundation for extending this method to non 
t ight programs. 

Consider a program II. To determine whether II has an answer set, 
one possibility is to 

1. compute the completion and the loop formulas of II, i.e. , the set 
r = Comp(II) u LF(II) of formulas, and then 

2. invoke a SAT solver to determine the models of (the clause conver-
sion of the formulas in) r. 

This is an "eager" 1 approach which may work well in practice in some 
domains, but the resulting propositional formula may be exponent ially 
bigger than the input program. 

ASSAT (Lin and Zhao, 2002; Lin and Zhao, 2004) is a SAT-based 
system for basic programs which takes an alternative approacll. Indeed, 
ASSAT adds loop formulas on demand, i.e., ASSAT 

1 The terminology is borrowed from the one used in decision procedures for 
separation Jogi<; where "eager11 approaches compiJe the input formula into an 
equisatis6able propositional one, see, e.g., (Lahiri et al., 2002) . 



 

 

1. Computes r = Comp(II). 

2. Finds a model X of r by using a SAT solver (before this, it may 
be necessary to conver t r to a set of clauses) . If no such model 
exists then the input program does not have answer sets and the 
procedure term inates returning False. 

3. Checks if X is an answer set: As we have already said in section 2.2, 
this can be done in linear t ime in the siz.e of II. If X is an answer 
set, t hen the procedure terminates with returning True . Otherwise, 
ASSAT 

a) finds at least one loop formula which is not satisfied by X , and 
adds it to r: As described in section 4, also this step can be 
done in linear t ime in the size of II; and 

b) goes back to step 2. 

Lin and Zhao (2002, 2004) showed that ASSAT can often outper form 
rival systems. However , ASSAT has the following two main drawbacks 

1. ASSAT is not guaranteed to work in polynomial space. Lifschitz 
and Razborov (2004) showed that there are progran1s II for which 
LF(II) contains exponentially many formulas (unless P 11: NC1 f poly), 
each of which cannot be derived from the others and Comp(II) . For 
these programs II: 

If II has an answer set, then ASSAT per formance on II depends 
on how lucky the system is in generating the right model first. 
In the best case it generates an answer set first. In the worst 
case it blows up in space. 

If II has no answer set, then ASSAT blows up in space. In fact, 
adding and keeping already added loop formulas is essential 
to guarantee that the SAT solver does not return an already 
computed model, and thus to guarantee ASSAT term ination. 

2. Consider ing two successive calls to the SAT solver , the computation 
done for finding the first model is completely d iscarded , i.e. , not re
used by the SAT solver in the second call. Thus some branches of 
the search t ree may get computed many t imes. 

Further considering the task of computing all answer sets of a program 
II, there are two ways for doing it in ASSAT: 

1. Comp ute Comp(IT) u LF(IT) and t hen call a SAT enumer a tor , i.e., a 

SAT solver able to return all the models of a propositional formula, 
e.g., MCHAFF (Moskewicz et al. , 2001); or 



 

 

2. In order to avoid the generation of the same model X, once an 
answer set X is found, mod ify ASSAT procedure in step 3 by 

a) adding to r one or more clauses ensur ing that the same answer 
set X is not re-computed , and 

b ) going b ack to step 2. 

For nested programs, the obvious clause to add to r is 

V ~Av V A. (7) 
AEX AS1X 

For basic programs, (i.e., of the kind t hat ASSAT considers) we can 
take advantage of the fact that the following anti-chain prope•·ty 
holds: If X is an answer set, no st r ict subset or superset of X is an 
answer set. For these programs it is thus sufficient to add to r one 
or both of the clauses 

V ~A, V A (8) 
AEX Ar,£X 

in order to ensure that the same answer set is not re-computed. 
The advantage of adding (8) instead of (7) is that each clause in 
(8) entails (7) and thus it prunes more search space. 

The first approach is unfeasible if there are (exponent ially) many loop 
formulas. T he second approach is unfeasible also when there are many 
answer sets. 

3.2. ASP-SAT WITH BACKT RACKING 

The above drawbacks can be eliminated if we do not use a SAT solver as 
a black-box. Instead, we can take advantage of that all the sta~of-the

art complete SAT solvers are based on the Davis-Logemann-Loveland 
procedure (Davis et a l. , 1962). The basic observation is that the Davis
Logemann-Loveland procedure can easily work as a SAT enumerator . 

Thus, given a program II, we may first compute the completion of 
II, and then 

genemte the models of Comp(II), and 

test whether the generated models are answer sets of II. 

We call ASP-SAT the resulting procedure, and it is represented - in 
its simple backt racking version- in Figure 1. In the figure, 



 

 

function ASP -SAT(II) 
re t urn DLL(CNF(Comp(II)),0,II); 

function DLL(r, S, II) 
if (r = 0) t he n return test(S, II); 
if (0 E r ) t he n return False; 
if ( {l} E r) t he n return DLL(assign(l , r), 8 U {l}, II); 
p := an atom occurring in r ; 
re t urn DLL(assign(p, r),S u {p},II) or 

DLL(assign(~p, r ), 8 U { ~p}, II) . 

Figure 1. The SAT-based ASP-SAT procedure for Answer Set P rogramming 

1. Given a set of formulas r, CNF(r) returns a set of clauses 
possibly with newly introd uced propositional variables-- such that, 
for any interpretation J1 in the extended language, the following two 
properties hold: 

a) if J1 satisfies CNF(r) then the restriction of J1 to the language of 
r satisfies r , and 

b) if J1 satisfies r then there exists an interpretation in the lan
guage of CNF(r) which (i) e.':tends /1, and (ii) satisfies CNF(r ). 

An example of such a conversion is the "classical conversion" (which 
given a formula in negative normal form recursively d istribut-es 
conjunctions over disjunctions) , and the conversions based on "re
naming'', such as those described in (Tseitin, 1970; Plaisted and 
Greenbaum, 1986; Sher idan, 2004). 

2. l denotes a literal, and r a set of clauses; 

3. S is an assignment, i.e., a consistent set of litera ls; 

4. given an atom p, assign(p, r ) is the set of clauses obtained from r 
by removing the clauses to which p belongs, and by removing ~ 
from the other clauses in r. assign(~p, r ) is defined similarly. 

A key feature of ASP-SAT is t hat it is based on DLL, which, consid
ering its pseudo-code in the figure, is almost identical to the Davis
Logemann-Loveland procedure: T he only difference is that, when the 
empty set of clauses is generated, DLL invokes the function test(S, II) in
st ead of just returning True. ASP-SAT thus follows a "lazy" approach 
to the computation of answer sets based on SAT,2 where, intuitively 

2 The terminology is again borrowed from t;he one used in decision prooodures 
for separation logic, where I(Jazy" approaches abstract the input formula into a 



 

speaking, the goal of the function test(S, II) is to return True if the 
assignment S corresponds to at least one answer set of II, and False 
otherwise. However , the function test( S, II) deser ves some fur ther com
ments. Assume P is the set of atoms in the progran1 II. When the 
function test(S, II) is invoked, its argumentS is such that S n P satisfies 
the completion of II and is thus a candidate for being an answer set. 
However , it may be the case that S is not a total assignment, i.e., it 
is possible that for some atom p E P, neither p nor ~p are in S . If 
p is one such atom, a lso (S n P) U {p} satisfies t he completion of II 
and is thus anot her candidate for being an answer set. In general, an 
assignment S can potentially correspond to exponent ially many set of 
atoms satisfying the completion of II, and each of them is a superset 
of the atoms in S n P. However, if II is a basic program, none of t hese 
str ict supersets is an answer set of II, as established by the following 
proposition. 

P ROPOSIT ION 4. Let II be a bas•c program. Let X be a set of atoms 
satisfying Gomp(II ). If XC X' then X ' is not an answer set of II . 

Pmof We are given that X satisfies Gomp(II). From complet:on 
construction, it follows that X is closed under rrx. S ince X C X' and 
II is basic, rrx' ~ IIX. He:tce X is closed under rrX', and thus X' is 
not the smallest set closed under rrx'. <> 

Thus, according to the above proposit ion, if II is basic, test(S, II) 
has j ust to check if S n P is an answer set of II: Any set of atoms 
e.xtending S n P is not an answer set. 

We are now ready to state our main Theorem in the case of basic 
programs. 

THEOREJ\11 5 (Soundness and completeness for basic programs). Let II 
be a basic pmgram in the set P of atoms. Let test(S, II) be a func
tion returning True if S n P is an answer set of II, and False other
wise. ASP-SAT(II) retu•= True if II has an answer set, and False 
otherwise. 

propositional one and refine the propositional mode] if it does not correspond to 
a model of the o riginal formula. see, e.g., (Armando et al., 1999; de Moura et al., 
2002; Barrett et al., 2002; Armando et al., 2005). More reoently (Nieuwenhuis and 
Oliveras, 2005) s howed that better performances can be obtained by using a lazy 
approiKh in w hich the a.:s:rignment ~~ ex tended on the ba.:si:s o f t he :semantic~ of 
the original formu)a in separation logic. In our sett;ing, t his wou]d correspond to 
assign some atoms - not entailed by the current assignment and the completion 
of the input program- but entailed by the current assignment, the completion of 
the input program and t he set of loop formulas: W hether this can lead to better 
performances is still an open research issue. 



 

 

Pmof Soundness is trivial. For completeness, assume that ASP
SA T(II) returns False. Let P be the set of atoms in II. Let r be the 
set of assignments S that have been checked, i.e., such that test(S, II) 
has been invoked. The fact that II has no answer sets follows from the 
following properties 

1. The formula vc 1\ pi\ ~p) 

SEf' p:p€S,p€P p:-p€S,p€P 

is logically equivalent to the completion Comp(II) of II (Proposi
t ion 5 in (Giunchiglia et al. , 2002), restated as Lemma 4 in (Ar
mando et a!., 2005)). 

2. The set of answer sets of II is a subset of { S n P : S E r} (easy 
consequence of T heorem 1 and Proposition 4). <> 

Proposition 4 does not hold for arbitrary programs. In general, given 
a nested program II , it is possible that two sets X and X ' of atoms are 
such that 

X satisfies the completion of II but is not an answer set of II, and 

X' is a superset of X and is an answer set of II. 

This is illustrated by the following program: 

PL ~ not not PJ 
P'2 ~ PL 
P'2 ~ P'2· 

(9) 

The completion of the program is {p 1 = PL, P'2 = (PI v P'2}. The set of 
atoms {P2} satisfies the completion but is not answer set. T he set of 
atoms {PhP'2} is a superset of {P'2} and is also an answer set of (9). 

Thus, in the general case, whenever test(S, II) is invoked, every set 
X of atoms which is 

1. a superset of S n P , and 

2. a subset of {p : ~p ~ S,p E P } 

has to be checked to see if it is an answer set of II. 

THEOREM 6 (Soundness and completeness for arbitrary programs) . Let 
II be a pmgmm in the atoms P . Let test(S, II) be a function 1-etuming 
True if there e:cists a set X with S n P ~ X ~ {p : ~p ~ S, p E P} which 
is an answer set of II, and False otherwise. ASP -SAT(II) returns True 
if II has an answer set, and False othe7'V.Iise. 



 

Pmof The proof is analogous to the one of Theorem 5, the only 
difference is that, assuming 

P is the set of atoms in II, 

r is t he set of assignments S that have been checked, i.e., such 
that test(S, II) has been invoked, 

the set of answer sets of II is a subset of 

{X : 3S E r.S n P <;; X <;; {p : ~p if S,p E P }}, 

as established by Theorem 1. <> 

3.3. ASP-SAT WITH LEARNING 

The ASP -SAT procedure in the previous subsect ion is based on DLL, 
that is very s imilar to t he standard Davis-Logemann-Loveland proce
dure with simple chronological backtracking. It is thus not infrequent 
for ASP-SAT to explore a possibly large subtree whose leaves are all 
dead-ends because of some bad choices performed way up in the search 
t ree. In SAT, the standard solut ion to t his problem is to backjump 
over the choices that do not belong to the "reason" for the failure. In
tuitively, if S is an assignment which falsifies t he inp ut set r of clauses, 
then a reason R for S is a subset of the literals in S such t hat any as
signment extend ing R falsifies r . (We say that a set S of literals falsifies 
a set of formulas r if s u r is inconsistent). Reasons are in it ializ-ed as 
soon as a failure is generated, and updated while backtracking. Many of 
the cur rent state-of-the-art SAT procedures feature such backjumping 
mechanism and extend it with learnir.g: Under certain conditions, a 
reason R is converted into the clause (Vp€R ~pvV -.pERP) which is then 
learned, i.e. , added to t he input set of clauses as additional constraint. 
Since e.xponentially many d istinct realOons can be computed, suitable 
criter ia are a lso used in order to forget (i.e., remove) clauses corre
sponding to reasons, thus maintain ing the SAT solver in polynomial 
space. 

It is out of the goals of this paper to describe how learning is incor
porated in the Davis-Logemann-Loveland procedure: See, e.g., (Dixon 
et a l. , 2004) for a high-level descript ion of learning including soundness 
and completeness statements of the result ing procedure, (Silva and 
Sakallah, 1996; Bayardo, J r . and Schrag, 1997; Zhang et al. , 2001) for 
more detailed descript ions of different learning mechanisms. For our 
purposes, it suffices to say that a SAT solver with learning can still be 
used as underlying procedure for ASP-SAT . The only difference with 



 

respect to the procedure in Figure 1 is in the test procedure. In fact, 
as we outlined above, whenever we have a failure we have to have also 
a cor respond ing reason. In our case, if tes«,8, II) returns False , it has 
also to return a subset R of the atoms in 8 such that for any total 
assignment S' e.xtending R and not falsifying the completion of II, the 
set of atoms in 8' is guaranteed to be not an answer set of II. One such 
set R is 8 . However , in order to maximize the effects of the backjump ing 
and learning mechanisms in the SAT solver , it is important that R be 
as small as possible. In the case of a basic program, one smaller such 
set is the set of atoms in 8 (see Proposit ion 4). However , it is possible 
to take advantage of loop formulas, and - in practice- return reasons 
which are often less than 1% of the s ize of 8 . 

To illustrate how loop formulas can help for computing small rea
sons, consider a call to test(8, II), and let P be the set of atoms in II. We 
assume that 8 does not correspond to any answer set of II, otherwise 
test(8, II) has j ust to return 'Jlroe and the computation of a reason does 
not make sense. 

For simplicity, assume that 8 is a total assignment. The idea is to 
find a loop formula F which is falsified by 8, and return a subset S' 
of S necessary to falsify F: Since every answer set of II has to satisfy 
all t he loop formulas of II, the set of atoms in any superset of 8' is 
guaranteed to be not an answer set of II. Important is the fact that 
determining such a set 8' can be done efficiently, i.e., in linear t ime in 
the size of II, as detailed in the next section. 

If 8 is not total but II is basic, then - thanks to Proposition 4- we 
can j ust consider the total assignment 8 U { ~p : p E P,p ~ 8 }. 

Now assume that II is nested and that 8 is not total. Assume for 
simplicity that there is only one atom p E P such that neither p nor 
~p is in 8 . Let 81 = S u {p} and 82 = S u { --p}. Both S t and 82 are 
total. Fur thermore, sl n p and 82 n p are not answer sets, and we can 
compute 8( <; 8 t and 82 <; 82, each falsifying a loop formula of II as 
in the previous case. If p ~ 8; (resp. ~p ~ 82) then 8; (resp. 82) is 
also a subset of S and can be returned . If p E 8( and ~p E 82 we can 
safely return 8" = 8; U S2 \ {p , ~p}: 8" <; 8 and no set e.xtending 8" 
can correspond to an answer set. T he above proced ure can be easily 
e.xtended to the case in which there are more than one atoms p E P 
with {p, ~p} n 8 = 0. 

Notice that S may be a non total assignment because in ASP -SAT 
test(8, II) is invoked whenever the input set of clauses is empty. Indeed, 
many SAT solvers - including MCHAFF- have a different termination 
condition for True: True is returned whenever either p or ~p is in S, 
for each atom p in t he input set of clauses r. Assuming that all the 



 

 

atoms in II occur also in r , the above termination condition for True 
ensures that S is total. 

We want to remark that in order to guarantee the terminat ion of 
our proced ure ASP-SAT(II), it is not necessary to store the reasons re
turned by test(S, II): On the other hand, learning (a polynomia l amount 
of) reasons can improve performances of the procedure. Consider in fact 
the program II~;; consisting of the rules 

Pi ~ Pi+ J Pi+ J ~Pi 

where i E {0, 2, ... , 2k- 2}, and of the constra int 

J. ~not pO, not PI , . .. , not P"2k- l · 

II~;; has no answer set, while Gomp(II~;) has 2k - 1 models. Assuming 
CNF( Gomp(IIk)) consists of the clauses 

~Pi VPi+l ~Pi+ t V Pi (10) 

(i E {0,2, ... ,2k-2}), and 

pO Vp1 V ... Vp-21;;-1 , 

the following facts hold (in this paragraph, for simplicity, we assume 
that the clauses corresponding to the reasons returned by test(S, II~;;) 
are learned and never forgotten): 

A naive implementation of test(S, II~;;) which returns S as reason 
for its failure, will cause the generation and rejection of exponen
tially many sets of atoms, one for each set of atoms satisfying the 
completion of Ilk; 

Since II~;; is basic, test(S, II~;;) may return the set of atoms in S 
as reason for its failure. Depending on the order in which the 
assignments are generated and then tested, d ifferent things can 
happen, ranging in between the following two extreme cases: 

1. In the best case, the assignments contain ing exactly one pair 
{Pi,Pi+i } (i even) are generated (and then rejected) first: In 
this case, the clause ( ~p; v ,Pi+J) is learned, and , together 
with (10) , this implies that any other assignment generated 
afterwards will contain both ,Pi and ~Pi+J . After the k sets 
with two positive atoms are generated, the resulting set of 
clauses is inconsistent and no more assignments are generated. 

2. In the worst case, the assignments contain ing a maximum 
number of posit ive atoms in P are generated (and then re
jected) first: The first assignment that will be generated is 



 

{po,pt, ... ,P'2k- t }, and the corresponding learned clause is ~poV 
-p1 V ... v ~p-2k-b and it is easy to see that exponentially 
many assignments will be generated before determining the 
non e.xistence of answer sets. 

An implementation of test(S, II) that returns a subset of S falsify
ing one of the loop formulas is guaranteed to test k assignments. 
This is d ue to the fact that Ilk has k loops, {Pi, Pi+l }, with i 
even. Given a loop {Pi, Pi+l }, its loop formula is (p; V Pi+J) :::> 1., 
cor responding to 

(11) 

Given a call to test(S,II), (i) a loop formula of the form (11) 
falsified by S is computed ; (ii) the two possible subsets of S falsi
fying (11) are computed, i.e., {Pi} and {Pi+J }; (iii) one of them is 
returned as reason; (iv) assuming {pi} is the returned reason, the 
clause {~Pi } is learned; and (v) after backtrackingfbackj umping, 
unit-propagation immediately assigns both Pi and Pi+J to False. 

After k calls to the testf.S, II) procedure, the resulting set of clauses 
is unsatisfiable. 

3.4. COMPUTATIONAL PROPERTIES OF ASP-SAT 

From a computational perspective, the ASP -SAT procedure in Fig
ure 1 has the following features: 

1. It per forms the search on Comp(II) and thus does not introd uce 
any e.xtra var iables except for those possibly needed by the clause 
form transformation. 

2. It is guaranteed to work in polynomial space. 

3. It can deal with both tight and non t ight programs: In the case 
of tight programs, for each call to test( S, II), the set of atoms of 
II which are also in S, is guaranteed to be an answer set of II, 
and thus ASP-SAT behaves as a standard SAT solver runn ing on 
CNF( Comp(IT )). 

If the underlying SAT solver uses learning, then all the above features 
still hold (assuming that the SAT solver itself works in polynomial 
space). 

Compared to the version of CMOD ELS prior to (Giunchiglia et al. , 
2004), ASP -SAT is not restr icted to work on t ight programs. 

Compared to ASSAT, ASP-SAT is guaranteed to work in polynomial 
space and has also the following advantages: 



 

It is easily modifiab le to return all the answer sets: Assuming the 
solver is based on back-tracking, the only thing that is needed is to 
mod ify test( S, II) in order to 

1. pr int the set of atoms determined to be an answer set, and 

2. return False. 

Assuming the solver is based on learning, test(S, IT) has to 

1. pr int the set of atoms determined to be answer sets, and 

2. return False and a reason R <;; S such t hat each assignment 
extend ing R corresponds to already computed answer sets. If 
II is a basic program then the anti-chain property holds for 
II: As a consequence, the set of atoms in S n P is one such a 
reason, and the subset of S consisting of the negation of the 
atoms in P is another possibility. If II is a nested program, the 
set S itself has to be returned. 

No computation is ever repeated. When test(S, IT) fails, instead of 
restarting the search from scratch as done in ASSAT, the compu
tation is restarted from the same point in the search tree where 
test(S, IT) was called : The search then continues from this point 
following the depth-first search schema of the algor ithm. 

On the other hand, ASSAT advantage over ASP-SAT is that the SAT 
solver is used as a black-box without any need of even minor modifica
t ions. 

Compared to other state-of-the-art answer set solvers like SMODELS, 
SMODELSoc and DLV, ASP -SAT has the advantage of being SAT-based, 
and thus it can leverage on the great an10unt of knowledge available in 
SAT. For instance, we are not aware of any non SAT-based answer set 
solver using the analogous of two-litera l watching data structures for 
efficiently pruning the search tree while descending it. 

4 . Imple me ntat ion in C mode ls 

4.1. INTEGRATION IN CMODELS 

We have integrated our implementat ion of ASP-SAT in CMODELS. 
CMODELS2 is the name that we use for the resulting system. 

T he input language of CMODELS2 is a grounded logic progran1 that 
can be generated by the front-end LPARSE (Syrjanen, 2003), and is the 
same as the input language of SMOD ELS, SMODELScc and ASSAT. T he 



 

input may thus contain basic rules as well as choice, cardinality and 
weight constraint rules (Syrjanen, 2003, Sections 5.3, 5.4) . A choice rule 
has the form 

{1101, ... ,110; } ~ P1, ... ,p1;;, not Pk+1, ... , not Pm 

where each p with a subscript is an atom. The intuitive meaning of a 
choice rule is that any atom contained in {1101, ... , 110i } may or may 
not belong to the solution whenever the body is satisfied . A weight 

constraint rule is an expression of the form 

110 ~ L{PJ = WJ, ... ,pi;;= Wk, not Pk+J = Wk+J , .. . , not Pm = Wm}U 

where L,U,wt , ... Wm are integers, and each Pi (i = o, ... ,m ) is an 
atom. The intuit ive meaning of such rule is that 110 is in the solut ion if 
the sum of the weights of the satisfied literals in the body of the rule is 
between L and U . A cardina.Ji ty constraint rule is a weight constra int 
rule in which all the integers in { w1, ... , wm} are equal to 1. 

It is out of the scope of this paper to describe the semantics of 
programs with these rules in details, see, e.g., (Simons et al. , 2002). For 
our goals, it is sufficient to say that in CMODELS2 weight constra int and 
choice rules are eliminated by introd ucin g a tn:iliary atoms and nested 
rules as described in (Lifschitz et a l. , 1999; Ferraris and Lifschitz, 2005). 

Tradit ionally, CMODELS was restr icted to find answer sets for t ight 
programs, via the following steps (see (ILierler and Lifschitz, 2003) for 
more details): 

1. Simplification of the input LPA RSE pmgram, performing operations 
similar to those involved in SMODELS. 

2. Elimination of choice and weight constra ints rules in favor of nested 
rules. 

3. Verification t hat the result ing program (possibly with nested rules) 
is t ight. 

4. Construction of the program's comp letion, conversion to a set of 
clauses, and call to a SAT solver. The clause conversion takes linear 
time and introduces up to m new atoms, where m is the number 
of rules in the program. 

In CMODELS2, step 3 is not needed anymore (and is no longer per
formed) since a tight program can be considered as a particular case of 
a non tight one in which each call to test(S, II) succeeds. 



 

4.2. ASP-SAT IMPLEMENTATION 

ASP -SAT is implemented on top of the SIMO system (Giunchiglia 
et al. , 2003). SIMO is a MCHAFF-like SAT solver and thus features 
un it-propagat ion based on a two-literal watching data structure, 1-
UIP learning and VSIDS heuristics (see (Moskewicz et al. , 2001) for a 
descript ion of these techniques). However , it does not feature the low 
level opt imizations of MCHA FF, and thus it is on average within a factor 
of 3 slower than MCHAFF. We have used SIMO because is the system 
we know better , and this allowed us to a relatively easy integration 
of the other search strategies and heur istics used for the experimental 
analysis. 

With reference to Figure 1, in order to use SIMO as a search engine 
in an ASP solver, we had to modify it in order to 

1. call test(S, II) whenever Troe was returned, and 

2. guarantee that each set S of litera ls in test(S, II) is total. 

Consider ing the second task, SIMO - like all the MCHAFF-based SAT 
solvers- returns True when all the atoms in the inp ut set of clauses 
are assigned and no empty clause has been generated . However , SIMO 
input set of clauses may not contain all the atoms in the input program. 
Indeed, as a preliminary step and before the search starts, SIMO (and 
many other SAT solvers as well) pre-processes the input set of clauses 
and 

1. eliminates tautological clauses (i.e., clauses wit h both an atom and 
its negation as disjuncts), 

2. assigns pure literals, i.e. , each atom p is assigned to True if ~p does 
not belong to any clause in the input formula, and similarly for ~p. 

These operations are not harmful in SAT solving. However, if the SAT 
solver is used - as in our case- as basis for an answer set solver , both 
operat ions may lead to incorrect results. Consider in fact the program 

PI <- not not PI 
P2 <-PI 
P2 <- P2 
J. <- not Pt , not P2 

which has {Pt ,p2} as answer set. The complet ion of the program is 
{Pt = Pt ,p2 = (pl Vp2),p1 Vp-2}. Considering the straightforward trans
lat ion to a set of clauses, and after the elimination of the tautological 
clauses, 



 

 

1. only two clauses are left, i.e., (~Pt V P2), (p1 V P2), and 

2. after p.2 is assigned d ur ing the pre-processing, the empty set of 
clauses is generated. 

The empty assignment is returned and is checked to see if it is an 
answer set. Since it is not , False would be incorrectly returned. In 
order to avoid such undesired behavior , SJMO pre-processing has been 
modified in order to keep tautological clauses, and to not assign pure 
literals. 

In order to evaluate the in1pact of different search strategies and 
heur istics in solving answer set programs, we have enhanced SJMO 

with search strategies and heuristics other than those implemented by 
MCHA FF. In particular, we implemented: 

Failed-literal detection: Before branclung, for each unassigned atom 
p, p is assigned to True and then unit-propagat ion is called again: 
If a contradiction is found, p is said to be a faileD. literal, ~p can 
be safely assigned, and unit-propagation is again performed. Ot h
erwise, ~p is checked following the same proced ure implemented 
for p. 

Standard backtracking: Learning is disabled , and recovery from 
failure is performed by cllronologically backtracking to the latest 
assigned branching literal. 

The mut heur istic, based on the fa iled-litera l detection teclm ique. 
Given an unassigned atom p, whlile doing failed-litera l on p we 
count the number u(p) of un it-propagat ion caused, and then we 
select the atom with maximum 1024 xu(p) x u(~p) +u(p) +u(~p). 
The atom is assigned to True first .. 

The above searcll strategies and heur istics are not novel: They are 
st andard teclmiques in the SAT field , a nd are implemented by many 
st ate-of-the-art SAT solvers. Indeed, current state-of-the-art SAT solvers 
can be divided in two main categories: 

"look-ahead" solvers, featur ing a rather sophisticated look-ahead 
based on "failed literal" , a sinlple look-back (essent ially backt rack
ing) and a heuristic based on the information gleaned during the 
look-ahead phase. T hese solvers M e best for dealing with "small 
but relatively difficult" randomly generated k-cnf formulas. A solver 
in this category is SATZ (Li and Anbulagan, 1997). 

"look-back" solvers, featur ing a sin1ple but efficient look-ahead (es
sentially un it-propagat ion with 2 literal watclling) , a rather sophis
ticated look-back based on "1-UIP learning'' and a constant time 



 

heur istic based on the information gleaned during the look-back 
phase. T hese solvers are best for dealing with "large but relatively 
easy" instances, typically encoding non random prob lems. A solver 
in this category is M CHAFF (Moskewicz et al. , 2001) . 

3 By combining SIMO original reasoning strategies with those newly 
implemented, we can obtain both a MCHAFF-like and a SATz-like SAT 
solver , and consequently, a "look-back" answer set solver , and a "look
ahead" answer set solver . Our goal is to confirm the expectations that 

on randomly generated problems, look-ahead solvers are best, while 

on large problems, look-back solvers are best 

also in answer set programming. G iven that all the different search 
strategies are implemented, combined and analyzed in a common plat
form, our results are not biased by differences in the quality of the 
underlying implementations. 

4.3. IMPLEMENTATION OF test(S, II) 

Consider a call to test(S, II), i.e., such that S is a total assignment not 
falsifying the completion of II. Let X be the set of atoms in S and in 
II. 

The primary goal of test(S, II) is 

1. to ver ify if X is an answer set of II, and 

2. to compute a subset R of S to be used as reason if the SAT solver 
uses learning. 

In our implementation, the computation of the reason in volves looking 
for a loop formula of II which is falsified by S. To descr ibe the proce
dure, the following terminology will be used: In a graph, a loop L is 
maximal if it is a strongly connected component, and is also terminating 
(using standard definition) if there is no other maximal loop L' with a 
path from L to L' . 

Assuming learning is enabled, tesf1.S, II) consists of the following 
steps: 

1. Comp ute the reduct IIX of II wit h respect to X ; 

3 The terminology "small but relatively difficult" and "large but relatively easy" 
refer to the number of atoms and are used to convey the basic intuitions about 
the instances. To get a more precise idea in SAT, consider that in the SAT2003 
competition, instances in the random and industrial categories had , on average, 442 
and 42703 atoms respectively (Le Berre and Simon, 2003) . 



 

2. Compute the answer set X' of IIX in linear t ime via the Dowling
Gallier procedure (Dowling and Gallier, 1984); 

3. If S' =X\ X' is empty then return True: X is an answer set of II 
(X' is by construction guaranteed to be a subset of X). Otherwise, 

4. Consider ing the dependency graph of II restricted to the nodes in 
S', a terminating maximal loop L is computed, and the correspond
ing loop formula F is determined. X does not satisfy F: T his result 
has been established in (Lin and Zhao, 2002) for basic programs, 
and it has been generalized to include nested programs in (Lierler, 
2005). 

5. F has the form (6) and since X is a superset of L, X does not 
satisfy each of th e formulas in R( L). Since each formula G in R( L) 
is a conjunction o f literals, G is t raversed looking for a literal whose 
complementary belongs to S. This literal is added to the returned 
reason and the whole proced ure is iterated t ill all the formulas in 
R(L) are analyzed . 

Each of the above steps takes at most linear t ime in the size of the 
program. T he above described procedure for computing a maximal 
terminating loop fals ified by S is the same as the one descr ibed in (Lin 
and Zhao, 2004), generalized to hand le also nested programs. T he key 
difference between our approach and Lin and Zhao's is that they add 
the whole loop formula to the input set of clauses and then call again 
the SAT solver from scratch. Here, the loop formula is only used to 
find a (small) subset of S to be used as reason: As we already said, 
our procedure is guaranteed to be sound, complete and working in 
polynomial space even assuming the entire set S is returned (thus, 
without making any use of loop formulas) . 

If learning is disab led (as in CMODELS2 version with backtracking), 
step 3 in the above descript ion of test(S, II) is modified in order to 
return True if X\ X' is empty, and False otherwise. 

5. E xperime ntal Res u lts 

5.1. SOLVERS, BENCHMARKS AND SETTING 

In order to evaluate t he effectiveness of our approach, we comparatively 
tested CMODELS2 against other sta~of-the-art systems on a variety 
of benchmarks. The systems we considered are SMODELS version 2.27, 



 

SMODELSoc version 1.08, ASSAT version 2.00, DLV release of 2005-02-
23.4 It worths remarking that while SMODELS, SMODELScc, ASSAT and 
CMODELS2 use LPARSE as preprocessor , and thus can be run on the 
same input files, DLV does not. T his explains why DLV has been run 
only on a few benchmarks. Analogously, ASSAT can only deal with basic 
programs and thus it has not been run on some instances. Finally, for 
DLV we mention that it is a system specifically designed for disj unc
t ive logic programs, and that very d ifferent results can be obtained 
depending on the specific encod ing being used . 

Consider ing CMODELS2, we have the possib ility to combine different 
look-ahead/ look-back search strategies and heuristics. In order to keep 
track of which combination we are using, we will refer to a combina
t ion of search strategies and heur istics using an acronym where the 
first, second and third letter denote the look-ahead, look-back and 
heur istic used , respectively. We considered 4 combination of reasoning 
st rategies 

1. ulv: our default answer set solver , incorporating a MCHA FF-like look
back SAT solver , with standard Unit propagation , backtracking 
enhanced with Learning, and VSIDS heuristic. 

2. fbu: a standard SATz-like look-ahead solver, with un it propagation 
enhanced with Failed literal detection, standard Back-tracking, and 
the Unit heur istic. 

3. flv: an hybr id solver , featur ing un it propagation enhanced with 
Failed litera l detection, backtracking enhanced with !,earning, and 
the VSIDS heur istic. 

4. flu: another hybrid solver, featur ing unit propagat ion enhanced with 
Failed litera l detection, backtracking enhanced with Learning, and 
the Unit heur istic. 

We considered only these 4 combinat ions of reasoning strategies and 
heur istics because, besides of being th.e most significant, the other pos
sible combinations do not make even sense: VSIDS heuristic requires 
"learning'' in order to be significant, while unit heur istic requires failed
literal. fbu and ulv are t he two solvers that we expect to per form best 
on randomly generated programs and on large progran1s respectively. 
Assuming that the expectations are met, the performances of the two 
hybr id solvers are of interest in order to 

4 See http :/ / vwv . tcs .hut .f i /Soft gar e/ smodel s / , ht tp://www . nku . 
edu/-vardj l / Research/ soodel s_cc .html, http :/ / assat.cs . ust . hk/, 
http ://vwv .dbai . tuvien .ac.at/ proj /dlv/ 



 

determine whether add ing a powerful look-back ( resp. look-ahead) 
to a look-ahead (resp. look-back) solver leads to better per for
mances on randomly generated (resp. large) programs. 

get indications about which combination of reasoning strategy is 
the most promising on non randomly generated and non large 
programs. 

All the solvers where run in their pla in (optimal) configuration un less 
suggested by the authors. For examples, SMODELScc has been run with 
option "-nolookahead" (look-ahead turned off) as e.xplicitly suggested 
by the aut hors in the SMODELScc's home page. For ASSAT, we had to 
increase its internal limit on the number of atoms in the (grounded) 
logic program (vadable C_MAXATOM). 

About the benchmarks, our test-set includes both t ight and non 
t ight, both randomly generated and non randomly generated programs. 
Each benchmark belongs to a class of publicly availa ble programs which 
have been used before in the literature, or to a class of benchmarks for 
which a generator is available. In this last case, we may have gener
ated bigger instances than those repor ted in the literature. In order 
to validate our expectations , we d ivide the benchmarks in three cate
gories, being (i) ra ndomly generated programs, (ii) "large" programs 
with more t han (approximately) 10000 atoms, and (iii) other problems 
not falling in the p revious categories. We say that a program is basic 
when each rule has the form (1) where n = m, and non basic when a 
program contains choice rules or weight constraints. Recall that choice 
and weight constra int rules are elim inated with the help of auxiliary 
atoms and nested rules of the form (1). 

The results of the solvers on the most difficul t instances of each 
class is given by means of tables, as it is customary in the answer set 
literature. In the tables, 

1. The first column is a progressive number. 

2. The second column is the ratio between number of rules and number 
of atoms for random problems, and the name o f the benchmark in 
case it is a non randomly generated program. 

3. The third column contains the number of atoms (# VAR) after 
ground ing. For non random problems, a "+" to the r ight of the 
number indicates that the instance has answer sets. 

4. The remaining columns are one per solver, and they ind icate its 
per formances. 



 

For each row, the best result is in bold, and the results within a factor 
of 2 from the best are underlined. 

F inally, all the tests were run on a Pentium IV PC, with 2.8GHz 
proces~or, 1024l\11B RAJ\11, running Linu.x. For SMODELS, SMODELScc, 
ASSAT and CMODELS2, the t ime taken by LPARSE is not counted.5 

Further, each system was st opped atter 3tiUU seconds ot CPU time 
on non random problems, and 600 seconds on random problems, or 
when i~ exceeded all the available memory. In the tables, these cases 
are denoted with "TIME" and "MEM" respec~ively. Otherwise, the 
tables repor t the CPU times in seconds needed by each solver to solve 
the problem. Some of the results here presented have also been pre
sented in (Giunchiglia et a l. , 2004; Giunchiglia and Maratea, 2005a; 
Giunchiglia and Mara tea, 2005b ): All the experiments have been re
launched. T his j ustifies the minor differences in the results, especially 
with (Giunchiglia et a!., 2004), where the exper iments were conducted 
on a Pentium IV P C, with l.SGHz processor, 512~m RAJ\11 DDR 
266MH z, r unn ing Lin ux. 

5.2. RAN DOMLY GENERATED PROGRAMS 

Table I shows the results for "small" progran1s, randomly generated 
according to two different methodologies: 

1. Problems (1)-(10) are translation of randomly generated k-SAT 
instances. A k-SAT inst ance consists of L distinct clauses, where 
each clause is generated by randomly selecting k d ifferent atoms 
and negating each with probability 0.5. The number of d istinct 
possible atoms in a k-SAT instance is a prior i fixed and denoted 
with N . Then, each k-SAT instance F is conver ted to a program 
as follows 

if C = (l 1 V ... V lk), we define sat2tlp( C) to be the rule l. ~ 
not l1, ... , not lk where not l; is p if l; = ~p and is not p if l; 
is the atom p; 

T hen, if F is a k-SAT instance, the translation ofF, is 

UcEpsat2tlp(C) UUpEP{P ~not p',p' ~not p} 

where, for each atom p E P, p' is a new atom associated to p. 
Those benchmarks are tight , and have been used in (Faber et a l. , 
2001; Simons et al. , 2002; Ward and Schlipf, 2004). 

5 Adding the times of LPARSE wou]d not change the picture for DLV when 
compared to CMODELS2 and other systems. 



 

TabJe I. Performances on randomly generated logic programs. Problems 
(1) -(10) are t ight programs being the translation of 3-SAT benchmarks. Prob-
!ems (11)-(20) are randomly generated logic programs using Lin and Zhao's 
methodology. 

PB # VAR SMODELS SMODELScc ASSAT DLV ulv flv flu fbu 

1 4 300 1.2 7.23 0.85 2.55 0.59 0.8 1.5 1.37 

2 4.5 300 39.97 TIME T~IE 130.49 TIME TIME 115.29 40.38 

3 5 300 7.57 149.37 T~IE 26.78 456.22538.89 17.64 11.32 

4 5.5 300 2.26 33.12 94.78 7.37 72.83 53.26 4.42 3.59 

5 6 300 1.05 12.72 22.5 3.26 24.73 21.89 1.83 1.63 

6 4 350 4.11 12.6 13.4 49.3 2.2 5.74 11.48 8.85 
7 4.5 350 318.1 TIME T~IE TIME TIME TIME T~1E 384.66 

8 5 350 44.2 TIME T~IE 147.16 TIME TIME 134.34 54.07 

9 5.5 350 12.66 252.11 T~IE 32.07 TIME 506.08 20.37 13.61 

10 6 350 3.37 37.99 174.61 8.76 95.61 104.36 6.05 4.86 

11 4 200 3.3 2.02 2.44 32.39 5.34 3.32 1.93 1.75 

12 4.5 200 6.84 1.7 3.28 83.63 6.15 5.82 2.09 1.93 

13 5 200 22.8 2.5 8.21 82.97 9.82 9.02 3.88 3.33 

14 5.5 200 9.42 1.76 4.14 39.47 7.5 6.38 2.97 2.85 

15 6 200 8.12 0.85 M 23.93 3.24 2.95 1.25 1.53 

16 4 300 298.67 73.64 234.00 TIME 265.43 218.48 41.97 31.05 
17 4.5 300 TIME TIME T~IE TIME TIME TIME 190.73 135.11 

18 5 300 TIME 412.69 T~IE TIME TIME TIME 136.67 99.75 

19 5.5 300 TIME 233.72 T~IE TIME TIME TIME 129.29 78.63 

20 6 300 TIME 191.62 T~IE TIME TIME TIME 107.34 65.83 

2. Lines (11) -(20) correspond to programs randomly generated ac
cording to the methodology proposed in (Lin and Zhao, 2003b). 
Given a set P with N atoms and a posit ive number k, a randomly 
generated rule has 

a) the head which is randomly selected from P, and 

b) the body consisting of k - 1 d ifferent atoms, each randomly 
selected from P and negated with probability 0.5. 

A randomly generated progran1 with L rules consists of L ran
domly generated distinct rules. In general these randomly generated 
progran1s are non t ight. 



 

Both categories of problems have been generated with k = 3 and L 
varying from 0.5 X N to 12 X N with step 0.5. N has been fi..xed to 300 
and 350 for the instances being the t ranslation of k-SAT problems, and 
to 200 and 300 for the instances generated accord ing to Lin and Zhao's 
methodology. 

For each ratio L / N (indicated in the column "PB"), we generated 
10 instances, and t he table presents the med ian results for the most 
difficult 5 ratios (the other being quite easily solved by all the systems). 

On these benchmarks fbu has the overall best per formances: it is 
almost always the fastest system or within a factor of 2 from the fastest. 
SMODELS is faster than fbu in the median case when considering the 
t ranslat ion of k-SAT inst ances. However , on these benchmarks, SMOD
ELS times out on 2 progra1ns when N = 300, while fbu times out only on 
1 program.6 SMODELS' good per formances on these benchmarks are not 
surprising given that also SMODELS im plements failed literal detection, 
together with a heur ist ic sim ilar to our un it heuristic. However , consid
ering the programs generated according to Lin and Zhao's methodology, 
we see that SMODELS is not competitive with tbu which (together with 
flu) scales much better than all the r ival systems. 

Consider ing CMODELS2's combinations, fbu is the fastest (confirm
ing expectations), but a lso flu performs quite well. Coupling these facts 
with the bad performances of flv, it emerges that the unit heur istic is 
very effective on these benchmarks and makes learning useless. 

5.3. LARGE PROGRAMS 

Table II shows the results when consider ing large (i.e., with approxi
mately 10.000 or more atoms) programs. As in the previous subsection, 
the table is divided in two parts: 

1. Progran1s (21)- (26) are tight: In particular (21)-(23) and (24)-(26) 
encode respectively blocks world planning and 4-colorab ility prob
lems in a graph with V verte.xes. V is the number in the label "4cV" 
in column PB. All the t ight programs but bw*e9 have answer sets 
and are available at SMODELS' web site. 

2. Progran1s (27)-(39) are non tight . In particular, we consider Hamil
tonian circuit problems on complete graphs, using both the basic 
encoding of Niemela (1999) (programs (27)-(31)), and the non ba
sic encoding (programs (32)-(36)) from htt p : I I=. cs. engr. uky. 

6 (ncreasing N to 400 we get t he same picture: SMODELS is faster than fbu in the 
median case, but it times out on 11 programs, while fbu times out on 10. \Ve decided 
not to show the resul ts for N = 400 because most o f t he o ther solvers times out also 
in the median case for most of t he ratios L/ N. 



 

Table I I. Performances on large programs. Problems (21)- (26) are tight. Problems 
(27)- (39) are non tight. 

PB #VAR SMODELS SMODELScc ASSAT DLV ulv flv flu fbu 

21 bw*d9 9956+ 6.76 7.63 1.72 1.02 5.84 2.69 2.75 

22 bw*e9 12260 4.3 4.51 4.22 0.98 1.91 1.92 1.93 

23 bw*eiO 13482+ 11.15 12.43 2.66 1.29 7.51 5.03 4.95 

24 4c1000 14955+ 22.28 4.95 0.6 0.48 37.86 15.41 15.23 
25 4c3000 44961+ 202.84 1143.13 2.19 8.86 369.27 144.12 142.83 

26 4c6000 89951+ 856.13 TIME 14.85 99.50 T IME 583.55 578.98 

27 np60c 10742+ 242.61 30.81 84.87 361.80 2.83 1611.32 44.12 44.11 

28 np70c 14632+ 557.08 55.31 520.80 798.96 4 .69 T IME 97.44 97.87 

29 np80c 19122+ 1001.88 00.59 53.25 1587.60 7 .2 T IME 195.08 100.49 

30 np90c 24212+ 2064.61 144.72 1416.24 2807.84 10.42 T IME 364.54 357.92 

31 np100c 29902+ 3573.19 215.37 TIME TIME 14.23 T IME 610.2 608.96 

32 np60c 10683+ 7.05 3.82 3.55 340.86 8.03 7.82 

33 np70c 14563+ 15.67 5.92 10.54 782.69 15.39 14.92 

34 np80c 19043+ 32.29 9.01 15.05 1538.86 23.63 25.94 

35 npOOc 24123+ 53.21 14.13 32.19 2918.82 38.75 50.08 

36 np100c 29803+ 83.11 14.95 34.18 T IME 59.15 62.64 

37 mutex4 14698+ 14.14 5.35 0.54 367.89 0.46 28.29 28.3 28.26 

38 mutex3 278074+ 163.94 110.27 MEM TIME TUVIE TIME TIME 

39 phi3 16930+ 3.23 3.04 53.28 1.43 55.62 12.15 TIME 

edu/ai /benchmark- s ui t e/ham- cyc. sm. The remaining 3 programs 
in the table are related to the problem of checking requirements in 
a determin istic automaton and are descr ibed in (~te!anescu et a!., 
2003). The first of these 3 programs is the biggest instance in the 
sni t.P. o f t.hP. "TD F D" prohlP.ms, wh iiP. t.hP. othP.r two progr".ms h P.long 
to the "Morin" suite. 

Overall, the picture that emerges is that u lv is the fastest system: 
Even though SMODELS is the only system that never t imes out, it is 
far slower than ulv (and other systems as well) on many problems. The 
good per formances of ulv are particularly remarkable given that the 
test suite conta ins Hamiltonian circuit problems, and these benchmarks 
have e.xponentially many loops. Thus, one would expect these problems 
to be d ifficult for ASSAT , but also for all CMODELS2 versions in the case 



 

it will generate and then reject (exponentially) many candidate answer 
sets. As it can be observed, this is not the case, at least for ulv. Finally, 
the table also shows an instance on which ASSAT blows up in memory: 
As a matter of facts , ASSAT exceeds all the available memory also on 
other instances, here not shown because all the other systems t ime out 
on them. 

Consider ing the different CMODELS2 versions - beside the fact that 
ulv is the best version- by comparing ulv and flv we see that adding 
failed-literal usually causes a significant degradation in the per for
mances. These results match the e.xpectations. Indeed , ulv (and also 
ASSAT) uses a MCHAFF-like solver and performs a few operat ions at 
each (branching) node: For (very) large programs, even a linear-time 
(in the number of atoms) operation can be prohibit ive if per formed 
at each branching node. Interestingly, consider ing flv, flu and fbu we 
see that it is almost always the case that the last system performs 
better than the second, and that the second is better than the first. 
On these benchmarks, adding learning to a look-ahead solver does not 
help. However , the gap between fbu and flu is not big. T hus , add ing 
learning to fbu does not help, but does not hur t too much : We believe 
that this is due to the lazy data structures used by all the CMODELS2 
versions, which are fundamental to keep low the burden of managing 
learned clauses. 

5.4. NON RANDOM, NON LARGE PROGRAMS 

Table III contains the results on non random, non large logic programs. 
In more details,7 

1. Benchmarks ( 40)- ( 48) and (73)- (77) are respectively t ight and non 
t ight bounded model checking (Bl\IIC) problems of asynchronous 
concur rent systems, as descr ibed in (Heljanko and Niemela, 2003). 
These problems are about proving propert ies in a given number of 
steps, represented as the last number in the instance name. 

2. Benchmarks (49)- (54) are about the Schur numbers problem, ex
pressed as basic (49)- (51) and non basic (52)-(54) programs respec
t ively. T he label "schurX.K-N" refers to a problem where, given a 
posit ive integer n , the set of integers N defined as N = { 1, 2, ... n } 
has to be partitioned into K bins such that each bin is sum- free, 

---=--
7 Benchmarks (40)-(48), (73)-(77) and the generator are available at ht tp : 

I /llw. t cs . hut . f i/"kepa/oxperiment s / boundsmodel s / . Benchmarks (49)-(57) are 
available at the ASPAMGL'S web page ht t p: / / asparagus. cs . uni- pot sdac .de/. 
Benchmarks (58)-(60) belong to the SMODELS test suite and are publicly available at 
ht tp :/ / INti . t cs . hut . f i/Sof t ware/ smodel s / test s/, encoding by Niemela (1999). 



 

Table Il l. Performances on non random , non large programs. Benchmarks 
(40)-(60) are t ight, while the o thers are non t ight. 

PB # VAR SMODELS SMODEL.See ASSAT DLV 

40 d· 12•i+9 J 186 368 
41 k• ;•29 3 199 990.95 

42 k's'29 3 169 999.46 
43 m•3•;•10 1933+ 10.98 
44 m•4•i•J2 3475+ LL32.J6 
45 m•4•s•8 J586+ 89.26 
46 q• i• J7 220 1 5L7.64 
47 e•3•i• t5 7832+ 35.58 
48 e•4•i• t3 6447 22 1. 18 

435.48 

20.88 
16.89 

1.65 
3 .82 
1.3 

53.71 
77.00 
56.2 1 

ulv ftv ffu fbu 

223.93 290.15 353.53 T IME 

415.54 204.87 44.14 589.45 
353.69 1028.77 59.99 T IME 
16.23 32.23 26.71 16.55 

1063.15 867.49 T IME 3229.99 

17.02 27.59 421.30 327.55 

1539.96 505.15 259.05 816.26 
479.28 TIM E 7.15 6.87 
87.63 567.27 20.02 19.41 

49scllurl.4-43 736+ 0.43 0.95 0.67 590.57 1.4 2.07 0.82 0.88 

50scllurl.4-44 753+ 0.44 91.25 1.07 T IME 5.97 5.62 92.63 43.0 1 
51scllurl.4-45 779 571.J7 111 0.68 434.93 T IME 229.04 4 17.34 244.35 116.51 

52 scllur2.4-43 564+ 0.33 0.56 

53 scllur2.4-44 577+ 82.72 47.78 
54 scllur2.4-45 590 578.73 672.86 

55 15puz.l8 5945+ 17.55 
56 15puz.l 9 6258+ 20.94 
57 15puz.20 6571 79.27 

6.94 
7. 14 

8.22 

I. 27 1.04 0.4 0.38 
6.14 2.8 47.99 18.93 

226.69 392.78 148.39 63.2 

1.06 141.68 0.98 

3.61 208.4 1 1.35 

4.59 TIME 1.28 

2.9 9.85 9.24 
2.93 11.65 10.76 

10.22 64.54 82.68 

58 pige.9.JO 210 44.77 
59 p;ge.l0.1 I 253 484.63 

60 p;ge.51.50 5252+ 106.79 

65.91 1 .1 
1029.38 23.83 
24.29 2.49 

1.26 4.33 1259.84 32.06 
12.41 55.46 T IME 339.06 

1.63 221.33 6.85 7.26 

61 

62 
63 
64 

65 
66 

67 

68 
69 
70 

71 
72 

8 i-J 
JJ i-J 

8 ; 
Jl i 

8 ;+ I 
ll ;+ I 

8 i-J 
JJ i-J 

8 ; 
Jl i 

8 ;+ I 
II ;+ I 

2329 7.48 

4760 36.18 

2627+ 17.35 
5301+ 37.71 

2925+ 12.08 
5842+ 54.30 

1897 0.53 

3812 1.6 
2 132+ 0.76 
4233+ 1.85 

2367+ 1.8 
4654+ 2.5 

73 d'1o•;• 12 1488+ 132.72 

74 d 'IO's'9 1 140+ 9.75 
75 d '12's' IO 15 ll+ 296.45 
76 d•8•i• JO J003+ L76 

77 d '8's'8 819+ 0.73 

7.17 

35.53 
9.30 
43.90 

15.17 
62.39 

0.66 

1.96 
0.8 
2.57 

1.05 
4.12 

2 .25 
3 .11 
1.1 

2.42 
0.14 

0.86 

3.15 
0.08 
3.59 

1.09 
3.9 

0.49 0.85 0.84 0.8 1 

1.64 
0.63 
2.16 
1.34 

2.49 

0.15 

0.39 
0.22 
0.52 
0.68 

0.6 

4.92 
1.27 

15.55 

4.31 
24 .27 

0.29 

1.71 
0.42 
6.76 

1.65 
10.42 

488.76 12 12.89 

6.38 19.31 
53.2 165.9 

12.28 25.03 
0.47 3.73 

2.47 
0.89 
6.07 
1.34 

22.01 

0.27 
0.75 
0.27 

1.9 
0.47 

5.26 

2.44 
0.88 
5.79 
1.37 

19.71 

0.27 

0.7 

0.3 
1.88 
0.49 

5.21 

152.8 T IME 
87.64 T IME 

733.9 T IME 

1.21 11.86 
2.38 1221.53 



 

i.e., for each ZEN and YEN (i) Z and Z+Z are in d ifferent bins, 
and (ii) if Z and Y are in the sanH? bin, then Z+ Y is in a different 
bin. We denote with X=1 the bruoic encoding and with X=2 the 
non basic encoding. 

3. Benchmarks (55) (57) arc progran:s encoding the 15 puzzle prob 
lem. In a label "15puz.M" , M denoted the number of moves in which 
the final configuration has to be reached. T he init ial configuration 
is not fixed and varies from program to program. 

4. Benchmarks (58)-(60) are t ight programs encoding pigeons prob
lems. In a label "p ige.h.p" , h denotes the number of holes and p 
the number of pigeons. 

5. Benchmarks (61)-(72) are blocks world planning problems encoded 
as basic programs in lines (61)-(66), and as non basic programs 
in lines (67)- (72)) , the formulations due to Erdem (2002). In the 
Lable:s, iu tln~ culutuu P B Lln~ "8" or ul l ~~ repr~eul~ Lit~ uuu tbe r o f 
blocks; while an "i" (standing for "number of steps" ) means that 
the instance corresponds to the problem of finding a plan in "i" 
steps, where "i" is the minimum :nteger for which a plan exists. 
Thus, the instances with "i" and "• + 1" in the label admit at least 
one answer set, while those with "i - 1" do not have answer sets. 
Technically speaking, these progran1s are non t ight. However, t hese 
proble1ns are "t ight on their completion models" (Babovich et al. , 
2000): If II is one such program, each model of the completion of 
II is guaranteed to be also an answer set of II. 

For these benchmarks results are mixed: On Bl\IIC problems, SMODELScc 
has the best performances overall, while on the other benchmarks it is 
ulv which has the best performances overall. What is most interest ing 
is that there is no version of CMODEL~2 dominating the others on the 
BMC problems. Given this fact and SMODELScc good performances on 
BMC instances, we believe that on non random, non large problems 
the "overall best" solver is somewhere in between ulv and fbu, i.e., that 
it can can be obtained by adding a little bit of failed-literal detection 
to ulv. This can be done is severa l ways, e.g., by checking if a literal 
is failed only if it belongs to a pool of "most promising" literals (as, 
e.g., it is done by SATZ), or by checking all the literals but not at each 
branching node. All of this is subject of future research. 

It is also wor th noting that, overall, flu is better than flv: This can 
be explained by the bad interaction between failed-literal and VSIDS. 
For non random, large formulas, this phenomena was already showed 
to hold in SAT (Giunchiglia et al., 2000). 



 

5.5. CMODELS2 AN D THE OTHER SYSTEMS 

Given the results of the experimental analysis, we now sum up what 
we consider to be the advantages and disadvantages of each system we 
considered, both from a theoretical and a pract ical point of view, when 
compared to CMODELS2. 

SMODELS (Simons et al. , 2002). SMODELS is a system for non d is
junctive answer set programming. Its algorithm has been inspired by 
Davis-Logemann-Loveland proced ure, and incorporates powerful prun
ing techniques. 

SMODELS is also the basic engine for the solver for d isjunctive logic 
programming called GNT ( J anhunen and Niemela, 2004; Janhunen et al., 
2005). A key feat ure of SMODELS is that it is a native system, i.e., 
it works directly on the input logic program. Because of this, it can 
take advantage of the structure of the progran1, e.g., by keeping more 
compact representations of the rules than CMODELS2, which comp iles 
down everything to a set of clauses. However , it does not incorporate 
some of the most recent advances, e.g., learning. T he experimental 
results for SMODELS are still positive overall, being among the best 
solvers in al l the categor ies of problems we considered. 

SMODELSoc (Ward and Schlipf, 2004). SMODELScc is SMODELS enhanced 
with clause-learning (Moskewicz et al., 2001) and a BERKMIN-like 
heur istic (Goldberg and Novikov, 2003). SMODELScc inher its from SMOD
ELS its compact data-structures for rules. However , d ue to such com
pactness, t he incorporation of learning in SMODELS required the con
st ruct ion of an implication graph, and this operation turned out to 
be relatively complex and costly when compared to the analogous 
construction in a SAT solver. Indeed, SMODELScc cannot deal with 
programs containing weight constra int rules, and this also witnesses 
the difficulty of implement ing learning on top of SMODELS compact 
data structures for such rules. On the other hand, learning comes for 
free with our approach. Further , with relatively lit t le additional pro
granlming effor t, our procedure can be based on the latest SAT tools. 
We used our tool SIMO to validate t he viability and effectiveness of the 
approach, and obtained a solver with, e.g., learning and un it propaga
t ion based on lazy data structures using a two literal watching schema. 
Mod ifying SMODELS or SMODELScc in order to use lazy data structures 
would require a rewrit ing of significant portions of the solvers. From a 
practical point of view, SMODELScc is quite effective, especially on some 
classes of non t ight programs. 



 

DLV (Leone et a l. , 2005). DLV is the state-of-the-art system in d isj unc
t ive logic programming, with techniques especially tailored for this class 
of programs. Also DLV is a native system and its algorithm is based on 
the Davis-Logemann-Loveland procedure. 

However , since it can deal with the more expressive class of d isj unc
t ive programs, it needs a co-NP check to test if a candidate model is 
indeed an answer set. The check is per formed only if needed: In the 
case of non disj unctive programs (the ones this paper faces), it is not 
applied. 

DLV has same peculiarities: Dur ing the comp utat ion , it uses a four
valued interpretations for atoms. The t ruth values considered are True, 
Fal.se, "undefined" and "must be t rue"; a "must be true" atom is like an 
atom assigned to True but it is missing a "suppor ting" rule that must 
be determined later on. Moreover , DLV heur istic is guided by a pre
selected list of litera ls (PT-litera ls) with the aims of maintaining the 
candidate model as minimal as possible. DLV key strength is that it can 
deal with disjunctive logic programs. However, on the restr icted class 
of non d isjunct!ve logic programs, its performances are not impressive, 
at least on the benchmarks that we considered and with the encodings 
that we used. 

ASSAT (Lin and Zhao, 2002; Lin and Zhao, 2004). ASSAT has been the 
first ASP SAT-b ased system non restricted to t ight programs. T he SAT 
solver is used as a black box and thus ASSAT inherits all the op t imiza
t ions implemented in it . ASSAT uses MCHA FF (Moskewicz et al. , 2001) as 
SAT solver. As we have seen, ASSAT is quite effect ive especially on non 
random programs. From a theoretical perspective, the main drawback 
of ASSAT is that it is not guaranteed to work in polyn omial space. This 
fact also emerges in some of the benchmarks that we considered and 
for which ASSA'Ir exhausted all the available memory. From a practical 
point of view, ASSAT is limited to basic programs and cannot handle 
choice, cardinality and weight constra int rules. 

CMODELS2. CMODELS2 is a SAT-based system designed after ASSAT in 
order to solve its theoretical drawbacks. CMODELS2 incorporates vari
ous solvers. fbu is our default choice for randomly generated programs, 
and ulv is our default for non random programs. The exper imental anal
ysis showed that on random problems fbu has the best per formances 
overall of all the solvers that we considered, and the same ho Ids for 
ulv when considering large problems. On the other benchmarks , ulv is 
competit ive wit h the best of the other solvers. These results show the 
effectiveness of our SAT-based approach. These results are part icularly 



 

 

remarkable given that our two solvers implement relatively simple SAT 
strategies, if compared to the ones that are now available, some of which 
already incorporated by various answer set solvers. For instance, ulv 
uses MCHAFF heur istic, while Berkmin heuristic (used by SMODELScc) 
is considered to be better . In fbu each not yet assigned literal is checked 
to see if it is failed , and these checks are per formed before each branch
ing: SMODELS and SMODELScc implement the cor respondent strategy 
of failed-literal, but they check only a subset of the unassigned literals 
(and the unchecked are guaranteed to be not failed). We expect that the 
incorporation of Berkmin heur istic and SMODELS failed literal detection 
strategy in ulv and fbu respectively will lead to fur ther improvements 
in the per formances when run on the respective applica tion domains. 

6. Conclus ions and fut ure work 

We have presented a SAT-based procedure that (i) can deal with any 
logic program (ii) works on a propositional formula without additional 
var iables exoept for those introduced dur ing the clause form conversion, 
(iii) is guaranteed to work in polynomial space. Fur thermore, ASP
SAT \,;t;LU be ea:sily utotlifietl iu onJe r Lv w tup uLe all a.tJ.:swer :set:s (:still 
working in polynomial space). We have shown how to imp lement ASP
SAT on top of current sta~of-the-art solvers with/without learning. 
The experimental evaluation shows that: 

1. CMODELS2 is competitive with other state-of-the-art systems; 

2. depend ing on the type of program different search strategies are 
best. 

This suggests that future development of answer set solvers should be 
done by focusing on certain classes of problems. In our analysis we iden
t ified two classes of programs that need completely d ifferent strategies, 
i.e. , random and large progra1ns. This also implies that benchmarking 
should be done by considering the application domain which they have 
been developed for . T his reflects what is nowadays a standard in the 
SAT competit ion, where there is a t rack for solvers designed for random 
problems, and a separate t rack for solvers designed for large ind ustr ial 
benchmarks. Solvers get designed and specialized for one track, and 
indeed the top performers in one t rack behave very badly in the other. 

Consider ing the future, there are several d irections in which this 
work can be improved. 

First CMODELS2 can be improved as a solver for non disj unctive 
programs. This can be done by improving the SAT solving part, i.e., 
DLL, or the checking procedure, i.e. , test. 



 

As anticipated in the previous section, we believe that DLL perfor
mances can be improved by implementing better failed literal detection 
st rategies and/ or heur istics. About the heur ist ics - besides those de
rived from t he SAT literature as BERKMJN 's- we believe that it is 
possible to design heur istics tailored for answer set solving. One such 
heur istic assigns atoms to False while branching: Intuit ively, we would 
like to generate assignments with as many atoms as possible assigned to 
Fal.se, thus going through min imality. A first, simple implementat ion 
of this heuristic, prod uces dramatic speed-ups on some domains (for 
instance, ulv is able to solve all the non tight problems in Table II in 
a few seconds, including the mutex3 instance, i.e., the only instance 
on which ulv t imes out) , but it seems to badly interact with learning 
in some other domains. Another possibility is to incorporate another 
SAT solver with the latest advancements, e.g., :MJNJSAT (Een and 
Sorensson, 2003) the winner of the last SAT competition. 

Consider ing the checking procedure test, recently Gebser and Schaub (2005) 
introduced the notion of "active elementary loop with respect to an 
assignment 8", and they showed that the cor respond ing loop formula 
is falsified by S, like the formula associated to a maximal terminat-
ing loop . One crucial difference between an active elementary loop 
and a maximal terminating one is that no sub-loop of an active el
ementary loop is also falsified by S. A maximal terminating loop on 
the other hand is not always an active elementary loop of the pro-
granl. It is still an open question whether the use of active elementary 
loops in SAT-based proced ures like CMODELS2 or ASSAT improves their 
performances. 

Another direction of work is to e.' "tend CMODELS2 ideas in order to 
deal with disj unctive logic progran1ming where, as for DLV, the co-NP 
check involves the use of a SAT solver. A preliminary implementat ion 
and analysis are encouraging (Lieder, 2005), but more work has to be 
done in order to improve the overal l efficiency of t he solver. 
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