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Abstract Boolean networks have been widely used as models for gene regulatory
networks, signal transduction networks, or neural networks, among many others. One
of the main difficulties in analyzing the dynamics of a Boolean network and its sen-
sitivity to perturbations or mutations is the fact that it grows exponentially with the
number of nodes. Therefore, various approaches for simplifying the computations and
reducing the network to a subset of relevant nodes have been proposed in the past few
years.We consider a recently introduced method for reducing a Boolean network to its
most determinative nodes that yield the highest information gain. The determinative
power of a node is obtained by a summation of all mutual information quantities over
all nodes having the chosen node as a common input, thus representing a measure
of information gain obtained by the knowledge of the node under consideration. The
determinative power of nodes has been considered in the literature under the assump-
tion that the inputs are independent inwhich case one can use the Bahadur orthonormal
basis. In this article, we relax that assumption and use a standard orthonormal basis
instead. We use techniques of Hilbert space operators and harmonic analysis to gen-
erate formulas for the sensitivity to perturbations of nodes, quantified by the notions
of influence, average sensitivity, and strength. Since we work on finite-dimensional
spaces, our formulas and estimates can be and are formulated in plain matrix algebra
terminology. We analyze the determinative power of nodes for a Boolean model of a
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signal transduction network of a generic fibroblast cell. We also show the similarities
and differences induced by the alternative complete orthonormal basis used. Among
the similarities, we mention the fact that the knowledge of the states of the most deter-
minative nodes reduces the entropy or uncertainty of the overall network significantly.
In a special case, we obtain a stronger result than in previous works, showing that
a large information gain from a set of input nodes generates increased sensitivity to
perturbations of those inputs.

Keywords Boolean networks · Biological information theory · Mutual information ·
Sensitivity · Network reduction · Linear operators · Numerical simulations

1 Introduction

The past few decades have generated a large influx of data and information regarding
a variety of real or artificial networks. The necessity to understand and use the data
in a meaningful way has lead to various modeling approaches. In particular, Boolean
network (BN) models introduced by Kauffman (1969) have acquired a significant
importance in modeling networks where the node activity can be described by two
states, 1 and 0, “ON and OFF,” “active and nonactive,” and where each node is updated
based on logical relationships with other nodes. These models incorporate Boolean
functions that are relevant to particular types of applications, such as signal transduc-
tion in cells (e.g., Helikar et al. 2008), genetic regulatory networks or other biological
networks (e.g., Kauffman 1993; Shmulevich and Kauffman 2004; Shmulevich et al.
2002; Klemm and Bornholdt 2000; Albert and Othmer 2003), or neural networks (e.g.,
Huepe and Aldana 2002).

However, a simplification of the reality to binary states of the nodes does not ease
the difficulty of studying large, complex networks for which the existing data may
offer only partial information on the real interactions in the network and for which the
dynamics are hard to study even under a deterministic approach. As a matter of fact,
even smaller networks of only a few hundred nodes or less can pose serious difficulties
in assessing the dynamics, given the exponential dependence of the state space on
the number of nodes. Consequently, a number of approaches aiming at simplifying
the computational difficulty of analyzing the dynamics have been proposed in recent
years. For example, Goles et al. (2013) reduce the network and the number of updates
needed to analyze the dynamics by generating sub-configurations of states that remain
fixed regardless of the values of the other nodes and by identifying sets of updating
schedules which have the same dynamics. They show that such networks are minimal
in the sense that no edge can be deleted because every one of them represents a real
interaction in the respective network. Various methods for reducing the network to a
fairly small subset of nodes that are relevant for the long-term dynamics have been
proposed. The definitions of “relevant” and “irrelevant” nodes differ depending on the
actual approach. Some methods are related to eliminating stable nodes that end up in
an attractor after a transient period and thus considered irrelevant. This may be paired
with removing leaf nodes that do not contribute to the evolution of any other node, that
is, with zero out-degree (outputs) like in Bilke and Sjunnesson (2001) or Richardson
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(2004), or with merging or collapsing mediator nodes with one in-degree (input) and
one out-degree in Saadatpour et al. (2013). Other methods are based on eliminating
irrelevant nodes that are frozen at the same value on every attractor together with nodes
whose outputs go only to irrelevant nodes in Socolar and Kauffman (2003), Kaufman
et al. (2005), or Kaufman and Drossel (2006). The basis of these methods is to reduce
the “structure” of the network using some rules on the Boolean functions and then
prove that such a reduction simplifies the identification of attractors. As expected,
they may carry an intrinsic numerical burden. Furthermore, alternative methods for
eliminating the need for complete enumeration of the states have been considered. For
example, Devloo et al. (2003) propose another formalism which permits calculation
of the steady states as solutions of a system of steady-state equations, via an image
function which identifies a state by its image under a certain function. The authors use
constraint programming to solve the derived system of equations in an efficient way
from a computational point of view.

In addition to the previously mentioned methods for network reduction, the entropy
of the relevant components of the network which are comprised of relevant nodes that
eventually influence each other’s state is used as a measure of uncertainty of the future
behavior of a random state of the network by Krawitz and Shmulevich (2007a, b). The
entropy is a measure of uncertainty that has been used also by Ribeiro et al. (2008)
to find the average mutual information of a random Boolean model of regulatory
network as a way to quantify the efficiency of information propagation through the
entire network. In this context, one needs to consider pairs of connected nodes and the
intrinsic Boolean functions that govern the node updates, as opposed to evolving the
networks in order to identify the attractors. Further research by some of the authors of
Ribeiro et al. (2008), in particular Lloyd-Price et al. (2012), uses mutual information
to test for a relationship between the robustness to perturbations of an attractor in a
random BN and the amount of information propagated within the network when in
that attractor. They found that there is a trade-off between robustness and information
propagation and that at the edge of chaos, robustness is not correlated with information
propagation.

On the other hand, the notions of entropy and mutual information have been long
used as measures of complexity of dynamical systems, such as BNs, as described, for
example, by Feldman and Crutchfield (1998) or by Sole and Luque (1997). Luque and
Ferrera are concerned with the mutual information contained in random BNs and its
behavior as the networks undergo their order–disorder phase transition, showing that
the mutual information stored in the network has a maximum at the transition point.

Only recently the mutual information has been used as a method for identifying
the most powerful and therefore relevant nodes in a BN, thus offering an efficient
alternative approach to network reduction to a relevant subset of nodes Heckel et al.
(2013). The mutual information, as a basic concept in information theory, allows one
to represent the reduction in the uncertainty or entropy of the state of a node due to the
knowledge of any of its inputs. A summation of all mutual information quantities over
all nodes having a common input can be viewed as the determinative power of that
input node. The more powerful the node, the more the information gain provided by
the knowledge of its state. In Heckel et al. (2013), the authors use harmonic analysis to
compare the determinative power of a set of inputs to the sensitivity to perturbations
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to those inputs showing that an input with large sensitivity need not have a large
determinative power. On the other hand, large information gain from a set of inputs
generates large sensitivity to perturbations of those inputs. Moreover, by considering
the feedforward regulatory network of E. coli, it is shown that the knowledge of the
states of the most determinative nodes reduces the uncertainty of the overall network
significantly. Thus, one could focus on the dynamics of the reduced network of the
nodes with the most determinative power.

In Heckel et al. (2013), the mutual information formula is obtained in terms of
Fourier coefficients expressed in the Bahadur basis which assumes independence of
the inputs of a Boolean function. In a subsequent paper by Klotz et al. (2014), it is
shown that canalizing Boolean functions maximize the mutual information under the
same assumption as in Heckel et al. (2013). This assumption is strong, since in a BN,
there are correlations between inputs that build up as the network evolves in time. Our
goal is to relax this assumption and allow dependence of inputs, while exploring the
impact of a (necessarily) different basis on the results regarding themutual information
and the sensitivity to perturbations. We notice that some results still hold; however,
not all are independent of the basis. At the same time we are interested to see the
impact of our approach on the network reduction based on most determinative nodes
of a specific biological network. In particular, we use a Boolean model of the signal
transduction network of a generic fibroblast cell andwe obtain results similar toHeckel
et al. (2013).

In Sect. 2, we provide the basic definitions, the mathematical setup, and we use
elements of operator theory to generate formulas for finding the sensitivity to pertur-
bations of the nodes of the network, quantified by the concepts of influence, average
sensitivity, and strength (to be defined in that section). We also discuss the computa-
tional aspects of using those formulas in applications. In Sect. 3, we provide formulas
and estimates for mutual information, determinative power, and strength, paired with
simulations, and estimates that link the mutual information and the sensitivity to per-
turbations. We also consider a special case that allows us to compare our analytical
results to those in Heckel et al. (2013). Conclusions and further directions of research
are in Sect. 4.

2 Influence, Sensitivity, and Strength

In this section, we provide analytical formulas for the sensitivity to perturbations
using a complete orthonormal basis that does not assume independence of the Boolean
inputs. We pair this with some computational aspects regarding the application of the
formulas to an actual biological network.

2.1 Analytical Approach

Let �n = {0, 1}n and the random vector X valued in �n . If P denotes the proba-
bility measure on the domain of definition of X , then denote PX−1 the (cumulative)
distribution of X . A BN is modeled as the set [n] := {1, 2, . . . , n} of n nodes, each
node being ON (that is in state 1) or OFF (that is in state 0). Then any ω ∈ �n is a
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possible state of the network. Each node i ∈ [n] has an associated Boolean function
fi : �n → � that governs the dynamics of the node. We are usually interested in
how the network evolves by iterating the map F = ( f1, f2, . . . , fn) a large number of
times. Although the measures used in this paper are discrete, we use notation typical
for measure theoretical arguments to write shorter and more elegant proofs.

Given a node i with Boolean function fi : �n → �, the influence of the j th input
on fi has been formulated in various ways in the literature. Following the authors of
Shmulevich and Kauffman (2004), Kahn et al. (1988), and Ghanbarnejad and Klemm
(2012), we recall the following:

Definition 1 The influence, I j ( fi ), of variable x j on the Boolean function fi , or
equivalently, the activity of node j on node i , is defined as follows:

I j ( fi ) := P( fi (X) �= fi (X ⊕ e j )) (1)

where X ⊕e j is the random vector obtained by flipping the j th slot of X from 1 to 0 or
viceversa. The average sensitivity, avs( fi ), of fi is the sum of its incoming activities

avs( fi ) :=
n∑

j=1

I j ( fi ). (2)

The strength, σ( fi ), of fi is the sum of the outgoing activities

σ( fi ) :=
n∑

j=1

Ii ( f j ). (3)

Alternatively, I j ( fi ) can be regarded as the average of the Boolean partial derivative
∂( j) fi (X) = δ fi (X), fi (X⊕e j ) with respect to the probability measure P as specified
in Ghanbarnejad and Klemm (2012). Here δ is Kronecker’s delta function which
is equal to one if the two variables are equal and zero otherwise. The definition is
originally introduced in the context of assuming the state of the BN as a random vector
X = (X1, . . . , Xn)with independently distributed coordinates, but this property plays
no role in it. However, the aforementioned property plays an essential role in papers
likeHeckel et al. (2013), Klotz et al. (2014), orKahn et al. (1988)where it is essential in
obtaining formulas for I j ( fi ) (and other related quantities relevant in the study of BNs)
in terms of the Fourier coefficients of fi [see, e.g., (Kahn et al. 1988, Lemma 4.1)]. The
Hilbert space where those formulas are obtained is L2(�n, dPX−1). The complete
orthonormal basis used in Kahn et al. (1988) is the, so-called, Bahadur basis (see
Heckel et al. 2013). In order for that family of functions to forma complete orthonormal
basis of L2(�n, dPX−1) it is necessary that X1, . . . , Xn be independently distributed.
However, the nodes of a BN may mutually influence each other, so independence is a
restrictive assumption.

A composition operator is an operator on a linear space S of functions defined on
a set E . For any fixed self-map ϕ of E , the operator

Cϕ f := f ◦ ϕ f ∈ S
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is called the composition operator with symbol ϕ or induced by ϕ. It is necessarily
linear. We will use such operators on S = L2(�n, dPX−1).

Let ϕ j be the j th slot flip map. This means that, for all ω ∈ �n, ϕ j (ω) is the
Boolean vector in �n obtained by flipping the j th coordinate of ω. Observe that ϕ j

are obviously self-inverse and hence so are the composition operators they induce,
a fact which will be used without further comments throughout this paper. In the
following, 〈 , 〉 denotes the usual inner product of L2(�n, dPX−1) and ‖ ‖ the norm
induced by that inner product. Also, T ∗ is the notation used for the adjoint of any
operator T , whereas I denotes the identity operator. With these notations we prove:

Proposition 1 For all Boolean functions fi , the following formulas hold:

I j ( fi ) = 〈(I − Cϕ j )
∗(I − Cϕ j ) fi , fi 〉 j = 1, . . . , n (4)

avs( fi ) = 〈T fi , fi 〉 where T =
n∑

j=1

(I − Cϕ j )
∗(I − Cϕ j ) (5)

σ( fi ) =
n∑

j=1

〈Ti f j , f j 〉 where Ti = (I − Cϕi )
∗(I − Cϕi ) (6)

Proof Using a well-known change in measure formula, for any Boolean function f
(we drop the index for simplicity of notation) one can write

I j ( f ) = P({ f (X) �= f (X ⊕ e j )}) =
∫

| f (X) − f (X ⊕ e j )|2 dP

=
∫

| f (X) − f ◦ ϕ j (X)|2 dP =
∫

�n
| f − f ◦ ϕ j |2 dPX−1

= ‖(I − Cϕ j ) f ‖2 = 〈(I − Cϕ j )
∗(I − Cϕ j ) f, f 〉.

��
Proposition 2 For all j = 1, 2, . . . , n, let � j denote the largest eigenvalue of Tj =
(I − Cϕ j )

∗(I − Cϕ j ), respectively, whereas � is the largest eigenvalue of T . The
following estimates hold:

I j ( f ) ≤ � j E[ f (X)] (7)

avs( f ) ≤ � E[ f (X)]. (8)

Hence:
σ( fi ) ≤ �i E[F(X)], i ∈ [n], (9)

where F = ∑n
j=1 f j .

Proof Indeed, both the operators Tj and T are nonnegative operators, and hence, their
numerical range is equal to the line interval with endpoints the least, respectively, the
largest eigenvalue. On the other hand, formulas (4) and (5) show that I j ( f )/‖ f ‖2
and avs( f )/‖ f ‖2 belong to the numerical range of the operator Tj , respectively, T .
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Combining all that with the fact that f , being a Boolean function, satisfies condition
E[ f (X)] = ‖ f ‖2, proves (7) and (8).

For arbitrary fixed i ∈ [n] one has by (7) that

σ( fi ) ≤ �i

n∑

j=1

E[ f j (X)].

Given that obviously
∑n

j=1 E[ f j (X)] = E[F(X)], estimate (9) follows.

��
The space L2(�n, dPX−1) has a simple and natural complete orthonormal basis,

namely B = {eω = χω/
√
pω : ω ∈ �n}, where

χω(x) = δω,x x ∈ �n

and
pω = P(X = ω) ω ∈ �n .

We assume all states are possible, so pω > 0.
Checking the fact that B is a complete orthonormal basis of L2(�n, dPX−1),

whether X1, . . . , Xn are independently distributed or not is left to the reader.

Proposition 3 For all j = 1, . . . , n, the operator Tj = (I − Cϕ j )
∗(I − Cϕ j ) has a

matrix with respect to B whose entries are

aω,η(Tj ) = δω,η −
√

pϕ j (ω)

pω

δϕ j (ω),η −
√

pϕ j (η)

pη

δϕ j (η),ω

+
√

pϕ j (ω) pϕ j (η)

pω pη

δϕ j (ω),ϕ j (η) ω, η ∈ �n . (10)

Hence, the entries in the matrix of the operator T are:

aω,η(T ) =
n∑

j=1

aω,η(Tj ) ω ∈ �n . (11)

Proof Given ω, η ∈ �n , the entry aω,η(Tj ) in the matrix of (I − Cϕ j )
∗(I − Cϕ j ) is

aω,η(Tj ) = 〈(I − Cϕ j )
∗(I − Cϕ j )eη, eω〉 = 〈(I − Cϕ j )eη, (I − Cϕ j )eω〉. (12)

Note that

Cϕ j χν = χϕ j (ν) ν ∈ �n,
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and hence

Cϕ j eν =
√

pϕ j (ν)

pν

eν ν ∈ �n . (13)

Equalities (12) and (13) combine into establishing by a straightforward computation
Eq. (10).

��
Therefore, one can state the following:

Corollary 1 Given a Boolean function f , the following practical formulas hold:

I j ( f ) =
∑

ω,η∈�n

aω,η(Tj ) f (ω) f (η)
√
pω pη (14)

and
avs( f ) =

∑

ω,η∈�n

aω,η(T ) f (ω) f (η)
√
pω pη. (15)

Hence:

σ( fi ) =
n∑

j=1

∑

ω,η∈�n

aω,η(Ti ) f j (ω) f j (η)
√
pω pη, i ∈ [n]. (16)

Indeed, (14) and (15) are immediate consequences of the matricial description of
operators Tj and T combined with the following computation of the Fourier coeffi-
cients cω, ω ∈ �n of f relative to B:

cω = 〈 f, eω〉 = 1√
pω

∫

�n
f χωdPX−1 = 1√

pω

f (ω)P(X = ω) = f (ω)
√
pω.

(17)

Example 1 In this example, we show that formula (14) agrees with the definition of
I j ( f ). To this goal, assume a product distribution, which is the basic assumption of
Heckel et al. (2013), such that every state of the network is equally likely. Thus, the
probability of any state is 1/2n . Then

I j ( f ) =
∑

ω,η∈�n

aω,η(Tj ) f (ω) f (η)
√
pω pη = 1

2n
∑

ω,η∈�n

aω,η(Tj ) f (ω) f (η)

= 1

2n
∑

ω,η∈supp f

[
δω,η − δϕ j (ω),η − δϕ j (η),ω + δϕ j (ω),ϕ j (η)

]

where supp f is the support f −1(1) of the function f .
Let f be the Boolean function with support supp f = {(0, 1, 1), (1, 1, 1)}. Then

obviously a flip of x1 does not generate a flip in the output, so I1( f ) = 0. Similarly,
a flip in x2 generates a flip of the output only for (x1, x2, x3) = (0,1,1), (0,0,1), (1,0,1)
or (1,1,1), so, by definition, I2( f ) = 4/23 = 1/2. By symmetry, I3( f ) = 1/2. On the
other hand,
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I1( f ) = 1

8
[a(0,1,1),(0,1,1)(T1) + a(0,1,1),(1,1,1)(T1) + a(1,1,1),(0,1,1)(T1)

+ a(1,1,1),(1,1,1)(T1)] = 1

8
[2 + (−2) + (−2) + 2] = 0

and similarly

I2( f ) = 1

8
[2 + 0 + 0 + 2] = 1

2

so one can see that formula (14) agrees with the definition of I j ( f ).

In order to compute the influence of each node in the network on all its output nodes
(those towhich the node under consideration is an input), we generateMATLAB codes
that involve nested “for loops.”Note that, if we denote by ki the actual number of inputs
to node i (its connectivity), for formula (14) there are i × ki × 22ki such loops. This
exponential number of loops can easilymake the computations prohibitive. As amatter
of fact, in the actual simulations, even a single connectivity of at least 12 nodes turned
out to be excessive for the capabilities of MATLAB. Thus, one has to rely either on
easier estimates, such as the upper bounds of Proposition 2, or find alternative exact
formulas. However, a quick analysis indicates that to compute the upper bounds one
would still need exponentially many “for loops,” since the procedure would require
again the construction of the matrices Tj and T . For this reason, in the sequel we use
the following equivalent formula which follows from the definition.

Recall that, for any Boolean function f, supp f denotes the support of f , that is,
supp f = f −1(1).

Remark 1 The following formula holds

I j ( f ) =
∑

ω∈supp f \ϕ j (supp f )

(
pω + pϕ j (ω)

)
, (18)

where the sum above is considered 0 if supp f \ ϕ j (supp f ) = ∅.
Hence:

Corollary 2 Let fi , i ∈ [n] be the Boolean update function of node i . Then

avs( fi ) =
n∑

j=1

⎛

⎝
∑

ω∈supp fi\ϕ j (supp fi )

(
pω + pϕ j (ω)

)
⎞

⎠ i ∈ [n] (19)

σ( fi ) =
n∑

j=1

⎛

⎝
∑

ω∈supp f j\ϕi (supp f j )

(
pω + pϕi (ω)

)
⎞

⎠ i ∈ [n]. (20)

Observe that:
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Remark 2 Formula (18) is computationally efficient because it identifies the influential
nodes, namely those in the support of the given Boolean function which get mapped
outside of support by that function. In particular, the variable x j has null influence on
the Boolean function f , that is I j ( f ) = 0, if and only if ϕ j (supp f ) ⊆ supp f .

Indeed, ϕ j (supp f ) ⊆ supp f implies

supp f = ϕ j (ϕ j (supp f )) ⊆ ϕ j (supp f ) ⊆ supp f.

This agrees perfectly with the definition (1) of the influence as the probability of a
change in the output of f when its j th input is flipped.

To understand the computational efficiency of formula (18), or equivalently the
definition of the influence, we run MATLAB codes for both formula (14) and (18)
on the same network, and compare the processing times. The results are included in
Supplementary Material, Section 1. We present one more example.

Example 2 We call a BN: “Dominant states network (DSN)” if the update Boolean
functions of nodes are characteristic functions of distinct states (called dominant
states), that is if there is a set of n states S = {ω1, . . . , ωn}, so that f1 = χω1 , . . . , fn =
χωn .

Our previous considerations and formulas show by straightforward computations
that, in the case of a DSN, one has that:

σ( fi ) =
n∑

j=1

(
pω j + pϕi (ω j )

)
i ∈ [n]

and

avs( fi ) =
n∑

j=1

(
pωi + pϕ j (ωi )

)
i ∈ [n].

3 Determinative Power and Strength

In this section, we are comparing the impact of node strength to the so-called deter-
minative power of nodes defined and explored in Heckel et al. (2013) under the
assumption of a BN with product distribution of states. We recall the main defini-
tions and concepts from Heckel et al. (2013) and Cover and Thomas (2006). These
include the notion of entropy of random variables, which is a measure of uncertainty,
and the mutual information which is a measure of dependence between two random
variables and is defined in terms of the entropy.

Definition 2 Let X and Y be discrete random variables. The entropy of X is defined
as

H(X) = −
∑

x

px log2 px = −E[log2(X)]
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which in binary reduces to the function

h(p) = −p log2(p) − (1 − p) log2(1 − p), p = P(X = 1).

The conditional entropy of Y conditional on the knowledge of X is

H(Y |X) =
∑

x

px H(Y |X = x) = −E[log2 P(Y |X)].

The mutual information (MI) is the reduction in uncertainty of the random variable Y
due to the knowledge of X . That is

MI(Y ; X) = H(Y ) − H(Y |X).

In principle, the mutual information is a measure of the “gain of information,” or
the determinative power (DP) of X over Y . The authors of Heckel et al. (2013) use
the MI to construct the DP of a node j over the states of a BN, namely

DP( j) =
n∑

i=1

MI ( fi (X); X j ) (21)

which represents a summation of all “information gains” obtained from node j over
its outputs (i.e., nodes that have j as an input). Besides providing a number of related
mathematical results to which we will refer below, the authors identify the nodes
with the largest determinative power in a feedforward E. coli network, assuming a
product distribution of the input states. The goal is to be able to reduce the network
to a smaller sub-network whose knowledge can provide sufficient information about
the entire network; in other words the entropy of the network conditional on the
knowledge of this sub-network is small enough. The authors show that by considering
the nodes with most DP one can reduce the network to less than a half of its original
size, so that for larger sub-networks the entropy does not improve significantly once
an approximate (threshold) network size is reached.

As specified in Introduction, network reduction is an important topic in the lit-
erature, since many real networks have sizes that lead to prohibitive computations
and manipulations as we can see in Supplementary Material with the computation
of the influence. For instance, signal transduction networks such as that of a generic
fibroblast cell, which we will use as an example, can have thousands of nodes that
are interconnected. The analysis and dynamical study of such networks becomes pro-
hibitive due to the computational burden despite the advances in technology and data
science. Thus, finding meaningful ways to reduce the network to a significant “core”
or “relevant component” has been of interest for a number of authors, and a number
of procedures have been proposed. Ultimately, all of them generate a clear trade-off
between accuracy and computational burden.

We are interested in comparing the effect of network reduction applied to the fibrob-
last network, by considering the nodes with largest DP on the one hand, and the nodes
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with largest strength values on the other hand. Before we compare them, let us focus on
some theoretical results that supplement some of the formulas in Heckel et al. (2013)
for the less restrictive case we consider in this paper, that is, not requiring a product
distribution of the input values.

If X is the state of the network with values in �n , let XA taking values in �|A| be
the collection of states of the nodes in set A ⊆ [n]. So X can be written as (XA, XAc ),
where Ac = [n] \ A. Let pω|ωA = P(X = ω|XA = ωA).

Theorem 1 The following formula for conditional entropy holds

H( f (X)|XA) = EA

⎡

⎣h

⎛

⎝
∑

ω∈supp f

pω|XA

⎞

⎠

⎤

⎦ (22)

where EA refers to expected value with respect to the marginal distribution of X A.

Proof By the definition of the conditional entropy

H( f (X)|XA) =
∑

ωA∈�|A|
P(XA = ωA)H( f (X)|XA = ωA)

which in our binary case reduces to

H( f (X)|XA) =
∑

ωA∈�|A|
P(XA = ωA)h(P( f (X) = 1|XA = ωA))

and the obvious equality P( f (X) = 1|XA = ωA) = E[ f (X)|XA = ωA] implies

H( f (X)|XA) =
∑

ωA∈�|A|
P(XA = ωA)h(E[ f (X)|XA = ωA])

= EA[h(E[ f (X)|XA])]. (23)

But

E[ f (X)|XA = ωA] =
∑

ω∈�n

f (ω)P(X = ω|XA = ωA) =
∑

ω∈supp f

pω|ωA

which is a number in [0, 1] and we can substitute it in (23) to get formula (22).

��
Formula (22) is exactly the analog of Theorem 1 of Heckel et al. (2013) where it is

written for a system with states −1 and 1 as opposed to 0 and 1.

Proposition 4 The mutual information formula M I ( f (X); XA) can be written as

M I ( f (X); XA) = h

⎛

⎝
∑

ω∈supp f

pω

⎞

⎠ − EA

⎡

⎣h

⎛

⎝
∑

ω∈supp f

pω|XA

⎞

⎠

⎤

⎦ . (24)
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Proof The formula for MI follows again directly from the definition of the mutual
information

MI ( f (X); XA) = H( f (X)) − H( f (X)|XA) = h(E[ f (X)]) − H( f (X)|XA).

But

h(E[ f (X)]) = h

(
∑

ω∈�n

f (ω)P(X = ω)

)
= h

⎛

⎝
∑

ω∈supp f

pω

⎞

⎠

with the argument of h being in [0, 1] as needed. Substituting this and formula (22)
in the definition of the mutual information we obtain formula (24).

��
Now we focus on two special (extreme) cases considered in Heckel et al. (2013),

to see if we can identify an analog of the results in that paper, where the authors use
the additional assumption of independence paired with the Bahadur basis (a family
of functions which form a complete orthonormal basis of L2(�n, dPX−1) provided
that X1, X2, . . . , Xn are independent).

Special cases:

• A = [n].
Then Ac = ∅ and

MI ( f (X); X) = h

⎛

⎝
∑

ω∈supp f

pω

⎞

⎠

which is maximized for
∑

ω∈supp f pω = 1/2, in other words if E[ f (X)] =
P( f (X) = 1) = 1/2. Hence, we are dealing with a nonbiased function. So the
closer the function f is to a nonbiased function, the larger the MI between its
output and all of its inputs. This is similar to what was observed in Heckel et al.
(2013).

• A = {i} where i is a fixed input/node.
Thus, ωA = ωi , XA = Xi . The mutual information can be written as

MI ( f (X); Xi ) = h

⎛

⎝
∑

ω∈supp f

pω

⎞

⎠ − P(Xi = 1)h

⎛

⎝
∑

ω∈supp f

pω|1

⎞

⎠

−P(Xi = 0)h

⎛

⎝
∑

ω∈supp f

pω|0

⎞

⎠

In comparison with Heckel et al. (2013), this formula does not allow for a simpli-
fication to a small subset of Fourier coefficients in order to find the MI. In their
formula, the authors of Heckel et al. (2013) identify three coefficients that act as
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independent variables. Based on them they manage to obtain some information
on the behavior of the MI, which is not the case for our approach. The reason
for considering this special case is that the quantity MI( f (X); Xi ) is also known
as information gain, or informativeness, and is common in information theory.
Thus, we note that a change in the underlying basis can induce different results
and situations.

Now that we have a deeper understanding of the MI as used in formula (21), let us
turn to the network under consideration, namely the signal transduction network of a
generic fibroblast cell which consists of several main signaling pathways, including
the receptor tyrosine kinase, the G-protein coupled receptor, and the integrin signaling
pathway. A Boolean representation of this network has been provided in Helikar et al.
(2008), and has been studied further in Kochi and Matache (2012) and Kochi et al.
(2014). The fully annotated signal transduction model is freely available for simula-
tions and/or download via the Cell Collective software from www.thecellcollective.
org Helikar et al. (2012) and Helikar et al. (2013). Each node in the model represents
a signaling molecule (mainly protein). The network has 130 nodes with connectivities
that vary between 1 and 14 nodes.

Using formula (18), one can quickly determine the average sensitivity and the
strength of all nodes in the fibroblast network. In Fig. 1, we plot them against the
nodes (in alphabetic order), together with two more plots on the connectivity and the
bias, i.e., P( f (X) = 1), for an overall view of the main numerical characteristics of
the fibroblast nodes.

We compute the DP of the nodes in the fibroblast network and compare them with
the node strength σ . The results are shown in Fig. 2. For the network under consid-
eration, the strength values seem to be slightly larger than the DP values. We have
conducted a statistical analysis related toDP and σ values for the fibroblast network. In
summary, there is enough statistical evidence that the average DP-σ is negative with a
p value of basically zero. The paired test gives an upper bound of−0.14208 for a 95%
confidence interval for the difference DP−σ . On the other hand, a linear regression
analysis indicates a fairly strong linear relationship between the two variables with a
75.1% coefficient of determination (COD), and a higher COD of 82.4% for the linear
relationship between the average σ and the number of outlinks corresponding to the
nodes. The average values are computed over all nodeswith a given number of outlinks.
This relationship is weaker for average DP versus number of outlinks with a COD of
60.3%. We also note that the outliers occur mostly for nodes with a larger number of
outlinks. In other words, fewer outlinks generate a stronger correlation between the
DP or σ and the number of outlinks. For example, there is one particular node in the
network, namely EGFR, that generates the maximum DP and is the only node with 13
outlinks. If we eliminate this node from the correlation analysis, the COD for average
DP versus outlinks increases from 60.3 to 81.3%. Notably, mutations of the EGFR,
epidermal growth factor receptor, are known to be related to lung cancer, interfering
with the signaling pathways within the cell triggered to promote cell growth and divi-
sion (proliferation) and cell survival. The second node in the order of DP is ASK1,
apoptosis signal-regulating kinase 1, and plays important roles in many stress-related
diseases, including cancer, diabetes, cardiovascular, and neurodegenerative diseases.
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Fig. 1 (Color Figure online) Main numerical characteristics of the nodes of the fibroblast network as
specified in each subplot

The third node is Src, proto-oncogene tyrosine-protein kinase, which is involved in
the control of many functions, including cell adhesion, growth, movement, and dif-
ferentiation. The fourth node is PIP3_345, phosphatidylinositol (3,4,5)-trisphosphate
that functions to activate downstream signaling components, while the fifth node is
PKC, protein kinase C, involved in receptor desensitization, in modulating membrane
structure events, in regulating transcription, in mediating immune responses, in regu-
lating cell growth, and in learning andmemory. The DP procedure managed to capture
the importance of these nodes in relationship to the rest of the network. Four of the
top five DP nodes are also among the five strongest nodes which are: Src, PIP3_345,
PKC, PIP2_45, and EGFR. Thus, the strength also captures biologically important
nodes. Moreover, higher DP and strength values are correlated with a larger number
of outlinks as seen from the figures, which means that this procedure can identify hubs
in the network. It is also apparent from the figures that the COD increases when con-
sidering smaller DP and σ values.We have included relevant figures in Supplementary
Material, Sect. 2

We would also like to point out at this time that the MI has been used as way to
identify relevant pairs of genes in genetic expression data sets by Butte and Kohane
(2000, 2003), and Jiang et al. (2009). Those authors identify relevance networks by
selecting pairs of genes whose MI surpasses a given threshold. For example, in Butte
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Fig. 2 (Color Figure online) Comparison of DP and σ by nodes of the fibroblast network. The nodes are
sorted by names in the top panels, while in the bottom panels they are ordered according to increasing DP,
and σ , respectively, as indicated in the graphs. Note that the strength values seem to be slightly larger than
the DP values

and Kohane (2000) it is shown that the relevance networks are of the following types:
those that link identical genes, those linking geneswith similar functions, those linking
genes in the same biological pathway, and combinations of these. In our work, the MI
is directed from the node toward its outputs via the outlinks, so we do not involve
the bidirectional aspect of the previous studies mentioned here. Moreover, we do not
use genetic expression data sets, but actual Boolean functions. Nevertheless, it will
be of interest to explore in the future the main types or classes of nodes/sub-networks
identified by the DP procedure in a variety of cellular networks.

Next, let us compute the network entropy generated by sub-networks chosen based
on top DP or strength values of nodes. If we denote by Al the collection of the top l
nodes in order of DP or σ , then we compute

H(X |XAl ) ≤
n∑

i=1

H(Xi |XAl ), for l = 1, 2, 3, . . . , n. (25)

We plot the values of the larger quantity in (25) against l and obtain the graph in
Fig. 3, where we note that the entropy decreases with increased sub-network size
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l, and that the two curves are very close, with a slightly better result for σ which
provides lower entropy values for most values of l, as seen from the bottom panel
where we plot also the differences of entropy values by l. As the sub-network size
increases, the strength provides a somewhat tighter upper bound for the entropy of the
network. Note that the actual entropy will be smaller than the upper bound graphed in
Fig. 3, and that sub-networks of sizes 60 or more (with approximation), do not yield a
significant improvement of the entropy. Thus, it suffices to consider less than half of
the original network to be able to predict the overall network behavior with fairly low
uncertainty/entropy levels.

Knowing that the DP method allows a network reduction without a significant
increase in entropy, one could use a tested approach for node elimination that preserves
essential dynamical properties to reduce the network to the sub-network of the top DP
nodes. For example, in Naldi et al. (2009b) the authors introduce a general method for
eliminating nodes one by one by basically connecting directly the inputs of a removed
node to its output nodes. Of course, one needs to either keep or consider some extra
decisions on autoregulated nodes, that is nodes that are or may become self-inputs
upon elimination of other nodes. One also needs to understand the impact of the order
in which nodes are removed. In our case, the natural order is provided by the sorted
DP values. In Naldi et al. (2009b), it is shown that with their approach the attractors
and stable states are preserved. We note here that there are nodes whose removal may
have no impact on the dynamics, like those with no outputs. Moreover, the authors of
Naldi et al. (2009b) have developed a Java software Naldi et al. (2009a) that allows
one to apply the reduction algorithm and analyze attractors. Alternative methods have
been proposed by Veliz-Cuba and collaborators in Veliz-Cuba (2011); Veliz-Cuba
et al. (2015) that could be used in conjunction with the DP method. Future work will
explore those methods.

One could actually go one step further and provide the following estimates for the
conditional entropy H( f (X)|XA), which are the analog of Theorem 2 of Heckel et al.
(2013).

Theorem 2 The following estimates of the conditional entropy hold:

LB ≤ H( f (X)|XA) ≤ LB1/ln 4 (26)

where

LB = 4
(
E[ f (X)] − EA[E[ f (X)|XA]2]

)

= 4

⎛

⎜⎝
∑

ω∈supp f

pω −
∑

ωA∈�|A|
pωA

⎛

⎝
∑

ω∈supp f

pω|ωA

⎞

⎠
2
⎞

⎟⎠ (27)

Proof We use the following inequality (found in Topsoe 2001 and used in Heckel et al.
2013) that provides lower and upper bounds on the binary entropy function h(p)

4p(1 − p) ≤ h(p) ≤ [4p(1 − p)]1/ln 4.
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Fig. 3 (Color Figure online) Values of the upper bound in (25) for sub-networks chosen based on the top l
values of DP and σ , respectively. The bottom panel shows the differences in the entropy that favor mostly
σ for l > 20 with approximation

If in formula (22) we denote

q(XA) =
∑

ω∈supp f

pω|XA

then LB = EA[4q(XA)(1 − q(XA))]. For the upper bound, we use the fact that

EA[(4q(XA)(1 − q(XA)))1/ln 4] ≤ EA[4q(XA)(1 − q(XA))]1/ln 4.

Then the double inequality (26) is immediate. Now, LB can be expressed as follows

LB = EA[4q(XA)(1 − q(XA))]

= 4EA

⎡

⎣

⎛

⎝
∑

ω∈supp f

pω|XA

⎞

⎠

⎛

⎝1 −
∑

ω∈supp f

pω|XA

⎞

⎠

⎤

⎦

= 4EA

⎡

⎢⎣

⎛

⎝
∑

ω∈supp f

pω|XA

⎞

⎠ −
⎛

⎝
∑

ω∈supp f

pω|XA

⎞

⎠
2
⎤

⎥⎦
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= 4

⎛

⎜⎝
∑

ωA∈�|A|
pωA

∑

ω∈supp f

pω|ωA −
∑

ωA∈�|A|
pωA

⎛

⎝
∑

ω∈supp f

pω|ωA

⎞

⎠
2
⎞

⎟⎠

= 4

⎛

⎜⎝
∑

ω∈supp f

pω −
∑

ωA∈�|A|
pωA

⎛

⎝
∑

ω∈supp f

pω|ωA

⎞

⎠
2
⎞

⎟⎠

where the first term is obtained by the law of total probability.

��
We are interested in identifying possible relationships or inequalities between the
mutual information and the influence of a subset of nodes of the network. In Heckel
et al. (2013), the authors show that for a given collection of nodes A ⊆ [n], the
following holds

IA( f ) ≥ min
i∈A

(
1

σ 2
i

)
[MI( f (X); XA) − �(Var( f (X)))] (28)

where �(x) = x (1/ ln 4) − x takes positive values that are very close to zero, and
σ 2
i = Var(Xi ), under the assumption of independence of the random variables. Let

us explore an alternative inequality using the results of this paper. For this purpose, we
consider a special case that allows us to compare directly our results with inequality
(28). In this special case, we consider a uniform distribution of inputs, which is actually
a case of product distributions or independent inputs.

3.1 Special Case

Consider a network with n nodes, such that for each ω ∈ �n , we have pω = 1
2n , so

that we consider a uniform distribution of the inputs. Let |supp f | = K and A ⊆ [n].
Then

pωA = P(XA = ωA) =
∑

ωc
A∈�n−|A|

1

2n
= 1

2|A| ωA ∈ �|A|.

Using formula (24), we can write the following for the MI,

MI( f (X); XA) = h

⎛

⎝
∑

ω∈supp f

pω

⎞

⎠ − EA

⎡

⎣h

⎛

⎝
∑

ω∈supp f

pω|XA

⎞

⎠

⎤

⎦

= h

(
K

2n

)
−

∑

ωA∈�|A|
pωAh

⎛

⎝
∑

ω∈supp f

pω|ωA

⎞

⎠

123



M. T. Matache, V. Matache

= h

(
K

2n

)
− 1

2|A|
∑

ωA∈�|A|
h

⎛

⎝
∑

ω∈supp f

pω|ωA

⎞

⎠

Note that

pω|ωA = P(X = ω|XA = ωA) = P(X = ω, XA = ωA)

P(XA = ωA)
= P(X = ω)

P(XA = ωA)
= 1

2n−|A| .

If we let KωA = |supp f ∩ Pr−1
A (ω)|, where PrA is the projection of ω on A, then

MI( f (X); XA) = h

(
K

2n

)
− 1

2|A|
∑

ωA∈�|A|
h

(
KωA

2n−|A|

)
. (29)

We immediately notice that 0 ≤ KωA ≤ K for all ωA ∈ �|A|, and that∑
ωA∈�|A| KωA = K , so that we create a partition of supp f . Therefore, in the sum of

(29), some of the terms could be zero, since not all ωA ∈ �|A| need to be represented
in supp f , leading to KωA = 0, which in turn leads to h(0) = 0.

Let us focus on IA( f ) = ∑
j∈A I j ( f ). By formula (18) we obtain

I j ( f ) =
∑

ω∈supp f \ϕ j (supp f )

(
pω + pϕ j (ω)

) =
∑

ω∈supp f \ϕ j (supp f )

1

2n−1

= |supp f \ ϕ j (supp f )|
2n−1 .

If m j = |supp f ∩ ϕ j (supp f )| then

I j ( f ) = K − m j

2n−1

and consequently

IA( f ) =
∑

j∈A

K − m j

2n−1 = K |A| − ∑
j∈A m j

2n−1 . (30)

Notice that 0 ≤ m j ≤ K and that m j is an even number since ϕ j is its own inverse.
Observe that if in formula (28) of Heckel et al. (2013) we consider a uniform

distribution of random variables, then all σ 2
i = 1, and thus the influence bounds above

the MI minus a small positive quantity. We would like to check a similar inequality
for our case. To this end, we first generate some simulations in which we plot both
MI( f (X); XA) and IA( f ) versus K for various values of |A| in Fig. 4, using formulas
(29) and (30). Not only is IA( f ) an upper estimate of MI ( f (X); XA), but also its
values are significantly larger. So in our case, the inequality becomes

MI( f (X); XA) ≤ IA( f ) (31)
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Fig. 4 (Color Figure online) Graphs of IA( f ) and MI( f (X); XA) computed with formulas (29) and (30)
versus K for a network with n = 8 nodes and |A| = 1, 2, . . . , n as specified in the subplots. The MI curve
is very close to zero for most values of |A|, while the influence has much larger values in all cases. Recall
also that MI is always a number in [0, 1]. The actual values increase with the increase in |A|. Notice also
the expected symmetry as K crosses from values less than to values greater than 2n/2

which is stronger than the corresponding inequality of Heckel et al. (2013). Besides,
the quantityMI( f (X); XA)−�(Var( f (X))) used inHeckel et al. (2013) takes on also
negative values. For example, one can easily check that this is true for n = 8, K =
1, |A| = 3, 4, 5 under the assumptions of the uniform distribution (which leads to
independence of random variables). Then the inequality becomes superfluous.

Observe that in this case, if A = { j}, and fi is the Boolean function associated
with node i of the network, then the inequality (31) becomesMI( fi (X); X j ) ≤ I j ( fi )
which implies

∑n
i=1 MI ( fi (X); X j ) ≤ ∑n

i=1 I j ( fi ), or in other words DP( j) ≤
σ( f j ). However, when looking at the relationship between the DP and strength values
in Fig. 2, we observe that this inequality does not hold for all nodes of the fibroblast
network. That is most likely due to the actual dependencies between the states of
the nodes. Thus, dependent inputs may lead to different results. However, we notice
in Fig. 2, top right graph, that the magnitudes of the positive differences DP−σ are
generally smaller than themagnitudes for negative differences. Thus, itmaybepossible
that a version of inequality (28) is still valid. We have not been able to find such an
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alternative inequality so far. On the other hand, all the examples involving dependent
inputs we have looked at, support inequality (31).We provide one such example before
returning to the Special Case 3.1.

Example 3 Consider the Boolean function f (x) where x = (x1, x2, x3), represented
by the truth table shown below and the corresponding probabilities of states. It is easy
to check that this is not a product distribution, so the variables are dependent; for exam-
ple, P(X1 = 0, X2 = 0) = 3/10 while P(X1 = 0)P(X2 = 0) = 1/4. One can also
check that I1( f ) = 3/5 and I2( f ) = I3( f ) = 1/2. In this case, for any A ⊆ [3] of
cardinal at least two, we get automatically that MI( f (X); XA) ≤ 1 ≤ IA( f ). On the
other hand, for A = {1} we obtain via formula (24), that MI( f (X); X{1}) = h(1/2)−
(1/2)h(3/5) − (1/2)h(2/5) = .029 < 0.6 = I1( f ). Also, MI( f (X); X{2}) =
MI( f (X); X{3}) = h(1/2) − (1/2)h(7/10) − (1/2)h(3/10) = .1187 < 0.5 =
I2( f ) = I3( f ). So in all cases, MI( f (X); XA) ≤ IA( f ).

(x1, x2, x3) f (x1, x2, x3) P(x1, x2, x3)

(0, 0, 0) 0 3/20
(0, 0, 1) 1 3/20
(0, 1, 0) 0 1/20
(0, 1, 1) 1 3/20
(1, 0, 0) 1 3/20
(1, 0, 1) 1 1/20
(1, 1, 0) 0 3/20
(1, 1, 1) 0 3/20

Nowwe return to our Special Case 3.1 andwe conjecture that the following inequal-
ity is true for all choices of parameters

h

(
K

2n

)
− 1

2|A|
∑

ωA∈�|A|
h

(
KωA

2n−|A|

)
≤ K |A| − ∑

j∈A m j

2n−1 . (32)

A general proof of this inequality seems to be very technical and intricate. We
present briefly a few particular cases whose proofs can be found in Supplementary
Material, Sect. 3 Note that the extreme cases of K = 0 and K = 2n are trivially
satisfied since they lead to null quantities on both sides of inequality (32).
Case 1: The support is a singleton.

The inequality (32) takes on the particular form

h

(
1

2n

)
− 1

2k
h

(
1

2n−k

)
≤ k

2n−1

where |A| = k.
One obtains the following consequence, which is valid no matter the cardinality of

supp f .
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Corollary 3 Inequality (32) holds if |PrA(supp f )| = 1.

Case 2: supp f = {τ, η}, τ �= η

The inequality (32) becomes

h

(
2

2n

)
− 1

2k
∑

ωA∈�k

h

(
KωA

2n−k

)
≤ 2k − ∑

j∈A m j

2n−1 .

Case 3: The support is a subgroup of �n and A = [n].
What is meant here is that we identify {0, 1} toZ2, the additive group of equivalence

classes modulo 2, and �n to the product group Z
n
2. For any fixed j ∈ [n], denote by

δ j the Boolean vector in �n whose entries are all null, except entry j . Under the
previously described identification, one easily sees that, given a Boolean function f ,
the quantities

m j = |supp f ∩ ϕ j (supp f )| j = 1, . . . , n,

can be calculated with the alternative formula

m j = |supp f ∩ (δ j + supp f )| j = 1, . . . , n,

where the kind of addition used is addition modulo 2. Finally, recall that the order of
a subgroup of �n must be a divisor of 2n ; hence, it will have the form 2k for some
nonnegative integer k ≤ n. Keeping all the above in mind, we state and prove the
following:

Lemma 1 Let f be a Boolean function, S its support, and 〈S〉, the subgroup of �n

generated by S. Then, the following inequality holds:

n∑

j=1

m j ≤ k2k

where 2k = |〈S〉|.
Now, observe that if A = [n], the inequality we wish to prove has the form

h

(
K

2n

)
≤ Kn − ∑n

j=1m j

2n−1 .

and if S = supp f is a subgroup of �n of order 2k , then the inequality becomes

h

(
1

2n−k

)
≤ 2kn − ∑n

j=1m j

2n−1 .

123



M. T. Matache, V. Matache

This one holds since one can write

h

(
1

2n−k

)
≤ (n − k)

2n−k−1 = n2k − k2k

2n−1 ≤ 2kn − ∑n
j=1m j

2n−1 .

Remark 3 If f is a Boolean function having support S, A = [n], and 〈S〉 ∩
{δ1, . . . , δn} = ∅, then (32) holds.

4 Final Comments

The main conclusions of this work are that operator theory can offer computationally
efficient ways to find or estimate important quantities used in assessing the sensitivity
to perturbations of BNs, and to quantify the relevance of nodes using elements of
information theory, in particular MI. We conclude that MI is an excellent tool for
identifying a subset of relevant nodes in the network that offer the most information
gain and whose knowledge reduces the entropy of the whole network significantly.
Moreover, the MI provides a lower estimate for the influence of nodes in various
scenarios.

It would be of interest to continue this exploration under various scenarios of depen-
dent nodes in the network, as well as to refine further some of the results of this paper.
For example, could one strengthen inequality (32) and prove it in general or for dif-
ferent scenarios?

On the other hand, in Klotz et al. (2014) it is shown that MI is maximized for canal-
izing functions. However, real networks do not consist of a single type of Boolean
function. Therefore, it would be of interest to explore a possible hierarchy of various
types of functions regarding the information gain they provide. That could offer more
information regarding the inequality between the MI and the influence. Besides, most
of the functions in real networks, such as cellular networks, need not be strictly canal-
izing as considered in Klotz et al. (2014) (i.e., one value of one of the inputs forces
the output to take on a certain fixed value regardless of the other inputs). In reality,
functions may be only partially canalizing, allowing for multiple, but not necessar-
ily all inputs, to be canalizing in a cascading fashion as discussed, for example, in
Layne et al. (2012) or Dimitrova et al. (2015). Partially nested canalizing functions
have been considered recently as a more realistic alternative to canalizing functions.
Another type of function that is common in applications is a threshold function that
turns a node ON provided that a sufficient number of inputs are ON. This type of
function is typical for neural networks. This opens the door for a variety of directions
of research that stem from the work in this paper.

Furthermore, as specified before, it is our intention to explore the Java software
Naldi et al. (2009a) to actually perform network reduction preserving attractors and
stability and use it to analyze dynamics of various signal transduction networks found
in Cell Collective Helikar et al. (2012) and Helikar et al. (2013).

Finally, it would be of great interest to look further into other real networks to iden-
tify the possibility of reducing them to the most determinative nodes. For example,
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it would be interesting to compare the results of the fibroblast network to other net-
works such as the Boolean model of the influenza–host interactions during infection
of an epithelial cell Madrahimov et al. (2013), to identify possible similarities and
differences that may occur. At the same time, identifying possible classes of biologi-
cal nodes/sub-networks obtained with the DP sub-network procedure in a variety of
other networks could bring further clarifications on the advantages of the DP method.
Even more, it is important to assess the degree to which the reduced network provides
accurate information on specific tasks typical for the whole network, such as pattern
recognition or decision making. At the same time, exploring the impact of considering
DP versus strength might provide new insights.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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