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Abstract. The article studies the spread of perturbations through networks composed

of Boolean functions with special canalyzing properties. Canalyzing functions have the

property that at least for one value of one of the inputs the output is fixed, irrespective

of the values of the other inputs. In this paper the focus is on partially nested canalyzing

functions, in which multiple, but not all inputs have this property in a cascading fashion.

They naturally describe many relationships in real networks. For example, in a gene

regulatory network, the statement “if gene A is expressed, then gene B is not expressed

regardless of the states of other genes” implies that A is canalyzing. On the other

hand, the additional statement ”if gene A is not expressed, and gene C is expressed,

then gene B is automatically expressed; otherwise gene B’s state is determined by some

other type of rule” implies that gene B is expressed by a partially nested canalyzing

function with more than two variables, but with two canalizing variables. In this paper

a difference equation model of the probability that a network node’s value is affected by

an initial perturbation over time is developed, analyzed, and validated numerically. It is

shown that the effect of a perturbation decreases towards zero over time if the Boolean

functions are canalyzing in sufficiently many variables. The maximum dynamical impact

of a perturbation is shown to be comparable to the average impact for a wide range of

values of the average sensitivity of the network. Percolation limits are also explored;

these are parameter values which generate a transition of the expected perturbation

effect to zero as other parameters are varied, so that the initial perturbation does not

scale up with the parameters once the percolation limits are reached.

Keywords: partially nested canalyzing functions, Boolean network, perturbation, dynami-

cal impact, expected damage, sensitivity

1. Introduction

A large influx of biological data on the cellular level has necessitated the development of

innovative techniques for modeling the underlying networks that regulate cell activities.

Several discrete approaches have been proposed, such as Boolean networks [1], logical

models [2], and Petri nets [3]. In particular, Boolean networks have emerged as popular

models for gene regulatory networks [4, 5]. However, not all Boolean functions accurately

reflect the behavior of biological systems, and it is imperative to recognize classes of

functions with biologically relevant properties.
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One such notable class is the canalyzing functions, introduced by Kauffman [6] as appro-

priate rules in Boolean network models of gene regulatory networks since their behavior

mirrors biological properties described by Waddington [7]. Canalyzing functions naturally

describe many relationships in a gene regulatory network. For example, the statement

“if gene A is expressed, then gene B is not expressed regardless of the states of other

genes” implies that A is canalyzing. The dynamics of Boolean networks constructed us-

ing these functions are of great interest when determining their modeling potential [8, 9].

For instance, Karlssona and Hörnquist [8] explore the relationship between the proportion

of canalyzing functions and network dynamics. Random Boolean networks constructed

using such functions have been found to be more stable than networks of general Boolean

functions, in the sense that they are insensitive to slight perturbations [9].

In [9], the authors further expand the canalyzing concept and introduce the class of

nested canalyzing functions (NCFs). For instance, in [10], networks of NCF’s were shown

the exhibit stable dynamics. Also, Nikolajewa, et al. [11] divide NCF’s into equivalence

classes based on their representation and show how the network dynamics are influenced

by choice of equivalence class.

However, NCFs are very restrictive in structure as noted in Layne, et al. [12], since

some nodes may not exhibit the canalyzing behavior at all. The authors of [12] consider

functions that have a partially nested canalyzing structure rather than a fully nested can-

alyzing structure, defining the nested canalyzing depth as the degree to which a function

exhibits a canalyzing structure in comparison to its number of inputs. The results in [12]

were expanded by Jansen and Matache [13], taking into account the states composing

the limiting cycles of networks composed of such partially nested canalyzing functions

(PNCFs).

The spread or propagation of a local perturbation has been studied in the literature

under various network scenarios mostly by considering the average sensitivity of the in-

dividual functions or the entire network. Examples include random Boolean networks or

versions of them evolved for high dynamical robustness [14], random threshold networks

[15], networks governed by distributions of functions found from biological data [16], or
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more recently on networks governed by veto functions for which the output is shut off by

a single inhibitory signal regardless of other inputs [17].

The paper is structured as follows. In Section 2 we introduce the Boolean networks un-

der consideration governed by PNCFs and construct the mathematical model for tracking

perturbations along the trajectories of the network and assessing the probability that a

node is affected by a small perturbation after a given number of iterations of the network.

In Section 3 we validate the model by a direct comparison to perturbation results obtained

from an actual PNCF network with similar parameters, followed by a theoretical analysis

of the steady states of the map generated by the tracking model. The analysis of that

map is continued in Section 4 where the map is viewed as the dynamical impact of an

initial perturbation perturbation after k time steps in relation to the average sensitivity

of the network. We continue with a study of the percolation transitions with respect to

the network size, and the canalyzation depth viewed also as a fraction of the number of

variables of the PNCFs. The results provide a further in-depth understanding of the long

term effect of perturbations on a PNCF network. We end with a discussion and further

directions of research in Section 5.

2. Tracking perturbations in partially nested canalyzing functions

2.1. Nested canalyzing functions. We first review the concept of canalyzing functions

in general, after which we focus on nested canalyzation. Denote B = {0, 1}.

Definition 1. A Boolean function f(x) = f(x1, . . . , xn) is canalyzing if it has a variable

xi for which a particular input xi = ai implies that f(x) = bi for some bi ∈ B. In this

case, xi is called a canalyzing variable, the input ai is its canalyzing value, and the output

value bi when xi = ai is the corresponding canalyzed value. Note that if f is constant,

then every variable is trivially canalyzing.

If a canalyzing variable xi does not receive its canalyzing input ai, then the output of

the function f is determined by a function g(x̂i), where x̂i = (x1, . . . , xi−1, xi+1, . . . , xn).

If this function g is constant, xi is called a terminal canalyzing variable of f . Note that

for each i ̸= j, xj is then trivially canalyzing in g.
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If g is not constant, it is natural to ask whether it too is canalyzing. If so, then there

is a canalyzing variable xj with canalyzing input aj, and when xj ̸= aj, the output of f

is a function g(x̂ij), which may or may not be canalyzing. Here, x̂ij denotes x with both

xi and xj omitted. Eventually, this process will terminate when the function g is either

constant or no longer canalyzing. The formal definition follows.

Definition 2. Let f(x1, . . . , xn) be a Boolean function. Suppose that for a permutation σ

of the numbers 1, 2, . . . , n, some d ∈ {1, 2, . . . , n}, and a Boolean function g(xσ(d+1), . . . , xσ(n)),

(1) f =



b1 xσ(1) = a1

b2 xσ(1) ̸= a1, xσ(2) = a2

b3 xσ(1) ̸= a1, xσ(2) ̸= a2, xσ(3) = a3
...

...

bd xσ(1) ̸= a1, . . . , xσ(d−1) ̸= ad−1, xσ(d) = ad

g xσ(1) ̸= a1, . . . , xσ(d) ̸= ad

where either bd is a terminal canalyzing variable (and hence g is constant), or g is non-

constant and none of the variables xσ(d+1), . . . , xσ(n) are canalyzing in g. Then f is said

to be a partially nested canalyzing function (PNCF). The integer d is called the active

canalyzing depth of f , and the (full) nested canalyzing depth of f is d if g is non-constant,

and n otherwise. The sequence xσ(1), . . . , xσ(n) is called a canalyzing sequence for f .

The class of nested canalyzing functions (NCFs) [18, 9] are precisely those with active

depth n. In [12] it is shown that the average sensitivity of a Boolean network to small per-

turbations of a PNCF increases as the canalyzing depth increases; however the difference

in sensitivity between PNCFs of sufficient depth and NCFs is very slight. Additionally, it

is shown that the dynamics of networks with PNCFs rapidly approach the critical regime,

whereas networks with functions of relatively few nested canalyzing variables can remain

in the chaotic phase as was found in [19]. In [12], the average sensitivity is computed

assuming ergodicity of the network, that is all inputs can arise with the same probability

during evolution, and the time average over the states visited by the network yields the

same result as the average over the whole phase space. Later, in [13], the authors extend

the work of [12] to non-ergodic networks by taking into account the states composing
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the limiting cycles of PNCF networks, and find the average sensitivity to minimal initial

perturbations, and the corresponding phase transitions using a complementary threshold

function g in the definition of PNCFs. The average sensitivity is used to identify the

critical curve that separates order from chaos.

In this paper, we take matters one step further by tracking the actual perturbations

along the trajectories of the network and assess the probability that a node is affected

by a small perturbation after a given number of iterations of the network. This model is

described next.

2.2. Tracking perturbations. For simplicity we will consider the case when the cana-

lyzing variable order is x1, . . . , xn for all functions fi, i = 1, 2, . . . , n in the network. The

actual connectivity of the nodes may be smaller than the total number of nodes. We

assume a common canalyzation depth d for all nodes, with d = n for NCFs.

Let x0 be an initial state of the system and [x0]i be its ith bit. Suppose that with no

perturbation, F (x0) = x1, where F = (f1, f2, . . . , fn). Let y ∈ Bn be a perturbation. We

are interested in the probability that [x1]i is different from fi(x0 ⊕ y), where ⊕ is the

XOR operator. That is, we want to determine Pr[fi(x0) ̸= fi(x0 ⊕ y)].

Let m = min{j ∈ {1, . . . , n} | [y]j = 1}, i.e. m is the index of the most “influential”

variable that is perturbed. Since variable xm has impact on the function’s output only if

the first m− 1 variables did not assume their canalyzing values,

(2) y0 = Pr[fi(x0) ̸= fi(x0 ⊕ y)] =
1

2m
·
(
1− 1

2d

)
+

1

2d+1
·
(

1

2d
− 1

2n

)
.

This can be extended for any number of updates of the system. Let k be the number

of times the system was updated starting at x0. Then xk is the state of the system after

k updates and let x′
k be the system’s state when the system’s initial state was perturbed,

that is, the initial state was x0⊕y instead of x0. Let yk = Pr[[x′
k]i ̸= [xk]i]. Assuming that

no more perturbations were applied, the probability that a perturbation is still affecting

the ith bit after k + 1 iterations is given by the following difference equation:

yk+1 =
d∑

j=1

(1− yk)
j−1yk

1

2j
+

n∑
j=d+1

(1− yk)
j−1yk

1

2d+1
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(3) =
(1− 1

2d
(1− yk)

d)yk

1 + yk
+

(1− yk)
d − (1− yk)

n

2d+1

with initial condition (2). Notice that the effect of a particular perturbation depends

only on the position of the most influential variable that is perturbed. The first sum in

(3) is for the case when the most influential variable j that is perturbed is one of the

d canalyzing variables, while the second sum corresponds to the remaining n − d non-

canalyzing variables. Then the first j−1 variables have to be unchanged with probability

1−yk each. This leads to the powers of 1−yk in (3) by assuming independence. We point

out that the main assumptions for the equation (3) are: a uniform distribution of inputs,

that is we assume an ergodic network; the probability that an input is on its canalyzing

value, the probability that a canalyzing input is an activator, and the probability that a

canalyzed output value is 1 are all equal to 1/2. Also, the function g that takes over if

the canalyzing inputs are not on their canalyzing values is biased with bias 1/2; thus the

probability of an output 1 is equal to 1/2 when applying g. These assumptions explain

the powers of 1/2 in (3), since the first j − 1 inputs cannot be on their canalyzing values,

and the jth one has to produce a change in the output. Notice that we only apply a

perturbation at the initial state. In a real situation, perturbations are possible at any

stage of the network evolution. While the mathematical framework is very similar, here

we consider the basic case that lends itself to presentation and analysis and leave the

more general case for future work.

The difference equation (3) has interesting properties. Independent of the values of n

and d, it has a fixed point at zero, y⋆0 = 0. Let yk+1 = f(yk). Notice that fmax = f(1) =

1/2, so the solutions are bounded above by 1/2. Note also the weak dependence on n:

unless yk is very small, the term that involves n is of order 1/2d+n+1. Calculating the

derivative of f(y) at zero we obtain:

(4) f ′(0) = 1 +
n− d− 2

2d+1
,

which is less than or equal to one for n ≤ d + 2. Hence, for d ≤ n ≤ d + 2 the graphs

of f(y) are below the diagonal and for an arbitrary initial condition the solutions, albeit
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very slowly, decrease to zero. However, for n > d + 2, y⋆0 becomes repellent and there

occurs a second fixed point y⋆ > 0, an exact solution of which is not so easy to find and an

approximation is needed. Assuming that y⋆ is small an approximation can be constructed

by just taking the first two terms of the Taylor expansion of f(yk) at zero. This leads to

(5) y⋆ ≈ 2
1− f ′(0)

f ′′(0)
,

and after substituting the expressions for the derivatives,

(6) y⋆ ≈ 2(n− d− 2)

2d+2 + [n(n− 1)− d(d− 1)− 4(d+ 1)]
.

Thus, we realize that the effect of a perturbation decreases towards zero over time if a

system consists of nested or “almost” nested canalyzing functions, i.e. when the function

depth is d ≥ n − 2, which is consistent with what we expect from such systems. When

d < n − 2, the perturbation does not die out. For y0 > y⋆ the perturbation decreases

over time, while for y0 < y⋆ it increases. In both cases it converges to y⋆, whose value

according to (6), however, is small. A more accurate approximation will be obtained in

the next section.

2.3. State space structure of systems of NCFs. We can also think of x0 ⊕ y as

another vertex in the state space graph of the system. Consider (3) in this context.

Let x0 and x′
0 be two different vertices of the systems (two initial states) and let m

be the smallest index such that [x′
0]m ̸= [x0]m. If xt and x′

t is the state of the system

after t updates when starting at x0 and x′
0, respectively, then (3) gives the probability

that starting from the two different states, the system does not converge to the same

state after t steps. Since this probability is very small for systems composed of NCFs

or PNCFs of sufficient depth, we can expect that on average the state spaces of such

systems systems have short trajectories, small cycles, and a small number of components.

Numerical simulations confirm that [20]. Notice that here we assumed that all local

functions have the same canalyzing variable order. The generalization for different orders

is straightforward.
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3. Validation of the tracking model and analysis of steady states

The numerical approaches encompass the validation of the model by a direct comparison

to perturbation results obtained from an actual PNCF network with similar parameters,

followed by a theoretical analysis of the steady states of the map (3).

3.1. Validation. In order to validate the model for yk, the probability that a perturbation

is still affecting the ith bit after k iterations, we compare the model with the normalized

Hamming distance obtained from a network with identical parameters as the model.

More precisely, we generate an actual PNCF network and select an initial condition x0

randomly. Then we apply an initial perturbation y to obtain a second initial condition

given by x′
0 = x0⊕y. We update the network k steps to obtain xk,x

′
k. Then we compute

Hk = 1
n

∑n
i=1 ([xk]i ⊕ [x′

k]i) representing the normalized Hamming distance between the

two states of the network. We average both Hk and yk over different initial conditions,

and plot them versus k to assess the accuracy of the estimation given by yk. We also plot

the corresponding Derrida plots of Hk+1 versus Hk. A few results are shown in Figure 1

for a networks with n = 64 nodes, canalyzing depth d = 1, 2, 5, and initial perturbation of

8 nodes. These plots represent a small sample of the numerical simulations performed in

Matlab to validate the model. We note that the model is fairly close to the network results,

and the Derrida plots are located mostly along the main diagonal, indicating a complex

behavior of the dynamics. So the model is a good fit for the effect of perturbations on a

PNCF network, and we can use it for further explorations.

3.2. Analysis of steady states. We are now analyzing further the map yk+1 = f(yk)

given by (3). As noted before, the function has at least one fixed point at y⋆0 = 0. In

order to search for other fixed points, if they exist, and at the same time to illustrate the

iterations of f(yk), we plot graphs of f in the interval [0, 1] for d = 10 and six values of

the parameter n. This is done in Figure 2. We show a cobweb plot of an initial condition

as well.

On this scale the graphs of f(yk) are practically indistinguishable. We saw that f ′(0) ≤

1 for n ≤ d + 2. Hence, for d ≤ n ≤ d + 2 the graphs of f(yk) are below the diagonal

and the solutions independent of the initial y0 decrease to zero. On the other hand, for
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Figure 1. (Color online) Hamming distance versus model (left column), for PNCF network with

n = 64, d = 1 (first row), d = 2 (second row), and d = 5 (third row). The Hamming distance is computed

over a number of random initial conditions. Both the network and the model are iterated 100 steps,

and the actual corresponding values are plotted in the right column. The initial perturbation is on 8

randomly selected nodes. Notice that although there is not a perfect match (due also to rounding errors

on small numbers), the model follows pretty closely the network results.

n > d + 2, the fixed point at zero becomes repellent and although not seen on the scale

of the graph, there must be at least a second fixed point y⋆ > 0. However, this point

cannot be discerned even on scale of the graph of 0.025 × 0.025 (not shown). To clarify

their positions graphically we plot f(yk)− yk against yk in Figure 3, where the locations

of the fixed points are indicated by the intersections of the curves not with the diagonal

but with the horizontal axis. A trajectory with initial value y0 ≥ y⋆ will decrease toward

y⋆; those with 0 < y0 < y⋆ will be increasing, slowly converging to y⋆.

Next, we approximate the position of the second fixed point by taking ε = 1/2d+1 as a

small parameter in the equation f(y)− y = 0. Multiplying through by (1− yk), changing

variables yk = 1 − zk, factoring out (1 − zk) (the factor corresponding to the fixed point
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Figure 2. (Color online) Graphs of the function f(yk) given by (3) for d = 10 and six values

of parameter n (see legend). Observe that the graphs are practically superimposed. The red ladder

illustrates graphically the first few iterations of (3), generating a cobweb plot.

-1.0x10-3

-7.5x10-4

-5.0x10-4

-2.5x10-4

0.0

2.5x10-4

3.0x10-22.0x10-21.0x10-2

+

 

f(y
k)-

y k

yk

 n=10
 n=20
 n=40
 n=60
 n=80
 n=100

d=10

+ +

0.0

Figure 3. (Color online) Graphs of the function f(yk)− yk for d = 10 and six values of parameter

n (see legend). The points at which the graphs cross the horizontal axis represent the second fixed points

of the map (3).The crosses indicate the leading order approximation,(8), for n = 20, 40, and 60 (left to

right).

at zero), and re-scaling by substituting zk = ε−1/(n−1)u, we obtain

(7) un − u = εsu
n−1 + ε2su

n−2 + · · ·+ εn−d−2
s ud+2 − εs,

where εs = ε1/(n−1) was introduced to denote the effective small parameter for the re-

scaled equation. (Through the re-scaling, we have eliminated the small parameter at the

highest degree term.) If we set εs = 0, equation (7) has two real roots, u = 0 and u = 1.
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Of these, u = 0 leads to the approximation of the fixed point in the unit interval. Thus,

we look for a solution in the form of the series u⋆ = εs (u
⋆
1 + u⋆

2εs + u⋆
3ε

2
s + · · · ). It is

immediately inferred that u⋆
1 = 1 and u⋆

i = 0 for all i = 2, 3, . . . (n − 1). The next term

yields u⋆
n = − (n− d− 2), which upon returning to the original variables results in the

following leading order approximation:

(8) y⋆ ≈ (n− d− 2)

2d+1
.

This approximation for cases corresponding to n = 20, 40, and 60 is shown in Figure

3 by the crosses. Clearly, the approximate values overestimate the true ones by an error

which increases with n; for the cases n = 80 and n = 100, the values of y⋆ are outside of

the picture’s scale; y⋆ ≈ 0.033 and y⋆ ≈ 0.043, respectively.

To improve the approximation, we sum a subseries of u⋆, which includes all terms having

the form u⋆
i(n−1)+1, i = 0, 1, 2, . . . , neglecting the contribution of the cross-product terms.

It is straightforward to infer u⋆
i(n−1)+1 = u⋆

nb
i−1, where b = − (n(n− 3)− d(d+ 1)) /2.

Summing the subseries and going back to the variable yk results in

(9) y⋆ ≈ 2(n− d− 2)

2d+2 + (n(n− 3)− d(d+ 1))
.

This expression is similar to (6), but it is a more accurate approximation. To illustrate

the accuracy of (9), we compare it with the numerical evaluation of the fixed point, see

Table 1. The error compared to that of (8) is reduced, however, now the approximate

values systematically underestimate the numerical solution. The bias is likely due to the

neglected cross-product terms.

The second fixed point is always attractive. This follows from the fact that f(yk) has

no maximum on the unit interval. Also, since f ′(1) = 1/4, the derivative of the map is

positive on the entire interval and therefore the iterations converge to y⋆ monotonically.

The convergence is slow and gets slower for large values of n in comparison to d. In Figure 4

we show the Lyapunov exponents calculated at 0.4 (any other initial value yields the same

results) and the bifurcation diagrams along d for two fixed values of n, which further

illustrates the properties of the map. Except for small d, the values of the Lyapunov
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d n y⋆–numerical y⋆–approximate

10.0 20.0 3.7035×10−3 3.6986×10−3

10.0 40.0 1.0578×10−2 1.0245×10−2

10.0 60.0 1.4469×10−2 1.2962×10−2

10.0 80.0 1.6619×10−2 1.3404×10−2

10.0 100.0 1.7845×10−2 1.2860×10−2

Table 1. Comparison of the numerical and the approximate values of y⋆ for a

fixed value of d and various values of n. Notice that the numerical value is always

greater than the approximate value.

exponents are close to zero, but negative. The bifurcation diagrams is basically comprised

of the two fixed points, y⋆0 = 0 and y⋆, and shows the second point converging to zero.
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Figure 4. (Color online) Top panels: Lyapunov exponents for f(yk) as functions of the canalyzing

depth d. Bottom panels: bifurcation diagrams for the same values of the parameters. The left panels

correspond to n = 10, while the right panels correspond to n = 50.

Thus, in this section we have validated the model and analyzed the steady states of the

model. We can further use it to assess the impact of perturbations on a PNCF network.
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4. Dynamical impact of perturbations and expected damage

In this section we present an analysis of the map (3) viewed as the dynamical impact

of an initial perturbation after k time steps in relation to the average sensitivity of the

network. We continue with a study of the percolation transitions with respect to the

network size and canalyzation depth, which is viewed also as a fraction of the number of

variables of the PNCFs. The results provide a further in-depth understanding of the long

term effect of perturbations on a PNCF network.

4.1. Dynamical Impact. In this section we analyze yk+1 = f(yk) as defined in (3) in

relation to the sensitivity of the network to small perturbations. More precisely, yk is an

indicator of the long-term damage spread of an initial perturbation, that is the dynamical

impact of the initial perturbation after k iterations. On the other hand, f ′(0) is an

estimate for how an initial small perturbation spreads after one iteration. This is the

analog of the so-called sensitivity of the PNCF which measures the number of ways that

one flip of a node toggles the output of the PNCF [12, 13, 19, 21]. One single flip is the

smallest change one can apply. By averaging these sensitivities over the nodes, we obtain

the average sensitivity of the network.

We explore the dynamical impact over many networks, by varying n and d, and over

all possible initial conditions y0 given by (2) with m = 1, 2, . . . , n. More precisely we

consider the averages over the varied parameters n and d of the quantities

Q(n, d) =
max{k≤T,y0} yk
⟨yk⟩{k≤T,y0}

and

s(n, d) = f ′(0) = 1 +
n− d− 2

2d+1

where the notation ⟨X⟩Y stands for the average of the inside quantityX over the given var-

ied parameters Y . We compute the maximum and average yk over a number of iterations

to time T , and over all possible initial conditions y0 to get Q(n, d). We plot ⟨Q(n, d)⟩n,d
versus ⟨s(n, d)⟩n,d (grouped in a histogram), with a 10% standard deviation error bar. In

Figure 5 the maximum network size considered is n = 20, with d = 0, 1, . . . , n represent-

ing all degrees of canalyzing depth. Observe that the maximum impact is significantly
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larger than the average impact around the critical value f ′(0) = 1, corresponding to the

critical sensitivity, or the so-called edge-of-chaos, which separates ordered dynamics from

chaotic dynamics. As the sensitivity increases, the graph drops quickly, so the maximum

impact becomes comparable to the average impact, and this happens for a wide range of

sensitivity values as n increases beyond what is shown in Figure 5. At the same time, as

n increases the peak of the graph reaches higher values (graphs not shown, but similar

to Figure 5). Thus we note that the dynamical impact varies significantly across various

values of the average sensitivity of the network.

We note here that similar results have been observed in [22] for random Boolean net-

works. In [22] the dynamical impact is computed on initial perturbations of a single node

and shown to be mostly decreasing as well, and to vary across nodes with diverse sensi-

tivities. The maximal and average impacts approach equality rather fast as in our case,

but the difference between the maximum and average impact is not as big as in our case.

Thus, canalyzing yields more variation of the impact of perturbations. We point out that

in [22] the averages are computed over initial conditions, individual node perturbations,

and over the long-term behavior of the individual functions of the network; also the sim-

ulations are performed with actual networks, as opposed to a mathematical formula as in

the present case.

We are also interested in the impact of the ratio d/n over the dynamical impact. In

Figure 6 we plot ⟨Q(n, d)⟩n,d versus ⟨s(n, d)⟩n,d (grouped in a histogram) for fixed values of

d/n as specified in the titles. In this case we have eliminated the 10% standard deviation

error bar for a simpler plot. We notice the increase of the vertical scale as d/n increases,

meaning that the maximum impact is significantly larger than the average impact for

values of the average sensitivity close to the critical value f ′(0) = 1. Notice also the

reduced average sensitivity for large proportions d/n.

4.2. Expected damage and percolation transition. Let us explore further the map

(3) in view of identifying percolation limits. These represent threshold values of the

parameters that generate a transition of the expected damage yk to zero, so that the

initial perturbation does not scale up with, say, an increase in those parameters beyond
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Figure 5. (Color online) Variation of the dynamical impact yk across networks of sizes at most

n = 20, with d = 0, 1, . . . , n, ranging from no canalyzing through full canalyzation, and initial conditions

y0 given by (2). The averages are computed over T = 200 iterations. The horizontal axis represents the

average sensitivities over all (n, d) combinations. We collect statistics of Q(n, d) by values of s(n, d) and

plot the means with 10% error bars. Note that the maximum impact is much larger than the average

impact for smaller sensitivity, but that they become roughly equal as ⟨f ′(0)⟩ increases. The right graph

is a zoom in on the left graph around the critical sensitivity ⟨f ′(0)⟩ = 1. The maximum impact is

significantly larger than the average impact around the critical sensitivity ⟨f ′(0)⟩ = 1, followed by a

clear drop leading to comparable values of the average and maximum impact for larger values of the

average sensitivity. Thus the average sensitivity has a significant influence on the dynamical impact.

the threshold value. Percolation limits are explored for one parameter as some other

parameters are allowed to vary. In particular it would be of interest to know if there are

some “universal” percolation limits that do not depend on some of the parameters. For

example, is it possible that there is a certain threshold of canalyzing depth above or below

which the expected damage is reduced to zero regardless of the network size? A detailed

explanation of percolation limits can be found in [23] for random Boolean networks where

the average fraction of nodes that remain undamaged by an initial perturbation vanishes in

the large system limit as the number of nodes increases without bound, or in [24] for finite

random dynamical networks including random Boolean networks and threshold networks,

with an approach that is further extended to small-world random Boolean networks in

[25]. Although those papers are considering the percolation transition as the network size
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Figure 6. (Color online) Analog of Figure 5 with focus on the variation of the dynamical impact

yk across networks of sizes at most n = 400, with fixed ratios d/n as specified in the plots, ranging from

reduced canalyzation through high canalyzation, and initial conditions y0 given by (2). The horizontal

axis represents the average sensitivities over all (n, d) combinations for each fixed ratio d/n. We collect

statistics of Q(n, d) by values of s(n, d) and plot the means without the 10% error bars of Figure 5. Note

that the maximum impact can be significantly larger than the average impact around ⟨f ′(0)⟩ = 1, but

that they become roughly the same otherwise. Observe the change in the shape of the graphs as d/n

increases, leading to mostly small values of ⟨f ′(0)⟩ for increased level of canalyzation.

is increased, we will explore the transition to a null expected damage with respect to all

the parameters under consideration.

For example, in the top plot of Figure 7 we plot ⟨y500⟩y0 averaged over several values

of the initial perturbation y0 in the specified interval, versus the canalyzing depth d and

various values of network size n within the bounds specified in the plot. The lowest curve

for n = 4 and the highest one for n = 4096 generate an “envelope” for all the other curves

with intermediate values of n. Any value larger than the maximal n generates a curve

that is superimposed on the one for n = 4096, so an increase in network size does not

provide any further insights. Notice that for large enough n, all graphs transition to zero

around d ∼ 15 regardless of the network size, so the (average) expected damage does

not scale up with the network size. For smaller n values the graphs approach zero very

fast. Thus, in terms of the canalyzing depth, the percolation limit appears to be around

d ∼ 15.
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Figure 7. (Color online) Top: ⟨y500⟩y0 averaged over several values of the initial perturbation y0

in the specified interval, versus the canalyzing depth d and various values of the network size n within

the bounds specified in the plot. For large enough n, all graphs transition to zero around the same value

of d ∼ 15, so the damage does not scale up with increased canalyzing depth. The graphs for n > 4096 are

superimposed over n = 4096. Middle: Analog of the top figure, generated by replacing d with the ratio

d/n which is independent of the network size. The (average) expected damage does not scale up with

d/n. For canalyzing ratios d/n > 0.35 the expected damage is basically null for all n values, whereas

for large enough values of n the transition to zero occurs for d/n < 0.1 with approximation. Bottom:

Analog of the top figure, but with a switch of n and d/n. Notice that for d/n ≥ 0.3 the transition to

zero occurs for very small n values, approximately n < 50. Even for slightly larger values of d/n the

damage still converges to zero for n < 200.

A somewhat similar situation is generated by replacing d with the ratio d/n which is

independent of the network size. In this case the range of initial values y0 can be extended

as specified in the middle plot of Figure 7. The lowest and highest curve generate again

an “envelope” for the intermediate values of n. Again, the (average) expected damage

does not scale up with the network size and the transition to zero occurs for very small

ratios d/n as n increases. Observe that the graph for the maximal n value is basically at

zero altogether. The step-like graphs are natural as there are ranges of values of the ratio

d/n that lead to the same outcome. Also, as n increases for a fixed d/n the values on the

y-axis decrease. This is a reverse process than what was shown in the top plot of Figure
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7. Notice that the percolation limit in terms of d/n is not as clear, but for large enough

networks it is less than d/n = 0.1, which means a canalyzing depth of less than 10%.

Finally, we switch the roles of k and d/n in the previous figure and notice that for

d/n ≥ 0.3 the transition occurs for very small n values as seen in the bottom plot of

Figure 7.

In conclusion, although there is no precise “universal” percolation limit, the transition

to zero of the expected damage occurs for values in the neighborhood of some small values

for d, d/n or n, depending on the situation.

5. Discussion and Conclusions

We consider a network of PNCFs, that is, networks in which multiple inputs are can-

alyzing in a cascading fashion, while the remaining variables act according to a different

type of Boolean rule. We track the effect/damage of an initial perturbation on the trajec-

tories by finding a formula for the probability that a node’s value is flipped by the initial

perturbation after a number of time steps. Using that formula/model, (3), we show that

the effect of perturbation decreases towards zero over time for PNCFs with canalyzation

depth within two units from the number of inputs, and to a very small positive value oth-

erwise. This is confirmed by generating approximations of the fixed points of the map (3)

in formulas (8) and (9), and further exploring them, using Lyapunov exponents and bi-

furcation diagrams which indicate stability and convergence to zero of the perturbations.

At the same time, the model is validated via simulations that match the model (3) with

actual computations of Hamming distances under identical initial perturbations. We also

explore the map (3) by regarding it as the dynamical impact of an initial perturbation

after a number of iterations. By relating it to the average sensitivity of the network, which

is the derivative of that map at zero, we show that the maximum dynamical impact of

an initial perturbation after a number of iterations is comparable to the average impact

for a wide range of sensitivity values; however around the critical value 1 for the average

sensitivity, the maximum impact is significantly larger than the average impact; almost 70

times larger for networks of at most 20 nodes, and potentially hundreds of times larger for

networks with a few hundreds of nodes regardless of the canalyzation depth. We finally
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identify percolation limits, that is values of the parameters that generate a transition of

the expected damage (generated by an initial perturbation) to zero as some parameters

are increased, so that the initial perturbation does not scale up with the parameters once

certain parameter thresholds are reached. We show that although there is not a clear

“universal” percolation limit that does not depend on some of the parameters, such a

transition occurs for sufficiently large networks, small canalyzing depths, or small connec-

tivity values. More precisely, the transition to zero of the perturbations occur around a

canalyzation depth of about 15 for sufficiently large networks, and in general for a ratio

of the depth to the number of inputs that doesn’t exceed 30%, but is typically less than

10%. The other way around, a network size of at least 200 nodes guarantees a transition

to zero for any such ratio greater than about 10%.

There are several possible directions for future work. Regarding the actual model

given by equation (3), one can generalize all the assumptions listed immediately after

the equation, by assuming non-ergodicity, nonequal probability values for canalyzing or

canalyzed states, as well as for the bias of the function g. Besides, not all nodes of the

network need have the same canalyzing depth, follow the same order of canalyzation,

or use the same function g. Moreover, assuming an extra level of perturbation such as

asynchrony may provide a more plausible approach for most types of possible applications

where intrinsic or environmental perturbations need to be taken into account.

Further extensions of this work could encompass heterogeneous networks in which

PNCFs are combined with other types of Boolean functions, with varying connectiv-

ity, thus expanding the breadth of node types or Boolean functions that would contribute

to the perturbations. For example, tracking perturbations on a probabilistic Boolean net-

work where nodes can be governed by multiple rules that may be PNCFs or other types,

would complement previous findings on those types of networks such as [26]. It would also

be interesting to explore similar modeling for networks that are subject to feed-forward

or feedback loops. This would introduce further correlations between the nodes that can

build up as the network is evolved.

One can extend also the analysis of the percolation transitions, say with respect to the

size of the initial damage, and consider how an initial damage scales with an increase in
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parameters. Finally, this work can be extended to include repeated perturbations over

time, following either a deterministic or a stochastic timing scheme, possibly coupled with

varying sizes of perturbations (such as in medical treatments).
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