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Beyond structural genomics: computational approaches for the identification of ligand binding sites in 
protein structures  

By: Dario Ghersi and Roberto Sanchez 

Abstract Structural genomics projects have revealed structures for a large number of proteins of 
unknown function. Understanding the interactions between these proteins and their ligands would 
provide an initial step in their functional characterization. Binding site identification methods are a fast 
and cost-effective way to facilitate the characterization of functionally important protein regions. In this 
review we describe our recently developed methods for binding site identification in the context of 
existing methods. The advantage of energy-based approaches is emphasized, since they provide 
flexibility in the identifi- cation and characterization of different types of binding sites.  
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Introduction  

Structural genomics projects have revealed structures for a large number of proteins of unknown 
function. According to the PSI Structural Genomics Knowledgebase as of November 2010 the PSI 
Structural Genomics Centers had determined the structures of more than 2,800 such proteins [1]. 
Hence, computational approaches that contribute to elucidating the function of these proteins would 
add value to structural genomics efforts.  

At the heart of protein function lies the most fundamental of all biological mechanisms, namely the 
interactions between proteins and their ligands. Visualizing the 3D structure of protein–ligand 
complexes provides a bridge between protein structure and protein function. It facilitates rational 
experimental validation of the functional contribution of different protein residues, and it enables 
structure-based drug design. Thus, modeling protein–ligand complexes is one way to contribute to the 
functional characterization of protein structures of unknown function. The task of identifying ligand-
binding sites can be considered as a precondition to achieve the goal of modeling these complexes. 

While comparison of global similarities in protein structures and evolutionary relationships between 
proteins as inferred from global sequence comparisons are clearly very useful and represent one of the 
main achievements of molecular bioinformatics, it is possible to find numerous examples of proteins 
that possess distinct evolutionary histories but that carry out similar functions. In many of these 
instances one can find striking similarities at the level of the active site (in the case of enzymes) or more 
generally in the binding site (for recognition domains). One example of similar binding sites found in 
vastly different structural folds is that of aromatic cages involved in methyl-lysine recognition [2]. 
Another example is that of phylogenetically unrelated microbial hydrogenases that possess similar 
features in their active site [3]. These cases might represent instances of convergent evolution, where 
unrelated protein domains acquired similar recognition motifs that were particularly effective and were 
therefore retained by selection. An additional layer of complexity is given by the fact that many proteins 
whose function has already been determined are actually endowed with more than one function. This 
phenomenon has been called ‘‘moonlighting’’ and is likely to play an important role in central processes 
like catalysis, transcription, and gene expression [4, 5]. The concept of moonlighting opens up new 
spaces to the application of algorithms for the prediction of function from structure and justifies the 



application of tools for the discovery of functional sites even to previously characterized proteins. 
Computational methods that are specifically tailored to address the problem of binding site 
identification and characterization are therefore much needed, and have the potential to go beyond the 
traditional description of global sequence and structural similarities. 

 We can envision two possible scenarios where indentifying a protein binding site can provide valuable 
information in the context of functional annotation. If knowledge of the physiological ligand is available, 
binding site identification can increase the reliability of docking approaches [6, 7] and therefore help 
determine the binding mode and the most crucial residues for the interaction. In those cases where the 
physiological ligand is unknown, identifying putative binding sites represents a time and cost effective 
way to prioritize residues for mutagenesis experiments. Furthermore, it is still possible to resort to 
docking (with the advantage that derives from focusing the search on predicted sites) and perform 
virtual screening of physiological compounds or ligand fragments to generate hypotheses about the 
possible cognate ligand of the protein under investigation. Finally, knowledge of the binding site allows a 
comparison of the predicted site against known binding sites for functional annotation even in the 
absence of evolutionary relationships. A recent review of computational approaches to compare binding 
sites can be found in Perot et al. [8].  

Here we review our work on binding site identification methods in the context of other computational 
methods for the identification of functionally important regions. We highlight the advantages of 
structure-based methods, and in particular the benefits of an energy-based approach, which enables the 
recognition of physicochemical properties that distinguish different types of binding sites.  

Computational methods for binding site identification  

The most widespread computational methods to carry out binding site identification exploit sequence 
and structural information, used in isolation or in combined form. Existing methods can be roughly 
divided into sequence-based, template-based, geometric, and energy-based. The last three make use of 
structural information.  

Sequence-based methods  

One of the simplest yet effective ideas behind sequence-based approaches to identify functionally 
important residues is to exploit the evolutionary information contained in Multiple Sequence 
Alignments (MSAs) of homologous sequences and extract a subset of residues that show a high degree 
of conservation. The assumption behind this idea is that the evolutionary pressure acting on functionally 
important residues will reduce their variability in a protein family. Different conservation measures have 
been employed, with the majority of them being cast in the information theoretic framework [9]. An 
alternative approach that takes advantage of phylogenetic analysis is the ‘‘evolutionary trace’’ method 
[10]. The idea behind the method is to consider the degree of conservation of residue positions in a 
protein family in phylogenetically distinct groups. The assumption is that functionally important residues 
may be conserved in a subgroup but can vary across different subgroups, since these subgroups may 
have evolved to perform slightly different functions. ‘‘Rate4- Site’’ [11] is another approach that takes 
advantage of phylogenetic information. It relies on estimates of site-specific mutation rates by using a 
Bayesian approach that, by including prior information into the model, is less sensitive to the number of 
sequences in the alignment than other conservation-based methods. On the other hand, a clear 



disadvantage of ‘‘Rate4Site’’ compared to simple information theoretic measures of conservation is the 
speed of execution, which is substantially lower [9].  

Despite their usefulness to infer functionally important residues, all the sequence-based methods suffer 
from the fundamental limitation of not being able to discriminate between residues that are conserved 
as part of a binding site from residues that are crucial to protein stability, regulation, or folding. In other 
words, while binding residues are usually conserved across a protein family, conservation alone is not 
always a sufficiently specific criterion to identify a binding site, since residues can be conserved for 
reasons other than binding. Sequence-based methods also do not provide geometric and 
physicochemical information about the binding site such as area, volume, shape, and molecular 
interaction properties. To overcome these limitations other approaches have been devised that 
explicitly take structural information into account.  

Template-based and structural-similarity based methods  

Template-based methods identify binding sites by comparing them with predefined patterns based on 
known binding sites. A graph theoretic method for identifying 3D patterns of amino acid side chains was 
applied to the screening of a set of proteins for the Ser-His-Asp catalytic triad [12]. A similar approach 
was used to build a network of binding site similarities [13]. A different approach to compare specific 
arrangements of residues is the TESS algorithm [14], that uses a 3D template acquired by mining the 
primary literature and containing all the atoms that are essential for an enzyme to perform its function; 
then, given a query structure the algorithm looks for a match between the query and the 3D template 
using a geometric hashing formalism. Using a 3D template that contained information for the serine 
protease active site (again with the well known Ser-His-Asp catalytic triad), the TESS algorithm was able 
to detect the active site of all the serine proteases, acetylcholinesterase and haloalkane dehalogenase 
[14]. Recently, a template-based approach has been developed to predict binding sites for 
phosphorylated ligands [15]. The necessity to provide a template with a well-defined structural 
arrangement of residues limits, in a sense, the applicability of the comparative approaches described 
above to enzymes or other molecules with a very conserved active site. Proteins whose function is to 
bind other proteins or ligands (especially in the case of low affinity binding) are less suitable to the 
generation of a well-defined template, since they will generally lack a highly conserved arrangement of 
residues in the binding region. An alternative approach that also takes advantage of the information 
available in the Protein Data Bank (PDB) [16] is to identify proteins that are structurally related to a 
query protein and map the known binding sites onto the uncharacterized sequence. One method that 
exploits this idea is the threading-based approach FINDSITE [17, 18]. 3DLigandSite [19] automatically 
builds a model for a given sequence and matches the model against the PDB, looking for structurally 
similar proteins with a ligand, which is then superimposed onto the model to infer the binding residues.  

Geometric methods  

One way to move away from templates is to focus on features of the binding site other than the 
residues, for example shape. Most of the geometric approaches to identify binding sites in protein 
structures rely on the assumption that a binding site is usually a cleft or a pocket. For example, a study 
of 67 protein structures determined that the largest cleft corresponded to a binding site in over 83% of 
the cases [20]. One of the earliest approaches employed by cleft detection algorithms is the ‘‘protein-
solvent-protein’’ concept, used in the POCKET [21] and LIGSITE algorithms [22]. The main idea consists 
of embedding the protein in a 3D lattice and assigning the grid points to either the protein (if within a 



predefined distance from an atom center) or the solvent. Pockets are defined as the regions in space 
that contain points assigned to the ‘‘solvent’’ category and that are surrounded by ‘‘protein’’ points. 
Later versions of LIGSITE replaced the protein-solvent-protein approach with surface-solvent-surface 
events (LIGSITEcs), and incorporated a conservation measure to re-rank the putative pockets 
(LIGSITEcsc) [23]. Another well established algorithm for pocket detection is implemented in the 
SURFNET program [24]. The approach places spheres between all pairs of atoms in such a way that no 
two atoms are contained inside the spheres. The clustered spheres with the largest volume define the 
putative pocket. Other methods that rely on the concept of alpha-spheres to identify cavities are 
APROPOS [25], PASS [26], CAST [27], GHECOM [28] (which identifies pockets by looking for regions on 
the protein VdW surface that can accommodate small spheres but not large ones), and Fpocket [29, 30].  

The program CAVER [31] is specifically tailored to identify channels in proteins, defined as void pathways 
that connect a cavity buried inside a protein with the solvent on the surface. Two grid-based approaches 
that evaluate the degree of ‘‘buriedness’’ of points to define cavities are PocketDepth [32] and 
PocketPicker [33].  

Another geometric approach (SplitPocket [34, 35]) exploits the fact that a ligand binding to a pocket will 
reduce its empty space and perturb the continuity of its surface, thereby creating a ‘split pocket’.  

Huang and Schroeder carried our a systematic comparison of LIGSITE, CAST, POCKET and SURFNET using 
a dataset of 210 bound proteins plus 48 proteins for which an unbound form was available [23]. The 
performance of the methods ranged from 80 to 87% for the bound dataset and from 71 to 77% for the 
unbound cases. Recently, Huang and colleagues combined several geometric approaches with an energy 
based approach (see next section) into a metaserver named ‘‘MetaPocket’’ [36], yielding an 
improvement over each of the individual methods used in isolation.  

Despite their usefulness for binding site identification, one of the major shortcomings of all the 
geometric approaches is represented by the fact that not all binding sites are deep pockets (Fig. 1). 
Additionally, geometric approaches are not able to distinguish different types of sites, such as 
hydrophobic versus polar, which may provide additional insights into the possible function of a protein.  

Energy-based methods  

Energy-based approaches to binding site identification work on the assumption that a binding site is 
characterized by energetic properties, which stand out from the rest of the protein surface and can be 
reliably identified. One of the earliest attempts to characterize binding sites using energetic rather than 
geometric properties is the GRID program [37], that computes a semi-empirical interaction energy 
between the protein and a set of chemical probes parameterized to mimic atom types and chemical 
fragments of pharmaceutical and biological interest. The GRID program is not a binding site 
identification tool per se, but the interaction energy maps (also known as Molecular Interaction Fields) 
that are produced by the program can be used for that purpose, with appropriate manipulations. As an 
example, Q-SiteFinder [38] uses the GRID forcefield to compute an interaction energy map between the 
protein and a methyl (-CH3) probe and carries out cluster analysis to identify the regions that have the 
highest total interaction energy. These regions usually correspond to binding sites for drug-like 
molecules. More recently, Morita et al. [39] improved the performance of this approach by using the 
AMBER force field for the interaction energy calculations and a more sophisticated two-steps algorithm 
for clustering. Another recently implemented method which uses the AutoDock [40] forcefield is 



AutoLigand [41]. Similarly, Ghersi and Sanchez improved on the Q-SiteFinder algorithm by using the 
GROMOS forcefield and different clustering algorithms [42] and, more importantly, extended the 
approach beyond the use of the methyl probe to improve the detection of binding sites for non-
hydrophobic ligands [42–44]. An alternative energy-based approach to carry out binding site 
identification on protein structures builds on the experimental technique introduced by Mattos and 
Ringe called Multiple Solvent Crystal Structures (MSCS) [45]. The idea behind MSCS is to repeatedly soak 
the protein with different organic solvents and identify the regions involved in binding to these solvents 
by X-ray crystallography. Vajda and Guarnieri have proposed an equivalent of this procedure, where the 
solvent mapping is carried out computationally and a consensus site, where different solvents bind 
favorably, is identified as the putative binding site [46].  

Energy-based approaches have the ability to identify different types of binding sites if different chemical 
probes are used to compute interactions. The use of these multiple probes also has the advantage of 
providing a preliminary characterization of a binding site in which regions with different chemical 
characteristics within the same site can be identified [44].  

Software  

Irrespective of the method used for binding site identification and characterization, the calculations 
require specialized software. While many methods for binding site identification have been published 
they are not all equally available. Ideally, all methods should be available as web servers for 
straightforward analysis of individual proteins, and as downloadable software that can be run in an 
automated fashion to analyze large sets of proteins. Most of the methods to carry out structure-based 
identification and characterization of protein binding sites are either provided as web servers or require 
a commercial license (Table 1). More importantly, no currently available tool provides a combined 
framework in which one can perform binding site identification and characterization using an energy-
based approach. This was the main motivation behind the development of our EasyMIFs and SiteHound 
tools [42], which provide a comprehensive solution to the energy-based binding site identification 
including standalone and web server versions [43]. Below we describe the most important 
characteristics of these tools.  

EasyMIFs and SiteHound  

EasyMIFs and SiteHound are two software tools that in combination enable the identification and 
characterization of binding sites in protein structures using an energy-based approach.  

EasyMIFs is a simple Molecular Interaction Field (MIF) calculator; and SiteHound, a post processing tool 
for MIFs that identifies interaction energy clusters corresponding to putative binding sites [42]. EasyMIFs 
can be used to calculate MIFs for binding site characterization, Quantitative Structure–Activity 
Relationship (QSAR) studies, selectivity analysis of protein families, pharmacophoric search, and other 
applications that require MIFs [47]. It aims to provide a simple and rapid way to characterize a protein 
structure from a chemical standpoint at the global or local level (e.g. around an active site), returning 
maps that can be loaded in molecular graphics software. The calculations are carried out in vacuo using 
the GROMOS force field and a distance dependent dielectric [42].  

The purpose of SiteHound is to manipulate the output of the EasyMIFs program, and other programs 
such as Autogrid [40] and GRID [37], in order to predict regions on protein structures that are likely to be 



involved in binding to ligands. The approach is based on the Q-SiteFinder algorithm [38], but uses a 
different force field and clustering algorithms suited to ligands of different shapes. The most important 
difference however lies in the use of multiple probes for the detection of different types of binding sites 
[42, 44]. The program first filters off all the grid points that have energy values above a user-specified 
threshold (a negative value) and clusters them according to spatial proximity using single or average 
linkage agglomerative clustering. Subsequently, the Total Interaction Energy (TIE) of each cluster is 
computed and this value is used to rank the clusters, from the most negative to the least negative. A test 
on 77 protein–ligand complexes containing drug-like molecule showed that the correct site is identified 
among the top three SiteHound clusters in 95% of the cases (79% for unbound proteins) when using the 
‘methyl’ probe [6]. Similar accuracy was observed in a set of more than 200 proteins that bind to 
phosphorylated ligands when using a ‘phosphate oxygen’ probe for binding site identification [44]. One 
of the advantages of using alternative clustering algorithms is that the binding site identification can be 
tailored to pre-existing knowledge about the ligand. For example, if the ligand is known to be elongated 
(such as a peptide) the single-linkage clustering algorithm may results in clusters that more closely 
resemble the binding site. Conversely, binding sites for smaller, more spherical ligand may be better 
defined with the average-linkage clustering algorithm (Fig. 2).  

The usefulness of binding site prediction by SiteHound was illustrated by using it to guide protein–ligand 
docking [6]. We developed an automated docking protocol that relies on the SiteHound algorithm to 
predict putative binding sites, and then carries out docking on the predicted sites. The advantages of 
isolating the predicted sites and docking the ligands one site at a time lie in improved accuracy and 
faster running times compared to the blind docking approach, making the protocol suitable for reverse 
virtual screening experiments. The study showed that not only does binding site identification improve 
the docking results, but the docking results also facilitate the identifi- cation of the correct binding site 
for a give ligand among the top-three ranking clusters [6].  

As mentioned above, one of the most relevant aspects of the EasyMIFs/SiteHound toolkit is its ability to 
use different types of probes for binding site identification [43, 44]. As shown in Fig. 1, not all binding 
sites are well-defined pockets or clefts, which can be problematic for geometric approaches. Even 
energy-based approaches that rely mostly on van der Waals contacts (e.g. when using a methyl group as 
probe) have difficulty identifying shallow binding sites (Fig. 3a). However, some of these binding sites 
are still identifiable if other characteristics, such as electrostatics are exploited (Fig. 3b). The use of 
different probes not only improves the identification of binding sites, but also allows distinguishing 
different types of binding sites, and different regions within one binding site (Fig. 2) [43, 44]. As such, it 
provides a much finer tool for the identification and characterization of binding sites, which takes the 
characterization of protein structures closer to a description of its functional implications, at least at the 
level of the fundamental mechanism of protein–ligand interaction. The versatility of this approach may 
prove useful in bridging the gap between structural and functional characterization of the many proteins 
with known structure but unknown function (Fig. 4).  

Conclusions  

Computational methods for binding site identification can be of great value in the context of Structural 
Genomics since they provide a fast and cost-effective way of adding value to protein structures. This is 
particularly true for the many proteins that have had their structure determined, but remain under-
characterized at the functional level. Structure-based approaches to binding site identification are the 



natural choice in this context since they provide greater accuracy than sequence-based methods. Among 
the structure-based methods, energy-based approaches provide maximal flexibility in term of identifying 
and characterizing different types of binding sites. The combination of tools described here (EasyMIFs & 
SiteHound) provides a freely available framework to carry out binding site identification and 
characterization through an easy to use web-interface or downloadable software available at 
http://sitehound.sanche zlab.org. Inclusion of these tools in structure characterization and modeling 
pipelines may provide additional guidance towards the elucidation of the function of proteins. 
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