
University of Nebraska at Omaha University of Nebraska at Omaha 

DigitalCommons@UNO DigitalCommons@UNO 

Interdisciplinary Informatics Faculty 
Publications School of Interdisciplinary Informatics 

7-7-2012 

Automated identification of binding sites forphosphorylated Automated identification of binding sites forphosphorylated 

ligands in protein structures ligands in protein structures 

Dario Ghersi 
University of Nebraska at Omaha, dghersi@unomaha.edu 

Roberto Sanchez 
Mount Sinai School of Medicine 

Follow this and additional works at: https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub 

 Part of the Bioinformatics Commons, and the Genetics and Genomics Commons 

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/

SV_8cchtFmpDyGfBLE 

Recommended Citation Recommended Citation 
Ghersi, Dario and Sanchez, Roberto, "Automated identification of binding sites forphosphorylated ligands 
in protein structures" (2012). Interdisciplinary Informatics Faculty Publications. 16. 
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub/16 

This Article is brought to you for free and open access by 
the School of Interdisciplinary Informatics at 
DigitalCommons@UNO. It has been accepted for 
inclusion in Interdisciplinary Informatics Faculty 
Publications by an authorized administrator of 
DigitalCommons@UNO. For more information, please 
contact unodigitalcommons@unomaha.edu. 

http://www.unomaha.edu/
http://www.unomaha.edu/
https://digitalcommons.unomaha.edu/
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub
https://digitalcommons.unomaha.edu/interdiscipinformatics
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/27?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE
https://digitalcommons.unomaha.edu/interdiscipinformaticsfacpub/16?utm_source=digitalcommons.unomaha.edu%2Finterdiscipinformaticsfacpub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:unodigitalcommons@unomaha.edu
http://library.unomaha.edu/
http://library.unomaha.edu/


Automated identification of binding sites for phosphorylated ligands in protein 
structures 

By: Dario Ghersi and Roberto Sanchez 

 

Abstract 

Phosphorylation is a crucial step in many cellular processes, ranging from metabolic reactions involved 
in energy transformation to signaling cascades. In many instances, protein domains specifically 
recognize the phosphogroup. Knowledge of the binding site provides insights into the interaction, and it 
can also be exploited for therapeutic purposes. Previous studies have shown that proteins interacting 
with phosphogroups are highly heterogeneous, and no single property can be used to reliably identify 
the binding site. Here we present an energy-based computational procedure that exploits the protein 
three-dimensional structure to identify binding sites involved in the recognition of phosphogroups. The 
procedure is validated on three datasets containing more than 200 proteins binding to ATP, 
phosphopeptides, and phosphosugars. A comparison against other three generic binding site 
identification approaches shows higher accuracy values for our method, with a correct identification 
rate in the 80–90% range for the top three predicted sites. Addition of conservation information further 
improves the performance. The method presented here can be used as a first step in functional 
annotation or to guide mutagenesis experiments and further studies such as molecular docking. 

 

INTRODUCTION 

Phosphorylated molecules play a vital role in a wide range of biological processes, both in prokaryotic 
and eukaryotic organisms. The phosphate group is used with remarkable versatility by the cell to store 
energy and to reversibly modify proteins in signaling cascades. Besides proteins and nucleotides, 
another class of biomolecules that can undergo phosphorylation is represented by sugars, either as 
intermediates in metabolic processes or as signaling tags that are attached to proteins. 

Despite the fact that no rigid classification is possible, we can approximately distinguish between 
phosphorylation as a means to energetically activate metabolic intermediates or products and 
phosphorylation as a marker or switch in cell signaling. In the latter case, the addition of the 
phosphogroup is in some instances capable by itself of inducing conformational changes in proteins or 
otherwise autonomously driving biochemical processes, but in many cases, a specific decoding process 
has to take place. Protein domains that specifically recognize the phosphogroup in proteins, sugars, or 
nucleotides, usually carry out the decoding process. 

Significant effort has gone into the characterization of these phospholigand recognition domains, 
because of their importance for understanding fundamental biological processes coupled with their 
potential therapeutic exploitation. Historically, the SH2 domain was the first to be discovered1 as a 
protein module capable of binding to its cognate ligand in a phosphorylation-dependent manner, with 
other new domains being identified over the years. As phosphorylation occurs in such a diverse range of 
contexts, it is not surprising that the domains involved in its selective recognition are oftentimes 
unrelated from an evolutionary or structural standpoint. Despite this diversity, studies have tried to 
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identify some of the properties that may be common among all the domains that recognize their 
cognate ligands in a phosphorylation-dependent manner. A method that can reliably pinpoint the region 
of a binding site where the phosphate recognition takes place, can be useful to guide mutagenesis 
experiments, or as a step in functional annotation. 

A study by Joughin et al.2 focused on recognition of phosphorylated residues in peptides. The authors 
collected three-dimensional (3D) structures of seven phosphopeptide-binding domains, extracting 
properties such as amino acid identity, surface curvature, and electrostatic potential, in order to 
characterize the phosphopeptide-binding region with respect to the whole of the protein surface. The 
propensities for each of these properties were combined into one joint propensity that was then 
mapped back on the protein surfaces and used for visual identification of the regions likely to be 
involved in binding. An important conclusion from this work was that the process of phosphate 
recognition could not be fully captured by a single property such as the electrostatic potential (in fact in 
many instances the binding site was not the region of most positive electrostatic potential on the 
protein surface) or aminoacidic composition. 

In the present study, the recognition of all three classes of phosphomodifications (on peptides, 
nucleotides, and sugars) is considered regardless of whether the phosphogroup has been added for 
metabolic purposes or as a signaling switch, and we investigate whether it is possible to find a single 
structure-derived property that has sufficient discriminative power to confidently identify most of the 
binding sites. This problem is tackled here by detecting energetically favorable regions on the protein 
surface, along the lines of what has been previously done in binding site identification for drug-like 
ligands.3, 4 An important difference with the identification of binding sites for drug-like ligands is that, in 
the case of phosphate recognition most of the interaction energy does not come from the van der Waals 
term, which is what most energy-based approaches for binding site identification exploit. Therefore, 
different energy maps have to be employed in order to precisely identify the region of the binding site 
responsible for the selective recognition of the phosphogroup. Furthermore, we investigate whether 
including evolutionary information in the form of a per-residue conservation score derived from 
multiple sequence alignments of protein families can further improve the identification of the residues 
involved in recognition of the phosphogroup. More than 200 phospholigand-binding proteins were 
included in the study. 

 

MATERIALS AND METHODS 

Datasets 

Phosphopeptide binding sites 

All the crystal structures in the Protein Data Bank (PDB)5 downloaded on November 28, 2008, were 
collected, and filtered for the presence of at least one phosphoresidue as indicated by the names “PTR” 
(phosphotyrosine), “SEP” (phosphoserine), or “TPO” (phosphothreonine). To determine whether these 
phosphoresidues were participating in protein–protein interactions (i.e., the PDB entry contains at least 
one phosporesidue binding site) all residues within 5.0 Å of a phosphoresidue were extracted and their 
chain identifier was recorded. All the cases where the chain identifier of the phosphoresidue and that of 
all interacting residues were identical were discarded. The sequences corresponding to the chains 



interacting with the phosphoresidue were designated as containing a phosphopeptide binding site. 
Redundancy in this set was removed by clustering the sequences using BLASTCLUST6 with a sequence 
identity cutoff of 50%. From each cluster, the highest resolution structure was selected for the final 
dataset. This procedure yielded a total of 48 different chains. Five of the peptides bound to the 
clustered chains (PDB codes 1j4x, 1p22, 1u7f, 2oq1, and 2z8p) contained two phosphorylated residues, 
and each residue was treated independently in the analysis, for a total of 53 different phosphoresidue 
binding sites. We note that the choice of the BLASTCLUST sequence identity cutoff represents a 
compromise between the number of sequences that pass the filter and the diversity of the dataset. The 
distribution of Pfam7 domains (Supporting Information Table S1) suggests that the dataset is fairly 
balanced and diverse. 

A corresponding dataset of unbound phosphopeptide-binding proteins was also generated by carrying 
out a BLAST search (with standard parameters and an expectation value of 10−6) using the bound chain 
sequences as queries against the entire PDB. Hits with sequence identity or coverage less than 95% with 
respect to the query sequence were excluded. The structures that did not have a “TPO,” “SEP,” or “PTR” 
residue were retained. Finally, the crystal structures with an empty binding site, with the highest 
coverage and the highest resolution (in this order of preference) were retained. This protocol yielded a 
total of 29 unbound proteins. Four of these proteins corresponded to structures bound to double-
phosphorylated peptides, and each binding site was treated independently as for the bound forms, 
resulting in a total of 33 different phosphoresidue binding sites. 

ATP binding sites 

To build a diverse dataset of ATP binding proteins we resorted to the sc-PDB8 database (2008 version), a 
collection of biologically relevant protein-small molecules complexes. We selected all the proteins in 
complex with ATP whose binding site was made of a single chain and clustered the sequences at 50% 
identity to remove redundancy. From each cluster the highest resolution structure was extracted. This 
protocol yielded a total of 70 different proteins containing a single ATP binding site each. To build a 
corresponding dataset of unbound structures we followed the protocol described above for the 
phosphopeptides, yielding a total of 33 proteins with a single ATP binding site each. Complexes with 
other phosphorylated nucleotides (CTP, GTP, TTP) yielded a much smaller number of cases and were not 
included in the dataset (See Supporting Information Table S5). Supporting Information Figure S4 and 
Table S2 show the amino acid distribution in the binding sites and the Pfam7 domain distribution of the 
ATP binding dataset. 

Phosphosugar binding sites 

All the ligands in the sc-PDB8 database were compared against the phosphosugar α-D-glucose-6-
phosphate using the Tanimoto coefficient, computed using Pybel.9 The ligands with a Tanimoto 
coefficient = 0.7 were manually inspected to ensure they were phosphorylated sugars, and the 
corresponding PDB entries were retained. To remove redundancy and gather a corresponding unbound 
dataset, the same procedure outlined above for the phosphopeptides and ATP datasets was followed, 
yielding a total of 29 bound and 17 unbound proteins (see Supporting Information Table S4) containing a 
single phosphosugar binding site each. Supporting Information Figure S4 and Table S3 show the amino 
acid distribution in the binding sites and the Pfam7 domain distribution of the phosphosugar binding 
dataset. 



Molecular interaction field calculations 

The Molecular Interaction Field (MIF) calculations were performed with our program EasyMIFs,10 which 
uses the nonbonded component of the GROMOS force field (G43b1, in vacuo) as made available in the 
GROMACS11 package with a distance-dependent dielectric derived from Solmajer and Mehler.12 The 
program computes the potential energy between a chemical probe (represented by a particular atom 
type) and the protein on a regularly spaced grid, using the following equation: 

 

where the potential energy calculated for a probe at a point i in the grid is equal to the sum of a 
Lennard-Jones and an electrostatics term over all the atoms of the protein. r  ijrepresents the distance 
between the probe at point i in the grid and an atom j of the protein. The Lennard-Jones and the 
electrostatics term are expressed by the following two equations: 

 

The C(12) and C(6) parameters in the Lennard-Jones term depend on the chosen probe and the particular 
atom type and are taken from a matrix of LJ-parameters distributed with the GROMACS package. The 

dielectric constant  has been set to 138.935485, as done in the GROMACS package and reported in 
the GROMACS manual.13 The distance-dependent dielectric sigmoidal function has been taken from 
Solmajer and Mehler12 and has the following form: 

 

where A = 6.02944; B = e0 – A; e0 = 78.4; λ = 0.018733345; k = 213.5782. When the distance between 
the probe and an atom becomes less than 1.32 Å, a dielectric constant of 8 is used. The parameters 
reported above for the distance-dependent dielectric have been taken from Cui et al.14 

Binding site identification 

The binding site identification protocol identifies regions near the protein surface where the interaction 
with the phosphate oxygen (OP) is particularly favorable, as defined by very negative values of the 
interaction energy. In order to identify those favorable regions the program SiteHound10 was used. The 
program carries out the following four steps (Fig. 1): (i) The MIF generated by EasyMIFs is read in and 
filtered by retaining only the points that are below a predefined energy threshold (e). (ii) The remaining 
points are clustered based on their position in space with an agglomerative hierarchical clustering 
algorithm using average linkage. (iii) The resulting dendrogram is cut into non-overlapping clusters by 
applying a distance cutoff (d). (iv) Finally, the clusters are ranked by Total Interaction Energy (TIE), the 
sum of the energy values of all the points that belong to the same cluster. Only two parameters must be 
chosen, the energy threshold e and the distance cutoff d. A grid search for values of e and d on 25 
randomly selected bound structures from the dataset was carried out, with e ranging from -9 to -7.5 
KJ/mol and d from 6.5 to 8 Å, with incremental steps of 0.1. The combination e = −8.5 kJ/mol and d = 7.8 
Å, yielded a good compromise between coverage of cases and accuracy of the prediction. 

http://onlinelibrary.wiley.com/doi/10.1002/prot.24117/full#fig1


The software for all computations is freely available at http://sitehound.sanchezlab.org. A web 
server15 that automatically carries out the binding site identification procedure, using standard 
parameters, is also available. 

Conservation-based reranking of putative binding sites 

The sequences corresponding to the structures in the datasets were extracted from the PDB files. For 
each sequence a BLAST6 search was run on the “nr” (nonredundant) database, downloaded in 
November 2008 from http://www.ncbi.nlm.nih.gov/, and the hits with an E-value = 10−4 and a coverage 
= 90% were retained. Subsequently, a multiple sequence alignment (MSA) was constructed for each set 
of homologs (as defined by the BLAST E-value cutoff) using ClustalW16 with default parameters. The 
conservation of each column in the MSA was measured using the Jensen-Shannon divergence score 
(JSD), as described in Capra and Singh.17 The calculations of the JSD score were performed using the 
Python program named “conservation_code” available 
at http://compbio.cs.princeton.edu/conservation. The top five sites identified by SiteHound were sorted 
using the average of their per-residue conservation scores from the most conserved to the least 
conserved site. 

Assessment of the prediction accuracy 

The clusters generated in the binding site identification step are used to identify the residues that are in 
contact with them by applying an arbitrarily chosen distance cutoff of 4 Å. The groups of residues that 
contribute to each cluster make up the predicted binding sites and are directly compared with the 
residues that are within 5 Å of any phospholigand atom in the complexes (or the corresponding residues 
in the unbound form). The subset of residues in contact with the phosphogroup only were also 
considered as a more specific test set. Binding site identification can therefore be converted into a 
classification problem, where the task is to determine whether a given residue is involved in binding or 
not. The accuracy of the predictions was measured using the Pearson correlation coefficient between 
the Prediction (P) and the Reference (R). As shown by Baldi et al.,18 the Pearson correlation coefficient 
for a classifier can be conveniently expressed by using the total number of residues (N), the True 
Positives (TP), the True Negatives (TN), the False Positives (FP), and the False Negatives (FN) with the 
following equation: 

 

C(P,R) is better known as the Matthews correlation coefficient (MCC).19 The MCC can be directly related 
to a χ2 test applied to the 2 × 2 contingency matrix containing the TP, TN, FP, and FN by using the 
following equation18: 

 

The average size of the proteins in the dataset is 218, 346, and 380 residues for phosphopeptide, ATP, 
and phosphosugar binding proteins, respectively. An MCC of 0.3 in this case would correspond to p-
values smaller than 10−4. Thus a binding site with an MCC = 0.3 was considered as correctly identified. 

Comparison with other binding site identification approaches 



Two energy-based approaches (Q-SiteFinder4 and i-Site20), a well-established pocket identification 
program (LigSite21), a peptide binding site detection method (PepSite22), and a recent phospholigand-
binding site identification approach (Phosfinder23) were chosen for comparison against SiteHound. 

Q-SiteFinder, LigSite, PepSite, and Phosfinder were run from their respective webservers with default 
parameters, whereas i-Site was run locally following the directions provided in the package. 

As Q-SiteFinder and i-Site output clusters ranked by interaction energy (as SiteHound does), the 
extraction of the putative binding residues was performed in the same manner as for SiteHound. In 
contrast, LigSite outputs the centers of the predicted pocket, from which the residues within a sphere of 
predefined radius were extracted and considered as putative binding residues (as done on the LigSite 
webserver). The default radius used on the webserver (5.0 Å) does yield a very limited number of 
residues (less than five on average) and in several cases no residues at all (with corresponding very low 
values of MCC). To ensure a fair comparison against SiteHound, increasing values of the radius were 
tested and the resulting MCC values recorded. A radius equal to 8 Å yielded the best results. The same 
approach was taken for PepSite and Phosfinder, yielding an optimal radius of 6 Å and 7 Å, respectively. 

 

RESULTS 

Phospholigand-binding site identification 

The procedure for identifying phospholigand binding sites relies on the detection of protein surface 
regions with favorable interaction energy for a OP probe. The output is a list of interaction energy 
clusters corresponding to putative phospholigand binding sites (Fig. 1), which are ranked according to 
their total interaction energy. Application of this procedure to the set of phospholigand-binding proteins 
showed that, depending on the type of phospholigand, the top ranking cluster corresponds to a known 
phospholigand binding site in 50–69% of the cases for bound structures (protein structures solved with 
the ligand in the binding site) and 41–47% of the cases for unbound structures (proteins solved without 
a ligand in the binding site; Fig. 2 and Table I). These numbers increase significantly, to 85–97% for 
bound structures and 79–88% for unbound structures, when the top three ranking clusters are 
considered (Table I). In a few cases, known phospholigand sites ranked outside the top three clusters 
(Supporting Information Fig. S1). In some cases, these may correspond to very weak interactions; in 
other cases, this suboptimal prediction can be recovered by adding evolutionary information (see 
Supporting Information Materials and conservation-based reranking below). The clusters tend to be 
focused on the region of the ligand that contains the phosphate group (Fig. 2); for example, identifying 
the position of the phosphorylated residue within a peptide [Fig. 2(A,B)] or the location of the 
phosphate groups within an ATP-binding site [Fig. 2(E,F)]. This observation already distinguishes this 
approach from some of the more general methods. Such methods identify binding sites based on the 
location of clefts or pockets in the protein structure,30, 31 but without including chemical information 
that may distinguish different types of binding sites or different regions within one binding site (this is 
discussed in more detail in the probe selectivity section). As already pointed out by Joughin et al.,2 the 
electrostatic potential plays an important role in the interaction between proteins and phospholigands 
but in a nontrivial way. In other words, the binding site does not necessarily correspond to the most 
positive patch on the protein surface. A similar situation was observed here in some of the test cases, 



confirming that a pure electrostatics-based approach would be ineffective in identifying the 
phospholigand binding sites. 

 

 

Figure 1. 

Procedure for the identification of phospholigand binding sites. [Color figure can be viewed in the online issue, 
which is available at wileyonlinelibrary.com.] 

 

 

 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/prot.24117#figure-viewer-fig1
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Figure 2. 

Examples of phospholigand-binding site identification. Arrows indicate the location of phosphate groups and the 
top-ranking cluster is shown as a red surface. A: SH2 domain bound to phosphopeptide (1ayc).24 B: FHA domain 
bound to phosphopeptide (1g6g).25 C: Cation-dependent mannose-6-phosphate receptor bound to 
pentamannosyl phosphate (1c39).26 D: Mannose-6-phosphate receptor bound to mannose-6-phosphate 
(1sz0).27 E: Motor domain of dictyostelium myosin II bound to ATP (1fmw).28 F: ATP:corrinoid adenosyltransferase 
from Salmonella typhimurium bound to ATP (1g5t).29 PDB codes are indicated in parentheses. [Color figure can be 
viewed in the online issue, which is available at wileyonlinelibrary.com.] 

 

Table I. Performance for the Top Three Ranking Clusters and for the Top Ranking Cluster Only (With and Without 
Applying the Conservation-Based Reranking) is Shown as the Number of Correctly Identified Sites Over the Total 
Number of Proteins 

  
Without 
conservation (top 3 
sites) 

Without 
conservation (top 
site) 

With conservation 
(top site) 

1. The percentage of correctly identified sites is also shown. 

Phosphopeptides 
(bound) 

36/48 75% 24/48 50% 30/48 63% 

Phosphopeptides 
(unbound) 

22/29 76% 12/29 41% 21/29 72% 

Phosphosugars 
(bound) 

25/29 86% 20/29 69% 22/29 76% 

Phosphosugars 
(unbound) 

14/17 82% 8/17 47% 10/17 59% 



  
Without 
conservation (top 3 
sites) 

Without 
conservation (top 
site) 

With conservation 
(top site) 

ATP (bound) 58/70 83% 39/70 56% 39/70 56% 

ATP (unbound) 27/33 82% 15/33 45% 17/33 52% 

 

Statistically, the performance of the binding-site identification was assessed by treating it as a 
classification problem, where the objective is to discriminate between the residues that are in contact 
with the phospholigand versus the ones that are not. The well-established MCC was used to quantify the 
agreement between the predictions and the actual interacting residues derived from the crystal 
structures. In this way, it is possible to use the same performance measure to compare bound and 
unbound forms, even in the presence of conformational changes, without the need for superposition. 
An MCC value of 0.3 was chosen as the limit for discriminating partially correct predictions from wrong 
ones, as this corresponded to a good visual match with the known binding sites, and is equivalent to P-
values smaller than 0.0001 for the typical protein size in our datasets (see Materials and Methods). The 
distribution of the MCC and the rank of the best prediction (cluster with highest MCC out of the top five 
clusters) shows that most sites are detected among the top three ranking clusters (Fig. 3 and Table I), 
with the majority of them ranking first and with an accuracy significantly above the threshold of MCC = 
0.3. On average, the approach seems to perform better on the phosphosugar and ATP datasets than on 
the phosphopeptide dataset. Computing the ratio between the average interaction energy on a 5-Å shell 
in the binding site and the average interaction energy on a 5-Å shell surrounding the entire protein 
surface identified a potential explanation for this behavior. As expected, both phosphosugars and ATP 
binding sites showed larger values, and, therefore, a stronger signal than the one deriving from the 
phosphopeptides binding sites (Supporting Information Fig. S2). This observation could be related to the 
fact that many protein–peptide interactions correspond to complexes with relatively low affinity, while 
ATP or phosphosugars will be found interacting more often with receptors and enzymes, which tend to 
be stronger interactions. 



 

Figure 3. 

Accuracy of binding-site identification. MCC distribution for the phospholigand datasets for bound and unbound 
proteins with and without conservation-based reranking. The stacked bars show the rank of the best prediction, 
color coded from 1 to 5. 

 

Bound versus unbound structures 

Binding-site identification methods tend to be evaluated on protein structures solved in the presence of 
the ligand (bound structures). However, by definition, binding site identification will be used in practice 
only in cases where the binding site is unknown, and, therefore, the structure of the protein has been 
solved in the absence of the ligand (unbound structures). Therefore, it is important to compare the 
performance of a binding-site identification method on bound and unbound structures. Table I and 
Figure 3 show that while there is a drop in performance when going from bound to unbound structures 
it is not large. The largest drop in performance was observed when attempting to identify the binding 
site using only the top-ranking cluster. In this case, 68–82% of the performance obtained with bound 
structures is retained, with the phosphosugar set being affected the most. When using the top three 
clusters, 84–99% percent of the performance obtained with bound structures is retained, again the 
phosphosugars being the most affected. In both cases the ATP and phosphopeptides sets were affected 
to a much smaller degree (80% and 82% retention for top site and 99% and 93% retention for top three 
sites, respectively). This loss of accuracy may be partially explained by conformational changes occurring 
on ligand binding. When comparing the bound and unbound structures in the three datasets, the largest 
differences were observed in the phosphosugar set, followed by the ATP set, and then the 
phosphopeptides (data not shown). 

Conservation-based reranking of the putative sites 

The fact that a few known sites are missed by the energy-based approach and the effect of ligand-
induced conformational changes described in the previous section, prompted us to explore the possible 
complementarity between the physical information derived from the energy-based approach and the 
evolutionary information that can be derived from the conservation of residues in a multiple sequence 
alignment. Approaches based on conservation have been shown to be able to identify functionally 
important residues17, 32 and can complement structure-derived information.21, 33 Conservation-based 
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reranking of the top five clusters identified using the energy-based approach resulted in an increase in 
the number of known phospholigand binding sites identified by the top cluster (Table I). In general, the 
accuracy and ranking of the cluster prediction improved (Fig. 3), with the largest effect being observed 
for the sets of unbound structures and particularly for phosphopeptides. In other words, the confidence 
on the top predictions is increased when conservation-based reranking is applied. While conservation-
based reranking provided a clear boost to the binding site identification approach, conservation 
information by itself cannot identify the residues that are specifically involved in binding with the same 
level of accuracy afforded by the energy-based approach, since residues tends to be conserved both for 
structural and functional reasons. In other words, the residues that are specifically involved in binding 
usually are a subset of the conserved surface residues (Supporting Information Fig. S3). Hence, overall 
conservation-based identification of phospholigand binding sites is less accurate than the energy-based 
approach, but it provides complementary information (Fig. 4), especially for weaker binding sites such as 
those of phospholigands. 

 

 

Figure 4. 

Summary of the performance. Receiver operator characteristic curves comparing the performance of the energy-
based approach used in isolation (solid gray curve), the conservation-based approach used in isolation (dashed 
gray curve), and the combination of the energy-based and conservation-based approaches (black curve). A curve 
closer to the upper left corner indicates better performance. 
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Probe selectivity 

One of the claimed advantages of an energy-based approach to the identification of ligand-binding sites 
is that chemical information can be built into the procedure by selecting different probes for binding-site 
identification.10 Hence, the performance of the OP probe was compared with the performance of a 
chemically different reference probe to examine whether it really provides an advantage in 
phospholigand-binding site identification. The methyl (CMET) probe was used as a reference since we 
and others have used it before for general binding site identification.3, 4 The CMET probe is also an 
interesting reference since it mimics geometrical approaches to binding site identification in which the 
dominant component of the energy comes from van der Waals interactions.3, 4 The comparison showed 
that the OP probe does indeed provide better accuracy than the CMET probe for phospholigand-binding 
site identification in all three sets (Table II). The largest difference was observed in the phosphopeptides 
set where the OP probe improves binding-site detection by 72% and 46% for bound and unbound 
structures, respectively. This is probably due to the fact that peptide-binding sites are more extended 
and less curved than ATP and phosphosugar binding sites, thus making them more difficult to identify by 
methods that rely purely on van der Waals interactions or geometry. This advantage is also illustrated by 
the fact that in the ATP and phosphosugars sets the gains due to the use of the OP probe are greater in 
the unbound structures than the bound ones, probably due to the larger effect that conformational 
changes will have on a purely van der Waals-based approach. 

As ATP has a large fraction of the molecule composed of phosphogroups, the subset of residues that are 
in contact with the phosphogroups were also considered as a subsite (thereby excluding the region of 
the binding site that binds to the nucleotide part of the ligand). In this way, one can directly assess 
whether it is possible to discriminate the part of the binding site that binds to the phosphogroups versus 
the one that binds to the nucleotide part of the ligand. The gain provided by the OP probe is in fact 
larger when restricting the comparison to the phosphogroup subset of ATP (Table II), thus suggesting 
that the CMET and OP probes can be used in a complementary fashion, as illustrated in Figure 5. Overall, 
the results indicate that the performance with the CMET probe is inferior to the one achieved by using 
the OP. In other words, there is an advantage in using the more selective OP probe when studying 
proteins that are known to bind to phosphorylated ligands. 

 

 

Figure 5. 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/prot.24117#figure-viewer-fig5


Table II. Comparison of OP and CMET Probes for Phospholigand-Binding Site Identification 

 

  OP CMET 
OP vs. 
CMET 
enrichment 

MCC OP 
(Median) 

MCC 
CMET 
(Median) 

1. The number of cases with an MCC ≥ 0.3 in at least one of the top three clusters and the median value of the MCC are 
listed for all three datasets. 

Phosphopeptides 
(bound) 

36/53 68% 14/53 26% 157% 0.83 0.65 

Phosphopeptides 
(unbound) 

22/33 67% 11/33 33% 100% 0.74 0.54 

Phosphopeptides 
phosphogroup 
(bound) 

35/53 66% 13/53 25% 169% 0.72 0.59 



  OP CMET 
OP vs. 
CMET 
enrichment 

MCC OP 
(Median) 

MCC 
CMET 
(Median) 

Phosphopeptides 
phosphogroup 
(unbound) 

22/33 67% 9/33 27% 144% 0.68 0.52 

Phosphosugars 
(bound) 

25/29 86% 22/29 76% 14% 0.80 0.72 

Phosphosugars 
(unbound) 

14/17 82% 6/17 35% 133% 0.75 0.70 

Phosphosugars 
phosphogroup 
(bound) 

22/29 76% 19/29 66% 16% 0.65 0.55 



  OP CMET 
OP vs. 
CMET 
enrichment 

MCC OP 
(Median) 

MCC 
CMET 
(Median) 

Phosphosugars 
phosphogroup 
(unbound) 

12/17 71% 6/17 35% 100% 0.56 0.48 

ATP (bound) 58/70 83% 49/70 70% 18% 0.69 0.73 

ATP (unbound) 27/33 82% 21/33 64% 29% 0.62 0.63 

ATP 
phosphogroup 
(bound) 

56/70 80% 44/70 63% 27% 0.76 0.59 



  OP CMET 
OP vs. 
CMET 
enrichment 

MCC OP 
(Median) 

MCC 
CMET 
(Median) 

ATP 
phosphogroup 
(unbound) 

27/33 82% 18/33 55% 50% 0.63 0.53 

 



Table III. Comparison of SiteHound (OP probe) Against Other Binding-Site Identification Approaches 

Phospholigand   

Method 

SiteHound (OP) I-Site QSiteFinder LigSite PepSite Phosfinder 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

1. The percentage of cases with an MCC ≥ 0.3 in at least one of the top three clusters (coverage) and the median value of the MCC for those cases are listed for all three datasets. The results include both the full ligands (ligand) and the phosphogroups only (P-
group). The highest binding site identification performance is highlighted for each group of ligands. 

Peptide
s 

Bound 
(53 
cases) 

Ligan
d 

68% 0.83 57% 0.83 47% 0.81 48% 0.69 28% 0.60 49% 0.81 

P-
group 

66% 0.72 51% 0.79 42% 0.75 46% 0.65 21% 0.54 49% 0.80 

Unboun
d (33 
cases) 

Ligan
d 

67% 0.74 61% 0.75 26% 0.68 58% 0.61 18% 0.42 45% 0.78 

P-
group 

67% 0.68 58% 0.81 39% 0.80 55% 0.56 9% 0.54 52% 0.74 

Sugars Bound 
(29 
cases) 

Ligan
d 

86% 0.80 72% 0.75 72% 0.75 76% 0.76 — — 41% 0.74 

P-
group 

76% 0.65 66% 0.59 62% 0.55 62% 0.56 — — 38% 0.70 



Phospholigand   

Method 

SiteHound (OP) I-Site QSiteFinder LigSite PepSite Phosfinder 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Coverage
, MCC ≥ 
0.3 

Median
, MCC 

Unboun
d (17 
cases) 

Ligan
d 

82% 0.75 53% 0.67 41% 0.70 88% 0.67 — — 35% 0.66 

P-
group 

71% 0.56 47% 0.49 35% 0.53 71% 0.59 — — 29% 0.69 

ATP Bound 
(70 
cases) 

Ligan
d 

83% 0.69 86% 0.69 77% 0.71 81% 0.67 — — 69% 0.60 

P-
group 

80% 0.76 67% 0.61 63% 0.57 77% 0.60 — — 67% 0.78 

Unboun
d (33 
cases) 

Ligan
d 

82% 0.62 76% 0.67 79% 0.59 73% 0.57 — — 58% 0.77 

P-
group 

82% 0.63 61% 0.47 58% 0.48 67% 0.47 — — 58% 0.77 

 



Example of the combined use of multiple probes. Mevalonate kinase in complex with ATP (pdb code: 1kvk).34 The 
first-ranking cluster obtained with the OP probe (red) correctly identifies the part of the site involved in binding to 
the phosphogroup, whereas none of the top 10 clusters obtained with the CME probe identifies that moiety. 
However, the third-ranking CMET probe cluster correctly identifies the nucleotidic part of the ligand, illustrating 
the advantage of using multiple probes to characterize heterogeneous binding sites. 

 

Comparison with other binding site identification approaches 

Two energy-based approaches (Q-SiteFinder4 and i-Site20), a well-established pocket identification 
program (LigSite21), a peptide-binding site detection method (PepSite22), and a recent phospholigand-
binding site identification approach (Phosfinder23) were chosen for comparison against SiteHound (OP 
probe). Binding-site identification coverage, defined as the percentage of known binding sites identified 
among the top three clusters with an MCC of at least 0.3, was used again as the measure of 
performance. With the exception of the unbound phosphosugars set, where LigSite achieved the highest 
performance (with SiteHound immediately following), and the ATP bound dataset, where i-Site 
outperformed the other methods, SiteHound was able to identify more binding sites than the other 
methods (Table III). The advantage of using chemically specific information becomes more evident when 
only the residues in contact with the phosphogroup are considered. In this case, the advantages of 
LigSite for unbound phosphosugars, and of I-site for bound ATP, disappear (Table III). It is interesting to 
note that while phosfinder shows a much lower phospholigand-binding site identification performance 
than SiteHound (OP probe), the median MCC of the binding sites that it is able to identify tends to be 
slightly higher than that of SiteHound. This is likely due to phosfinder relying on matching to existing 
phospholigand binding sites to identify new sites. Hence, while this seems to present a disadvantage for 
the identification of binding sites as a whole, it provides some advantage in the exact identification of 
the residues participating in those binding sites, since they are predefined in the template-binding sites 
used for matching. This suggests that an approach that combines energy-based methods for binding-site 
identification, with binding-site templates for the exact delineation of the binding site, may improve the 
overall performance. While many other binding site identification methods exist,35 most of them are 
not tailored for the detection of sites with the special characteristics of phospholigand binding sites, 
hence we expect the differences in performance shown between SiteHound (OP probe) and the other 
methods to persist in the context of phosholigand binding site identification. One method that could 
potentially provide improved performance in the detection of phospholigand binding sites (although at a 
higher computational cost) is computational solvent mapping,36 which uses multiple molecular probes 
to identify druggable binding sites in protein structures. It is conceivable, that a special set of molecular 
probes could be used to tailor the binding site identification to phospoligand binding sites. However, this 
idea has not yet been tested. 

 

DISCUSSION AND CONCLUSIONS 

We presented a computational approach to identify regions of a protein structure where a specific 
interaction with the phosphogroup(s) takes place. The testing on three independent datasets comprising 
152 bound complexes and 83 unbound proteins involved in phospholigand recognition shows that by 
using a specific phosphate probe to compute interaction energy maps it is possible to reliably identify 
the phospholigand binding sites. 



While known binding sites are not always identified as the top-ranking cluster, in a majority of the cases 
they are found among the top-three clusters. While ideally a method would always identify the known 
binding site as the top-ranking cluster, this is very difficult in practice for several reasons. The existence 
and the relative strength of a site is dependent on the ligand being considered, and it is possible that 
more than one ligand-binding site exists in a protein structure. Ultimately, a binding site can only be 
unequivocally defined when the ligand is also known. However, the main reason for the lack of perfect 
performance is probably the fact that a simple single-atom chemical probe is being used to achieve 
generality in the identification of binding sites for different phospholigands. Our previous studies with 
binding sites for drug-like ligands showed that once the identity of the ligand is added in a docking 
approach, the number of times that the correct binding site is identified among the top-three candidates 
increases with respect to the a priori prediction based on the single top-ranking cluster.3 Hence, 
providing a small number of alternatives for the binding site location is not only of practical use but also 
may be necessary when the exact identity of the ligand is unknown. 

Despite the variability in the electrostatic potential or the amino acidic composition of the binding sites, 
the signal derived from the interaction energy with a phosphate probe is invariably higher in the binding 
site as compared to the rest of the protein and the approach successfully exploits this property 
(Supporting Information Fig. S2). This seems to be true even in the case of small conformational 
changes, since the results indicate that the approach is relatively insensitive to the changes that occur 
upon ligand binding. In part, this is probably due to the method not relying solely on shape or van der 
Waals interactions. It is likely that the chemical identity of the binding site is retained in a more robust 
way than the shape alone, thus making it easier to recognize the energetic signature of the binding site 
in the unbound structure, even if it is geometrically distorted, since it will still tend to stand out from the 
background. 

An optional step involving the reranking of the top predicted sites by conservation score further 
improved the predictions where the energy-based signal is relatively weak (as in some of the 
phosphopeptide cases). Adding conservation information seems to provide a way to reduce the noise 
coming from decoy sites, given that a sizeable number of homologous sequences are available to 
accurately compute conservation scores. On the other hand, conservation alone cannot be used to 
precisely pinpoint the residues involved in the specific recognition of the phosphogroup, since they 
generally form a proper subset of all the conserved residues in a protein family. Hence the structure-
based approach described here, while more accurate, is also highly complementary to conservation-
based approaches and would be particularly useful when it is necessary to identify residues that are 
conserved for binding to specific chemical groups, such as the phospholigands. Such chemical 
information is absent in conservation-based approaches. 

It is important to mention that this method cannot be used directly to identify, a priori, proteins that 
could be involved in phosphate recognition. However, it can guide mutagenesis experiments to confirm 
specific binding or guide further computational studies such as molecular docking. On the other hand, 
the more challenging problem of binding site classification (i.e., assigning the possible class of ligands to 
a binding site) can be considered as an extension of the problem of binding site identification. The 
results presented here, in particular the combination of different probes, indicate that an energy-based 
approach is well suited to provide an integrated approach for binding site identification and 
classification. This study highlights the advantages of using simple chemical information in the process of 
identifying binding sites with different properties, and thus provides a framework on which to exploit 



existing forcefields37, 38 for the identification of a variety of binding site types. We envisage that this 
method will be useful in the context of structure-based functional annotation; for example, using the 
many structures for proteins of unknown function produced by structural genomics projects and also in 
the context of rational drug design and the general analysis of newly determined protein structures. The 
method is well suited for large-scale analysis of many structures or many conformations of one 
structure, because it is fast and can be fully automated. It is also a good complement to other structural 
analysis methods that, being more detailed, require more computational power.36 
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