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Abstract- Traditional correlation network analysis typically 
involves creating a network using gene expression data and then 
identifying biologically relevant clusters from that network by 
enrichment with Gene Ontology or pathway information. When 
one wants to examine these networks in a dynamic way - such as 
between controls versus treatment or over time - a "snapshot" 
approach is taken by comparing network structures at each time 
point. The biological relevance of these structures are then 
reported and compared. In this research, we examine the same 
"snapshot" networks but focus on the enrichment of changes in 
structure to determine if these results give any more insight into 
the mechanisms behind observed phenotypes. Our main 
hypothesis is that more information, particularly related to 
potential dynamic changes, can be obtained through transition­
based analysis of biological networks. To test this hypothesis, we 
compare gene expression data from the mouse hippocampus at 
three different time points: young, middle-aged, and aged, and 
compare the traditional state-based approach to the dynamic 
transition-based enrichment approach. In this study we use a 
clustering approach (SPICi) designed specifically for clustering of 
large biological networks. The results of this study verify an 
inconsistency between traditional and dynamic structure 
identification approaches through biological enrichment. These 
results highlight an intriguing issue for those performing, 
critiquing, and using network based approaches in their research 
- that a black box or workflow type of approach typically used in 
network based research can be supplemented with a transition­
based approach to support movement from in silico to in vivo 
experimentation of target genes. 

Keywords- state-based, transition-based, network analysis, 
gene expression 

I. INTRODUCTION 
With explosive rise in availability of biological data, issues 

associated with stability of methods and consistency of 
computational results continue to be of major concern to 
biomedical researchers \.5

. Along with this data influx, there 
has been a call for marked increase in activities to develop 
computational tools for big bioinformatics data analytics to 
extract useful information from the available data. The first 
generation of bioinformatics tools have primarily focused on 
using simple methods for basic analysis of homogenous 
biological data and extracting the glaring signals from the 
available datasets. Now with the availability of many types of 
biological datasets obtained under different experimental 
conditions and carrying various levels of accuracy and quality, 

new advanced tools are needed to extract different types of 
relationships associated with signals of varying levels of 
strength. Hence, using simple standard workflow approaches 
with generic "black box" computational steps may no longer be 
as effective in the analysis of current big bioinformatics data. 
In this work, we conduct as in-depth study of network models 
in analyzing biological data and illustrate how important it is to 
employ advanced data analytical approaches to extract accurate 
and trustworthy signals for the available biological datasets. 

In this research, we defined a network as set of nodes or 
vertices connected by edges defined by correlation of gene 
expression. There are different types of networks span a variety 
of domains, namely, technological, biological, social, 
economic networks, and information networks 6.\3

. Visual 
comparison of large networks can be misleading, and typical 
networks when dealing with "big" biomedical data are large 
and difficult to manage with a traditional graphic user interface 
(GU I) approach. Therefore, we define set of quantitative 
measures using graph theory such as clustering, degree 
distributions and so on to compare them. A standard approach 
to basic biological network analysis involves network creation, 
identification of structures such as high-degree or hub nodes, 
clusters, bottlenecks, or pathways, and then evaluation of the 
biological relevance of these identified structures 6,8,\4.\6. 
Comparison of networks at different states, control versus 
treatment, for example, is typically done by comparison of 
these structures and their biological relevance using a 
"snapshot" view of the system: the network model for a given 
state is created and after cleaning and pre-processing, is 
assumed to be representative of the observed phenotype, state, 
or condition. It has been suggested in other non-biological 
network analyses that this snapshot approach may not be the 
best indicator of network dynamics or mechanistic change \7,\8

, 
but rather, examining changes across time (biologically, this 
would likely imply short time-series data) can be as, if not 
more, informative of the goings-on within a cellular 
environment. We define these two viewpoints as state-based or 
transition-based: state-based implying a snapshot evaluation of 
network structure and function, and transition-based implying a 
dynamic evaluation of network structure and function. 
Currently, publicly shared data that lends itself towards a true 
transition-based approach is not readily available - this would 
require short-term time series gene expression analyses with 



SPICI Cluster Identification 

Figure 1. SPICi flowchart for parameter manipulation. 

high sample counts per state or treatment. However, the data 
that are currently available can be analyzed in a crude 
transition-based format by examining which structures appear, 
disappear, or are retained from one state to the next. Examining 
the biological relevance of network structures identified in this 
way is the focus of this research. Briefly then, the outline of 
this paper is as follows. In Section II we describe in detail the 
implementation of our methods and how these clusters are 
analyzed. In Section III the findings obtained from the 
approach are analyzed by performing gene ontology on the 
clusters. In Section IV the results are discussed and hypothesis 
is concluded. 

Our main objective in this paper is to compare traditional 
state-based network analysis of correlation networks to the 
transition-based network analysis to determine if there is 
consistency of biological relevance between the two. The first 
objective will provide insight into a potentially novel way to 
assess the biological relevance of a network and show whether 
or not using tools such as enrichment yield reproducible 
annotations of function and the second objective serves to 
investigate our speculation that a "black-box" type of approach 
is not appropriate for biological network analysis. 

II. METHODS 

A. NETWORK CREATION 

Gene expression data was collected from the mouse brain 
of male Balb/C mice at ages 2 months (young), 12 months 
(middle-aged) and 18 months (aged) with no treatment. A total 
of 41,174 probes were analyzed per dataset and each of these 
three datasets contained 6 samples. Three networks (called 
Young, Middle, and Aged) were created by performing 
Pearson correlation between pairwise vectors of gene 
expression data where each gene represents a vector over a 
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Figure 2. Our transition-based approach to identifYing three sets of important 
nodes: gained, lost, and retained. For any given clluster from the first network 
and for any given cluster from the second network, the node content of the 
two clusters is compared. Nodes that are unique to the first cluster are 
considered lost, nodes that are unique to the second cluster are considered 
gained, and nodes common to both clusters are considered retained. This 
pairwise cluster comparison is performed for every cluster in network I and 
every cluster in network 2. Each individual set of nodes (lost, gained, and 
retained) is then evaluated for Gene Ontology enrichment 

number of samples. Correlations with a threshold of 0.85 to 
1.00 were kept with p-value less than or equal to 0.005. The 
publicly available R language 19 and accompanying library 
igraph 20 was used to identify the number of nodes, edges, 
density, cluster distribution, degree distribution, and cluster 
sizes for each network (using the V(g), E(g), clusters, and 
degree. distribution functions of igraph).

B. CLUSTERING AND ANALYSIS 

Clustering was performed using a recent biological network 
adapted algorithm called "SReed and Performance in 
Clustering," or SPICi for short 21. SPICi is a self-described 
"fast local network clustering algorithm" designed for 
biological networks 21, which tend to be large and sparse 6. 
SPICi has a time complexity of O( V log V + E) where V 
includes the set of all nodes contained within a network or 
graph and E includes the set of all edges contained in the graph 
or network. SPICi was originally tested for use in protein­
protein interaction networks (PPIs) which are built by 
identifying binary or weighted affinity scores (edges) between 
physically interacting proteins (nodes) 8. In 2010, SPICi 
developers Jiang and Singh reported that the algorithm 
performed competitively at identifying protein complexes 
within protein-protein interaction networks as well as modules 
of biological function 21. Typically, this indicates that the 
network structure lends itself toward clusters that are on the 
smaller side (approximately 2-20 nodes or protein components) 
and they are relatively dense (all proteins in a complex may not 
physically interact but clusters will largely have a high density 
due to multiple domains of interaction). In summary, we have 



Transition-based Cluster Comparison Code 
Input: C1 = set of clusters from state 1 of 

size n 
C2 = set of clusters from state 2 of 
size m 
Assume no 
cluster 

node duplicates in any 

Output:Nodes 
retained for 

gained, lost, 

each pairwise cluster comparison 

Call cluster comparison (CI, C2) 

& 

for each cluster Ci in C1 where i = 1 to n 
nodesx = list of nodes in current 
cluster Ci 
for each node nk in nodesx 

hash{ nk} = 1; 
for each cluster Cj in C2
where j = 1 to m 

nodesy = list of nodes 
in current cluster Ci 

for each node nl in nodesy 
if(hash{nk} = 1) 

hash{ nk} = 2; 
else if (hash{nk) does not 
exist) 

hash{nk} = 3; 
for each key k and value v in hash{} 

if v = 1, output k and "lost" 
if v = 2, output k and "retained" 

chosen a clustering algorithm designed specifically for 
networks. The rationale behind choosing this algorithm is 
intended to examine a key objective of this research - are the 
structural identities of clusters inherently easy or robust to 
different clustering algorithms? Our speculation is that the 
nature and complexity of the biological network model would 
lend itself to small, dense clusters, but that these clusters are 
not necessarily readily apparent and as such may not be 
consistently found from one algorithm to the next, or even 
within different parameterizations of one algorithm. 

To first assess the consistency of SPICi results, we chose to 
manipulate a number of parameters offered by the algorithm as 
shown in Figure 1: minimum density, minimum support, and 
graph mode (or how sparse/dense the network is). To perform 
this, we performed 75 different iterations of clustering on all 
three networks: where minimum density ranged from 0.0 to 1.0 
in 0.25 increments, minimum support ranged from 0.0 to 1.0 in 
0.25 increments, and graph mode was given as 0,1, or 2. U sing 
the graph mode value of 2, clustering took over 1 hour and as 
such these processes were terminated. Other parameterizations 
took> 10 minutes and gave a variety of different results, shown 
as Average Cluster size and Number of Clusters below in 
Table 1. U ltimately, the default parameters for SPICi were 
used in the final analysis and implementation. 

After clustering was performed, two different paths to 
analysis were taken: the traditional state-based approach, 
where clusters are analyzed by Gene Ontology (GO) 
enrichment, and the proposed transition-based approach, 
where clusters are compared between states (i.e. young versus 
middle-aged, middle-aged versus aged). In the transition-based 

TABLE J. TABLE 1. PARAMETERIZATION RESULTS 

# of Clusters 

Min Density Min Support Graph Mode Yng Mid Aged 

0 0 0 2 2 5 

0.25 0 0 676 644 695 

0.5 0 0 1409 1380 1442 

0.75 0 0 2427 2378 2429 

1 0 0 2423 3534 2587 

0 0.25 0 74 62 42 

0.25 0.25 0 685 662 709 

0.5 0.25 0 1410 1383 1443 

0.75 0.25 0 2427 2378 2429 

1 0.25 0 2423 3534 2587 

0 0.5 0 1166 1161 1150 

0.25 0.5 0 1222 1218 1220 

0.5 0.5 0 1576 1585 1579 

0.75 0.5 0 2446 2397 2444 

1 0.5 0 2423 3534 2587 

0 0.75 0 10152 12902 10471 

0.25 0.75 0 10152 12902 10471 

0.5 0.75 0 10152 12902 10471 

0.75 0.75 0 10152 12902 10471 

1 0.75 0 2423 3534 2587 

0 1 0 10152 12902 2587 

0.25 1 0 10152 12902 10471 

0.5 1 0 10152 12902 10471 

0.75 1 0 10152 12902 10471 

1 1 0 2423 3534 2587 

0 0 1 2 2 5 

0.25 0 1 672 643 695 

0.5 0 1 1415 1385 1442 

0.75 0 1 2423 2381 2429 

1 0 1 2377 3592 2582 

0 0.25 1 74 62 42 

0.25 0.25 1 686 662 710 

0.5 0.25 1 1417 1388 1443 

0.75 0.25 1 2423 2381 2429 

1 0.25 1 2377 3592 2582 

0 0.5 1 1168 1158 1151 

0.25 0.5 1 1239 1220 1222 

0.5 0.5 1 1579 1585 1584 

0.75 0.5 1 2439 2392 2440 

1 0.5 1 2377 3592 2582 

0 0.75 1 10169 12893 10484 

0.25 0.75 1 10169 12893 10484 

0.5 0.75 1 10169 12893 10484 

0.75 0.75 1 10169 12893 10484 

1 0.75 1 2377 3592 2582 

0 1 1 10169 12893 2582 

0.25 1 1 10169 12893 10484 

0.5 1 1 10169 12893 10484 

0.75 1 1 10169 12893 10484 

1 1 1 2377 3592 2582 

approach, the set of clusters CSlalel = {CSIGlel.l, CSlalel.2. . • .  , 
CSIGlel.n} is compared to the set of clusters CSIGle2 = {Cslale2.1,
CSIGle2.2. . . •  , CSIGle2.m} by comparing node content. Briefly, we 
want to compare each cluster in from network at state 1 (for 
example, young) to each cluster from the network at state 2 
(for example, middle-aged) such that for each cluster 
comparison, three outputs are generated: the nodes that are 
unique to the cluster at state 1 (lost nodes), the nodes that are 
unique to the cluster at state 2 (gained nodes), and the nodes in 
common to both clusters (retained). An example of this is 
shown in Figure 1. This approach was implemented in Java 
and the pseudocode is described above. The result of the above 
program would be the list of nodes that are retained, gained 
and lost between any two stages of clusters. 



TABLE II. BASIC NETWORK CHARACTERISTICS FOR EACH OF THE THREE NETWORKS DEFINED: YOUNG, MIDDLE, AND AGED. NODE AND EDGE COUNTS 
WERE DETERMINED IN R USING IGRAPH. DENSITY IS CALCULATED AS THE EDGE COUNT DIVIDED BY THE TOTAL NUMBER OF POSSIBLE EDGES, OR (N* (N- I ))/2. 
THE FINAL TWO COLUMNS REPRESENT THE NUMBER OF CLUSTERS FOUND USING BOTH CLUSTERING ALGORITHMS; ALREADY WE SEE A VERY LARGE 
DIFFERENCE IN APPROACHES. THE TABLE DOES NOT ACCURATELY SHOW IT, BUT THE CLUSTERS FOUND BY SPICI TEND TO BE SMALLER «50 NODES) THE 
CLUSTERS IDENTIFIED BY IGRAPH CLUSTERS TEND TO BE LARGE AND SPARSE. 

Network Node Count Edge Count Density 

Young 38,618 1,083,522 0.128% 

Middle 39,964 4,937,369 0.582% 
Aged 39,728 1,925,865 0.22 

7% 

Finally, Gene Ontology overrepresentation was performed 
using PANTHERDB.org's Statistical Overrepresentation test 
using the Mus musculus organism background set and the Gene 
Ontology's biological process tree annotation set (with only
experimentally verified terms being used). Gene Ontology 
overrepresentation was performed on both traditional state­
based clusters (named in results as Young, Middle, and Aged) 
and proposed transition-based cluster dynamics (named in 
results as Young vs. Middle - Lost, Young vs. Middle -
Gained, Young vs. Middle - Retained, Middle vs. Aged- Lost, 
Middle vs. Aged- Gained, Middle vs. Aged- Retained). 

The study is designed to test our main hypothesis that more 
biologically relevant information can be extracted from 
biological networks created using the transition-based model as 
compared to the traditional state-based approach. We also 
attempt to test a secondary hypothesis that the obtained results 
are influenced by which computational tools, like clustering 
algorithms, are used to analyze the created networks. Positive 
affirmation that a simple black box usage of computational 
tools or a standard way of employing a generic workflow may 
fall short in providing stable and reproducible data analytics 
tools for many complex bioinformatics applications. 

III. REs UL TS 

A. CLUSTERING PARAMETERIZA TIONS 

We found that manipulating graph parameterizations 
resulted in mUltiple types of clusters being found, with a 
sample of these results shown in Table l. We found that using 
graph mode = 2, for a large sparse graph, runtimes exceeded an 
hour and were terminated. For other parameterizations, for 
example, the extremes (minimum support = 1 or minimum 
density = 1) clusters typically ran aground of their "norm" for 
that particular parameter set. We found that while cluster 
parameterizations could potentially result in very different 
networks, this is a reflection of the abilities of the algorithm 
itself to distinguish between different graph properties. It is not 
fair to ask the algorithm to provide consistent results between 
each parameterization, and ultimately, it is up to the user to 
determine the optimal settings for their usage. As a result, we 
used default parameters in our analysis of clusters (minimum 
density of 0.5, graph mode of sparse, and a minimum support 
threshold of 0.5) and are confident that these results reflect the 
networks generated. 

# of Clusters found # of Clusters found 
SPlCi igraph clusters 

659 I 

654 I 
644 I 

B. FUNCTIONAL RELEVANCE. 

Initial results examining networks highlight some basic 
network statistics in Table 2; Node counts were similar for 
each network containing 93.8%, 97.1%, and 96.5% (Young, 
Middle, and Aged, respectively) of the original probes from 
each dataset. Edge counts varied much more and all were 
found to be very sparse networks. With an original probe count 
(n) of 41,174, the total possible number of edges for each 
individual network would be (n*(n - 1))/ 2, or 847,628,551
edges. The density then reflects the percentage of observed 
edges (Edge Count) to the number of total possible edges. All 
networks are very sparse, with the Middle-Aged or Middle 
network being the most dense (used loosely) and the Young 
network being most sparse. The final columns in Table 1 
represent the number of clusters found by each clustering 
algorithm as represented by the algorithm itself; SPICi found 
on average many smaller clusters and igraph clusters found 
only one (very large) cluster. 

The traditional state-based approach overall examines 
clusters, hubs, and other structures in individual networks from 
a snapshot point of view. The transition-based approach 
determines which structures are gained, lost, and missing from 
each network to incorporate a more dynamic point of view. 

Table 3 shows the results for the top 5 SPiCI cluster results 
(the results all 600+ clusters per network were too large to 
show) using state-based and transition-based approaches. In 
Table 3, an "X" is marked for that approach if the cluster was 
found to be enriched with the term under the "Biological 
Process" column. Rows with annotations occurring in more 
than one result are italicized and in this table, due to a higher 
number of annotations, groups of annotations found with 
similar transitions are grouped together to save space. It is 
found that total out of 116 annotations, 76 (65.5%) were found 
in more than one result, spanning either State-based or 
Transition-based approaches (not listed due to size, please refer 
to Table 3). Of these groups, four major "patterns" emerged: 
(1) Terms present in the state-based approach (Young) and 
transition-based approach (Y _ M Lost); (2) Terms present in 
the state-based approach (Middle) and transition-based 
approach (M_A Lost); (3) Terms present in the Aged network 
only, and (4) terms present in the M_A Lost network only. For 
both Y M Gained/Retained and M A Gained/Retained, no 
biologically significant terms were found. 



TABLE 3. THE STATE-BASED AND TRANSITION-BASED APPROACH RESULTS FOR THE SPICI ALGORITHM. COLUMN 2 DENOTES THE BIOLOGICAL PROCESS ANNOTATION WAS FOUND, AND THE REMAINDER OF 
THE COLUMNS ARE SPLIT INTO STATE-BASED AND TRANSITION-BASED. THE STATE-BASED COLUMNS REPRESENT CLUSTERS IDENTIFIED IN THREE NETWORKS (YOUNG, MIDDLE, AND AGED) VIA THE 
CREATE NETWORK -? FIND CLUSTERS -? PERFORM ENRICHMENT APPROACH. THE TRANSITION-BASED COLUMNS REPRESENT CLUSTER TRANSITIONS IDENTIFIED IN TWO NETWORK COMPARISONS OF YOUNG 
VERSUS MIDDLE (Y _ M) AND MIDDLE VERSUS AGED (M _A). EACH INDIVIDUAL COLUMN REPRESENTS NODES LOST, GAINED, OR RETAINED 

SPiCl 
Traditional Dynamic 

Biological Process Young Middle Aged Y -M Y -M Y -M M_A M_A M_A 
Gained Lost Retain Gained Lost Retained 

cell proliferation in forebrain, cellular glucan metabolic process, positive regulation ofTceil 

differentiation in thymus, poslllve regulatIOn of thymocyte aggregatIOn, poslllve regulatIOn of 
x x 

toll-like receptor signalmg pathway, regulatIOn of alpha-beta T cell proliferation, regulation of 

toll-like receptor slgnalmg pathway 

cardlGc chamber formatIOn, eye morphogenesIs, eye photoreceptor cell development, eye 
photoreceptor cell differentiation, negative regulation of peptidyl-senne phosphorylatIOn, 

photoreceptor cell development, photoreceptor cell differentiation, post-embryonic 
x x 

development, regulation of release of sequestered calcium ion into cytosol by sarcoplasmic 

reticulum, regulation oflyanodme-sensltive calcium-release channel acllvlty, sensory organ 

mOlphogenesis 

amide biosynthetic process, cardiac ventricle formatIOn, deoxynbonllcleoslde triphosphate 
metabolic process, mesonephros development, punne deoxynbonllcleoslde triphosphate 

metabolic process, regulatIOn of DNA repair, regulation of lymphocyte mediated immunity, x x 
regulation of response to DNA damage Stlll1Ulus, regulatIOn of skeletal muscle contractIOn, 

regulation of skeletal muscle contraction by calcl1lm IOn slgnalmg 

DNA alkyla/ion, DNA methylation, DNA methylation or demethylation, establishment of 
epithelial cell polarity, glial cell apoptollc process, lipid homeostasIs, lipopro/ein blOsyn/he/ic x x 

process, lipoprotein metabolic process, protein lipidation, 

B cell proliferation, CD4-poslllve, alpha-beta T cell differentiation, digestion, import into cell, 

leukocy/e apoptollc process, peptidyl-gllllanllc aCid modification, positive regulation of mitotic 
nuclear division, regulation of neuron migration, regulation of peptidyl-cysteme s- x x 

nilrosylation, regulation of transcription involved in primG/y germ layer cell fate comnlltment, 
response to A TP 

cell migration involved in gasll1dation, negallve regula/IOn ofex/rinsic apopto/ic signaling 

pa/hway m absence of ligand, negallve regula/IOn of signal transduction in absence of ligand, 
positive regulation of cartilage development, positive regulation of chondrocyte differentiation, x x 

positive regulation of natural killer cell mediated cytotoxicity, positive regulation of natural 
killer cell mediated immunity, protein deglutamylation, protein side chain deglutamylation 

nlldbrain-hindbram boundary development, posilive regulation of appetite, positive regulation 

of NIKlNF-kappaB slgnalmg, poslllve regula/IOn of response to food, regula/IOn of sys/enllc 
x x 

arterial blood pressure by hormone, regula/ion of sys/emic arterial blood pressure by renln-

anglO/ens in, rostrocaudal neural tube pattel11ing, toxin metabolic process, vasoconstriction 

calion transmembrane Iran5porl, inorganic anion Iran5porl, ion transmembrane Iran5porl, 
orgamc hydroxy compound transport, regulation of histone H3-K9 methylation, regulation of 

x x 
protein kinase A signaling, response to dl1lg, serotonin transport, spermatid nucleus 

elonga/lOn, synapllc /ransnllsslOn, cholmerglc 

interleukin-33-mediated signaling patllway x 

immune system process x 

biological adhesion, cellular macromolecule localization, developmental maturation, negative 

regulation of cell development, positive regulation of cell development, positive regulation of 
x 

nervous system development, regulation of cell development, regJllation of grOwtll, regulation 

of nervous system development, secretion, secretion by cell 

cell adhesion, cell-cell adhesion x 

canonical Wnt signaling pathway, determination of bilateral symmetry, determination of 
left/right symmetry, extracellular matrix-cell signaling, heart looping, specification of x 

synunetry 

calcilUn-dependent cell-cell adhesion via plasma membrane cell adhesion molecules, cellular 
response to xenobiotic stimulus, lateral ventricle development, membrane fusion, positive 

regulation of circadian rhythm, positive regulation of humoral immune response mediated by 
x 

circulating immunoglobulin, regJllation of humoral immune response, regJllation of humoral 

immune response mediated by circulating immunoglobulin, synapse assembly, ventricular 

system development 

cerebellar cortex development, cerebellar granular layer development, cerebellar granular layer 
fonnation, cerebellar granular layer morphogenesis, cerebellar granule cell differentiation, 

dentate gyms development, hippocampus development, negative regulation of proteasomal x 

protein catabolic process, negative regulation of proteasomal ubiquitin-dependent protein 
catabolic process, regulation of stem cell maintenance 



.. 
..... 

Figure 3. The Gene Ontology ancestor chart for both the canonical Wnt Signaling Pathway and interleukin-33 mediated signaling pathway identified 
as significant by the SPICi clustering approach generated by QuickGO (http://www.ebi.ac.uk/QuickGO). 

Results between state and transition-based approaches in 
the generic algorithm are inherently different from one another 
- the same GO terms do not show up in the traditional and 
transition-based approaches. The structures with the most
overlap between clusters were the nodes gained and lost from 
the young to middle and middle to aged networks in the 
generic igraph clusters algorithm analysis, and this trend was 
only present in 10 of the observed GO annotations. The (three 
large) clusters generated by the generic approach all had large 
size containing anywhere from 1,043 to 1,071 nodes - but very 
few of the GO terms found to be enriched in any of them 
overlapped directly with one another. Finally, there were very
few nodes retained from the young to middle and middle to 
aged networks (young to middle - 97 and middle to aged - 2).

By contrast, results between state and transition-based 
approaches in the biologically motivated algorithm are more 
similar to one another - around 65% of the terms found in the 
state-based approach were found in the transition based 
approach. This implies that perhaps the biologically motivated 
algorithm SPICi is better able to find clusters that are robust in 
the network. Regarding our objective, it would appear that 
there is more consistency between biological relevance of the 
transition-based approach and the traditional state-based 
approach. To summarize, we denote the number of unique 
annotations identified in each approach by comparing both 
transition- and state-based approaches (Table 3). Here, we find 
that SPICi's biologically motivated clustering approach found 
110 unique annotations for the top 5 clusters (out of hundreds) 
generated by the algorithm using a state-based approach and 
finds 89 unique annotations for the top 5 clusters generated by 
the algorithm using a transition-based approach. So, trends 
here appear to indicate that the transition-based approach finds 
fewer annotations in general and that biologically motivated 
algorithms find many annotations. Further investigation should 

be performed to identify which is a preferable outcome, and 
more importantly, which outcome is most meaningful to the 
biomedical researcher. 

Finally, we examine some of the Gene Ontology 
annotations found in the SPICi results to identify if the terms 
had any biological relevance. Two GO terms in particular were 
found to have both consistency and relevance: canonical Wnt
signaling pathway and interleukin-33 mediated signaling
pathway. In the SPICi results, canonical Wnt signaling
pathway was found in the state-based Aged approach and 
interleukin-33 mediated signaling pathway was found in the 
state-based Middle approach. Both of these terms have both 
depth and specificity in the Gene Ontology biological process 
tree (Figure 2). While it may be exciting to investigate the 
biological relationships of these terms to aging in the mouse 
hypothalamus, the sheer inconsistency with which these terms 
were found (spanning from Young to Middle to Aged to Y_M 
Lost approaches) is enough to draw concern. It appears that 
even within a biologically motivated network clustering 
algorithm, results can return extremely different and 
inconsistent results - not only with regard to cluster size and 
structure but to the "content" of clusters themselves. 

TABLE 4. SUMMARY OF UNIQUE AND SIGNIFICANT GENE ONTOLOGY 
BIOLOGICAL PROCESS ANNOTATIONS IDENTIFIED BY EACH APPROACH. 

Transition-based 
110 unique annotations 

IV. DISCUSSION 

In this research, we identify a novel way to exam me 
changes across states in correlation networks - a basic 
transition based approach to identifying changes in network 
structure. Our objective was to compare state-based network 



analysis of correlation networks to transition-based network 
analysis and to determine if there is consistency of biological 
relevance between the two. Our results have found that the 
transition-based approach seems to identify more consistent 
results. These results have sparked interest in the future 
directions of performing a comprehensive assessment of 
biologically motivated clustering algorithms to determine how 
different or similar their results may be - based on these very 
preliminary results, we would caution the "black-box" type of 
approach to network analysis where structural identification 
approaches such as clustering algorithms are chosen by 
convenience or familiarity. 

REFERENCES 

[ I ]  Brohee S ,  van HeIden J .  Evaluation o f  clustering algorithms for protein­
protein interaction networks. BMC Bioiriformatics. 2006;7:488. doi: 
10.1186/1471-2105-7-488. 

[2] Dempsey K, Ali H. Evaluation of essential genes in correlation networks 
using measures of centrality. 20 I I  :509-515. 
http://dx.doi.org/lO.1109/BIBMW.2011.6112421. doi: 
10.1 1091B1BMW.201 1.61 12421. 

[3] Newman ME. Assortative mixing in networks. Phys Rev Lell. 

2002;89(20):20870 I .

[4] Soltis AR, Saucerman JJ. Robustness portraits of diverse biological 
networks conserved despite order-of-magnitude parameter uncertainty. 
Bioinformatics. 20 I I  ;27(20):2888-2894. doi: 
10.1093Ibioinformatics/btr496; 10.1 093/bioinformatics/btr496. 

[5] Dempsey K, Ali H. On the robustness of the biological correlation 
network model. International Coriference on Bioiriformatics Models, 

Methods and Algorithms (BIOINFORMATICS 2014). 2014:186-195. 

[6] Albert R. Scale-free networks in cell biology. J Cell Sci. 2005; 118(Pt 
21):4947-4957. doi: 118/21/4947 [pii]. 

[7] Altaf-UI-Amin M, Afendi FM, Kiboi SK, Kanaya S. Systems biology in 
the context of big data and networks. BioMed Research International. 
2014;2014. 

[8] Barabasi AL, Oltvai ZN. Network biology: Understanding the cell's 
functional organization. Nat Rev Genet. 2004;5(2): 101-113. doi: 
10.1038/nrg I 272. 

[9] Barabasi AL, Albert R. Emergence of scaling in random networks. 
Science. 1999;286(5439):509-512. doi: 7898 [pii]. 

[10] Costanzo M, Baryshnikova A, Bellay J, et al. The genetic landscape of a 
cell. Science. 2010;327(5964):425-431. doi: 10.1 I 26/science. I 180823 
[doi]. 

[ I I]  Fujimoto RM, Perumalla K, Park A, Wu H, Ammar MH, Riley GF. 
Large-scale network simulation: How big? how fast? . 2003: 116-123. 

[12] Girvan M, Newman ME. Community structure in social and biological 
networks. Proceedings of the National Academy of Sciences. 

2002;99(12):7821-7826. 

[13] Oldham MC, Langfelder P, Horvath S. Network methods for describing 
sample relationships in genomic datasets: Application to huntington's 
disease. BMC Syst Bioi. 2012;6:63-0509-6-63. doi: 10.1186/1752-0509-
6-63; 10.1186/1752-0509-6-63. 

[14] Barabasi AL, Albert R. Emergence of scaling in random networks. 
Science. 1999;286(5439):509-512. doi: 7898 [pii]. 

[15] Horvath S, Dong J. Geometric interpretation of gene coexpression 
network analysis. PLoS Comput BioI. 2008;4(8):e I000117. doi: 
I O.1371/journal.pcbi. I 000 117; I 0.1371/journal.pcbi.1 000 117. 

[16] Dempsey K, Ali H. On the discovery of cellular subsystems in gene 
correlation networks using measures of centrality. Current 
Bioinformatics. 2013;8(3 ):305-314. 

[17] Pfitzner R, Scholtes I, Garas A, Tessone CJ, Schweitzer F. Betweenness 
preference: QuantifYing correlations in the topological dynamics of 
temporal networks. Phys Rev Lell. 2013; 110(19): 19870 I .

[18] Zanetti MS, Scholtes I ,  Tessone CJ, Schweitzer F .  Categorizing bugs 
with social networks: A case study on four open source software 
communities . .  2013: 1032-1041. 

[19] GNU. R. httpllr-project.org 

[20] Csardi G, Nepusz T. The igraph software package for complex network 
research.lnterJournal, Complex Systems. 2006; 1695(5): 1-9. 

[21] Jiang P, Singh M. SPICi: A fast clustering algorithm for large biological 
networks. Bioiriformatics. 2010;26(8): 1105-1111. doi: 
10.1093lbioinformatics/btq078 [doi]. 


	On the Comparison of State- and Transition-based Analysis of Biological Relevance in Gene Co-expression Networks
	Recommended Citation

	tmp.1479152299.pdf.B7HWm

