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Identifying Pathway Proteins in Networks using Convergence 
Kathryn Dempsey and Hesham Ali 

Department of Pathology & Microbiology, University of Nebraska Medical Center 

College of IS&T, University of Nebraska at Omaha 

Email: hali@unomaha.edu

ABSTRACT
One of the key goals of systems biology concerns the analysis of 

experimental biological data available to the scientific public. 

New technologies are rapidly developed to observe and report 

whole-scale biological phenomena; however, few methods exist 

with the ability to produce specific, testable hypotheses from this 

noisy ‘big’ data. In this work, we propose an approach that 

combines the power of data-driven network theory along with 

knowledge-based ontology to tackle this problem. Network 

models are especially powerful due to their ability to display 

elements of interest and their relationships as internetwork 

structures. Additionally, ontological data actually supplements the 

confidence of relationships within the model without clouding 

critical structure identification. As such, we postulate that given a 

(gene/protein) marker set of interest, we can systematically 

identify the core of their interactions (if they are indeed working 

together toward a biological function), via elimination of original 

markers and addition of additional necessary markers. This 

concept, which we refer to as “convergence,” harnesses the idea 

of “guilt-by-association” and recursion to identify whether a core 

of relationships exists between markers. In this study, we test 

graph theoretic concepts such as shortest-path, k-Nearest-

Neighbor and clustering) to identify cores iteratively in data- and 

knowledge-based networks in the canonical yeast Pheromone 

Mating Response pathway. Additionally, we provide results for 

convergence application in virus infection, hearing loss, and 

Parkinson’s disease. Our results indicate that if a marker set has 

common discrete function, this approach is able to identify that 

function, its interacting markers, and any new elements necessary 

to complete the structural core of that function. The result below 

find that the shortest path function is the best approach of those 

used, finding small target sets that contain a majority or all of the 

markers in the gold standard pathway. The power of this approach 

lies in its ability to be used in investigative studies to inform 

decisions concerning target selection. 

General Terms
Algorithms, Theory, Networks, Pathways, Validation. 

Keywords
Graph theory, biological networks, convergence, ontology. 

1. INTRODUCTION
In systems biology, a high-throughput experiment generally is

initiated as an investigatory study or to examine a specific cellular

response. Although there exists a wealth of data currently

available through open sourcing, it is often possible to lose the

best targets for study from a holistic experiment in the “noise”

generated by the study. This “noise” rises from the complexity of

the majority of biological systems, and can impede the selection

of optimal biological targets by offering multiple ‘interesting’

results from a cellular genomic survey. This is further complicated

by the pleiotropic nature of genes; for example, one study found

that almost half of all known genes can be found in multiple

pathways1. This complexity, combined with multiple processes

undertaken by a cell at a given time (housekeeping gene activity,

metabolism, and other homeostatic functions) can cloud systems

biology experimental analyses either as noise or by revealing

themselves as functionally enriched (and therefore interesting)

results. This is particularly prevalent in investigatory or “fishing”

studies – a systematic approach using biological networks, for

example, may reveal ‘interesting’ network substructures such as

hub nodes2 and clusters3, but these results could be largely an

artifact of the holistic nature of the experiment. As such, when

performing these studies, it can be often helpful to have a set of

“seed” genes, proteins, or gene products that are able to inform

the selection of targets from the analysis.

By contrast, if an experiment returns a list of gene products or 

proteins with potential impact in the domain at hand, the 

connection between these “markers” – biological or otherwise- is 

not always readily apparent. It is in these cases where systems 

biology can be particularly useful, particularly network systems 

biology. We have developed a method that, given an input set of 

seeds or “markers,” will return a set of target nodes T that 

describe the core function of those markers (if it exists). Further, 

using this approach, we can identify which original markers to 

exclude or include from the target set, and we can also identify 

which targets are best to include via recursion, based on graph 

theory. Particularly, it is known that the majority of proteins 

perform their functions as complexes4; In protein-protein 

interaction networks, protein complexes are likely to be found as 

cliques (complete subgraphs, where for some group of nodes n, all 

possible interactions between all nodes in the network exist) or as 

semi-cliques, where almost all possible interactions between all 

nodes in the group exist. In this way, density can be used to 

identify proteins that work together for some function5,6. Further, 

it stands to reason that if a group of proteins exist together in a 

typical pathway, there is going to be interaction between those 

proteins that result in high density subgroups when represented in 

a protein protein interaction network, as shown in the example in 

Figure 1. In this example, there are three complete cliques in the 

hypothetical protein-protein interaction network, a K4 (Ghi, Mno,  
Blok1, Blok2), a K3 (Ghi, Jkl, and Mno), and another K3 (Abc, 

Def, and Ghi). These all have edge densities of 100%. Further, the 

hypothetical proteins in these clusters are shared between cliques 

– Ghi in all three cliques, and Mno in two.  These three cliques



combined contain 7 nodes and 11 edges, for an edge density of 

52.38%. Other combinations of these cliques, for example, the K4 

and the K3 containing Ghi, Jkl, and Mno, contain 5 nodes and 8 

edges, for an edge density of 80%. Thus, density can be an 

indicator of nodes working together toward a common function in 

a pathway in a protein-protein interaction network7,8. 

In this study, we present our method that uses a graph theoretic 

method to identify new targets to add to the input markers. The 

graph theoretic methods used are k-Nearest-Neighbor, All Pairs 

Shortest Paths, and clustering. These methods are used identify 

new targets are briefly described here and explained in detail in 

the Model section. Previous work using shortest paths to identify 

new nodes from a set of input markers has shown promising 

results in Alzheimer’s disease9. For example, if we have a pair of 

markers i and j, we can identify the shortest path between them. If 

the shortest path between them is of length 1, this indicates that i 

and j are already neighbors. If the shortest path length is greater 

than 1, we add the nodes on the path between i and j as new 

targets. By adding these nodes, we improve the overall shortest 

path length of our original marker set. Adding targets via the k-

Nearest-Neighbor is a straightforward approach. For 

example, if k = 1, only the direct neighbors are added to 

the new target set. If k = 2, the neighbors of the original 

set are added, and then the neighbors of those nodes are 

added in, and so on and so forth. This method is a 

straightforward way to add the closest “associates” of 

the original markers. Finally, the cluster approach is 

more traditional: after clustering the network, if any or 

all of the markers are contained in one or more small, 

dense clusters, the nodes contained in that cluster that 

are not in the original marker set become new targets for 

the set.  

To measure the impact of adding new targets to the 

original marker some global parameter of the 

subnetwork induced by the markers, targets, or markers 

and targets combined is measured. In this study, the 

average shortest path between markers/ targets/ 

markers+targets and edge density of the subgraph 

induced by the markers/ targets/ markers+targets is used 

to measure the effectiveness of adding new targets. In 

the case of edge density, if adding new targets results in 

a dense network, this is considered an improvement on 

the network. As such, we use edge density to determine 

which set (markers, targets, or markers+targets) defines 

the optimal subgraph connecting the original markers. 

1.1 Proof of Concept 
One of the best understood pathways in yeast, the 

mating pheromone response pathway10, is employed in 

this study. The main players in the pathway are 

essentially all known11, making this pathway and its 

components an ideal test case for the proof of concept of 

our application. The 25 main players in this pathway are 

listed in Table 1. The induced subgraph of the yeast 

protein-protein interaction network is shown in Figure 

2. 22 of the 25 original markers were present in the

network (missing: MEK, MEKK, MAPK). This

network contains 100 edges, with a total possible

number of edges coming to 462; this gives the induced

subgraph an edge density of 43.29%, an average

clustering coefficient of 71.8% and a characteristic

shortest path length of 1.632.

2. Model
We present the following model to describe and test the proposed

convergence approach in the yeast Pheromone Mating Response

Pathway.

2.1 Data Origin and Network Creation 
The 25 constant proteins named in the Saccharomyces cerevisiae 

Yeast Mating Pheromone Response pathway are listed in Table 1. 

The known protein-protein interaction network of the yeast 

proteome was downloaded from BioGrid (Release 3.2.99) on 

April 17, 2013. Duplicate edges and self-loops were immediately 

removed. 22 of the 25 original markers were present in the 

network (missing: MEK, MEKK, MAPK). This network contains 

100 edges, with a total possible number of edges coming to 462, 

this gives the induced subgraph an edge density of 43.29%, an 

average clustering coefficient of 71.8% and a characteristic 

shortest path length of 1.632. The induced subgraph of these 25 

yeast proteins in the known interaction network is shown in 

Figure 2. 

Figure 1. A hypothetical pathway and its hypothetical protein-protein 

interaction network. (A) The hypothetical signaling pathway, which begins at 

membrane receptors and signals transcription in the nucleus. (B) The 

corresponding PPI displaying hypothetical protein names and their binary 

interactions (if they interact at all, there is an edge between them. If they do 

not, there is no edge). (C) The three cliques formed by the protein-protein 

interaction network, a K4 (left) and two K3’s (center, right). In reality, we 

expect these proteins to have higher intraconnection (all nodes in the network 

are more connected than in this example) but lower overall density (not all 

clusters will be 100% complete graphs). 



2.2 Marker Set Definition 
For each experiment, we define a set of markers M that includes 

the gene symbol of the protein name. If no gene symbol for a 

given protein exists, it is not included in the set. The set of targets 

T is the set of targets that result from the convergence for that 

iteration. For i teration 1, M is the marker set and T is the target 

set. The exit parameter (edge density or average shortest path) is 

defined for marker set M and then measured again for target set T, 

and additionally for the union of M and T, the markers+targets set. 

If the exit parameter improves from M to T or from M to M+T, the 

process iterates again. Then in iteration 2, the marker set becomes 

T or M+T. This iteration continues until the target set is an empty 

set or until the exit parameter does not improve (convergence).  

For the yeast pheromone mating response case-study, we have 

defined three simulated datasets (listed in Table 2): 

1. Ideal-case: The markers for this dataset are drawn randomly

from any of the 25 original markers known to play a part in

the pathway (Table 1). Markers/proteins outside this list of

25* were not used. Markers were randomly chosen using the

Perl rand() function in groups of 100% (all markers in the

list), 75%, 50%, 25%, and 15%, or until the minimum

required amount of markers (3) was met. For each set of

markers in 100%, 75%, 50%, 25%, and 15%, the number of

chosen markers was rounded down. For example, using the 25

markers described here, the 75% group would technically

contain 18.75 of the original 25 markers; in each case, this

percentage was rounded down (in this example to 18

markers). This is ideal-case because it assumes in the input

marker set, there is complete coverage of the entire pathway.

*It is known that only 22 of the 25 markers are contained in

the yeast protein-protein interaction network used. When

selecting which markers would be included, we allowed all 25

markers to remain as candidates, as this best reflects the real-

world possibility that complete studies on the interactions of

some proteins will not be complete or even yet studied.

2. Semi-realistic: The markers for this data were chosen as such:

~50% (12) of the markers were chosen from the original list

of markers in the pathway per grouping, and ~50% (13) of the

markers were chosen from the proteins in the Yeast PPI with

original marker proteins removed per grouping. Markers were

randomly chosen using the Perl rand() function. This is semi-

realistic because it assumes that some of the markers are valid

and related to the desired studied function and some are not 

related. 

3. Random: The markers for this data were chosen by randomly

choosing proteins from the yeast PPI network. No restrictions

were made in determining where the nodes came from. This

set highlights the performance of the convergence method on

a set of random markers from the yeast PPI. 

Table 1. List of genes in the S. cerevisiae Pheromone Response 

Mating Pathway 

Ste26,7 Ste56,7 Dig16,7 Cdc246,7 Bem16,7 

Ste36,7 Ste116,7 Dig26,7 Cdc426,7 Ptp36,7 

Ste46,7 Ste76,7 Ste126,7 Far16,7 Ste206,7 

Ste186,7 Fus36,7 MEKK6,7 Ste506,7 Ptp26,7 

Gpa16,7 Msg56,7 MEK6,7 Kss16,7 MAPK6,7 

Table 2. Markers for the ideal, semi-realistic, and random 

datasets. 

Original Markers 
% 

Markers 

# 

Markers 

Id
ea

l 
–

 M
a

rk
er

s 

Ste2, Ste3, Ste4, Ste18, Gpa1, 

Ste20, Bem1, Cdc24, Cdc42, 

Ste5, Ste11, Ste7, Fus3, Msg5, 

Ptp2, Ptp3, Far1, Dig1, Dig2, 

Ste12, MEKK, MEK, MAPK, 

Kss1, Ste50 

100% 26 

Cdc42, Ste3, Far1, MEK, Gpa1, 

Ste4, Ptp2, Ste4, Ste20, Ste12, 

Ste3, Far1, Dig1, MAPK, Ste12, 

Ste20, Cdc24, Dig2 

75% 18 

Cdc24, Ste2, Ste11, Gpa1, Ptp2, 

Cdc42, MEKK, Ste3, Ste12, Dig2, 

Ste5, Far1 

50% 12 

Dig2, MAPK, Ste3, MAPK, 

Ste50, Fus3 
25% 6 

Far1, Bem1, Cdc24 15% 3 

S
em

i-
R

ea
l 
–

 M
a

rk
er

s 

MEK, STE2, DIG1, PTP2, STE3, 

GPA1, MEKK, FUS3, MAPK, 

KSS1, FAR1, STE12, FRK1, 

YCL021W-A, RPL6B, PFK26, 

NOP9, PHB2, RPS7B, UBP8, 

ENA2, YPS6, YET2, RAD6, 

YOR214C 

100% 

25 

(12 orig, 

13 rand) 

STE11, STE5, FAR1, STE5, 

STE2, PTP3, STE50, STE18, 

MEK, ACF4, PKP2, ARB1, 

GEP5, TRI1, SWD1, ECM30, 

YKL151C, AVT6 

75% 

18 

(9 orig, 9 

rand) 

STE12, CDC42, CDC24, GPA1, 

FUS3, STE50, SOM1, MPS2, 

TOS3, RPS27A, HEH2, LAT1 

50% 

12 

(6 orig, 6 

rand 

STE12, STE50, BEM1, RPN4, 

FET4, MNN4 
25% 

6 

(3 orig, 3 

rand 

MSG5, QNS1, DAL81 15% 

3 

(1 orig, 2 

rand) 

R
a

n
d

o
m

 –
 

M
a

rk
er

s YPR013C, SPC25, HEM1, 

YLR125W, RXT3, MCD4, 

SHY1, XKS1, BIR1, SMD1, 

ATP8, AAH1, VPS30, VTC2, 

100% 25 

Figure 2. Induced subgraph by the S. cerevisiae Pheromone 

Response Pathway genes (listed in Table 1). Initial network 

parameters are: edge density  = 43.29%, average clustering 

coefficient =  71.8%,  and average shortest path length = 

1.632. 



MED8, SPT3, RTT101, 

YBR096W, PRP19, CDS1, 

ORM2, YBR053C, CAT8, FAS1, 

SPP382 

SGF29, CNOT1, NCS2, DCP1, 

SGT2, SRB2, YKL091C, TRM8, 

YHR009C, CIA1, FIR1, SNN1, 

STE13, DFG5, AAT1, PUT2, 

GAP1, SUR1 

75% 18 

STO1, ETS1-1, DAL82, PSP2, 

GCN3, RPN4, KAT2A, PHB1, 

ESS1, VPS13, MMS21, CAF40 

50% 12 

OPT1, RPE1, PCL8, AFT1, 

FET4, SOG2 
25% 6 

YGR130C, CCT3, RRP3 15% 3 

2.3 Convergence Model 
Our convergence algorithm uses recursion to identify group of 

relationships that link the original marker set proteins in M. 

Convergence can be achieved in two ways: by setting a stop 

parameter threshold, where some graph theoretic measure (such as 

the density of the subgraph induced by the marker or target set) 

defines when to stop recursion, or by setting a stop parameter 

condition, such as only continuing to iterate if the convergence 

algorithm applied to the target set results a new target set 

containing some or all of the original markers.  

2.3.1 Algorithm with Stop Parameter Definition 
For a set of markers M in some network Na, identify the set of 

targets T in some network Nb using graph function f that satisfies 

the condition set by parameter p. We assume that M = the original 

Marker set, m is equal to the |M|, f is equal to (Shortest path 

approach | kNN approach | clustering approach| …), p is equal to 

(Average shortest path | Clustering coefficient |…), Na is equal to 

the Network 1 (Data driven network), Nb is equal to Network 2 

(Data driven or ontological network), where Na can be equal to or 

disparate from Nb. T is the unknown.  

1. G = the subnetwork induced by M in Na 

2. p = p(G) where p = ASP() or ED()

3. T = converge(M, Na, Nb) 

4. function converge(M,N1,N2)

5. T = f(M,N1) where

f = shortest_path(), knn(), or cluster()

5. Gtmp = the subnetwork induced by T in N2

6. ptmp = p(Gtmp) where p = ED()

7. if ptmp > p

8. return T;

9. end;

10. if ptmp <= p

11. converge(T,N2,N1)

13. }

Stop Parameter. Parameter definitions given a graph G(V,E) 

where V = (v1, v2, …, vn) and E = (e1,e2,…,em). Thus, n = the 

number of nodes in V and m = the number of edges in E: 

Edge density: 

*( 1)
*100

2

n n 
(Equation 1) 

where n is equal to the number of nodes in V. 

2.3.2 Convergence Function Definitions 
Function definitions assume that given includes a graph G(V,E) 

where V = (v1, v2, …, vn) and E = (e1,e2,…,em) and a set of marker 

nodes M. Each function returns a set of targets T. 

Shortest_path: 
1. Target set T = ()

2. For each pair (i,j) of nodes in M where i != j

3. For each possible shortest path between i,j

4. sp(i,j) = the shortest path(s) between i,j

5. If sp(i,j) > 1

6. Add nodes on sp(i,j) to target set T

7. T = T - M # Remove original markers from T 

8. Return T

k-Nearest-Neighbor:
1. Target set T = M

2. For (i = 1 to k)

3. For each node v in M

4. neighbors = all direct neighbors of v

5. T = T + neighbors

6. T = T - M # Remove original markers from T 

7. Return T

Clustering: 
1. Target set T = ()

2. C = clusters in the network

3. For each cluster c in C

4. If cluster c contains at least 2 nodes in M

5. T = nodes in c

6. T = T - M # Remove original markers from T 

7. Return T

Clustering in this case was performed by MCODE v1.2 using the 

following parameters: Degree cutoff  of 5, Haircut (ON), Node 

Score cutoff of 0.2, K-Core of 4, and Max. Depth of 10. Clusters 

were exported if they had a density cutoff of 50% or more. 

3. Hypothesis
Using the ideal 25% dataset and shortest path convergence

approach described above as an example, a preliminary example 

the ability of the convergence is presented. The ideal 25% dataset 

including markers and targets contains 10 targets, 3 of which are 

in the yeast MPR pathway, and 7 of which are not (as shown in 

Figure 3). The original marker set contained 6 markers from the 

MPR pathway, 4 of which were in the actual network. In total in 

the marker+target dataset, 11 proteins of the 22 possible 

identifiable proteins from the yeast MPR pathway were found. 

This from a original dataset containing only 3 proteins; 

highlighting the potential power of the of the convergence 

method.  

Additional targets not in the yeast MPR pathway were found: 

YCK2, TAF1, SKS1, AKR1, PRR1, BUD14, and TEC1. AKR1 is 

associated with the yeast MPR pathway in 2 articles via PubMed 

search: a 2011 study from Hemsley and Grierson (which also 

mentions YCK2)12, and a 1996 study from Pryciak and 

Hartwell13. BUD14 is the focus of a 2002 study in the yeast MPR 

pathway14, and TEC1 is associated with 13 articles related in the 

yeast MPR pathway via PubMed search with the terms 

protein_name + “yeast mating pheromone response”. So while all 

of the proteins are not directly involved in the pathway, at least 4 

of the 7 targets identified have been associated with the pathway 

in literature. This phenomenon is mentioned by Li et al.; that 

within a network, often it is not only the complexing proteins that 

are captured by a network but also the entire cohort of proteins 

involved in that function, informally termed a “module.15” 



 Based on the concepts described above, we propose our 

hypothesis H0: If a group of biological elements are part of a 

pathway or functional biological module, then beginning with a 

large subset of these proteins/gene products, the proposed 

convergence approach will leads to the identification of the other 

members of the pathway or module. To test this hypothesis in 

ideal and real world settings, we use the datasets and functions 

described above to test this hypothesis. The experiments will also 

be used to specify what a “large subset” is, or how big a 

component of the group is needed to identify the entire set.  

4. Experiments & Results

4.1 Experimental Study 
To test the hypothesis described above, we performed an array of 

experiments that reveal the effectiveness of the convergence 

approach: 1. Comparing converged versus non converged 

networks to determine if the stop parameter is the best measure of 

a target set, 2. Analyzing the number/percentage of targets found 

by each method to determine the effectiveness of each method, 

and 3. Analyzing the number of targets found by each method that 

are not part of the 25-component yeast MPR pathway. We 

compare these results in the ideal case and also under real world 

conditions. 

4.2 Ideal case 
All results in this section describe the “Ideal” case dataset. 

4.2.1 Markers versus Markers+Target Set 
Table 3 describes the number/percentage of targets found that 

were in the yeast MPR pathway in the ideal case for each 

described count of markers using the shortest path convergence 

approach. Examining only the targets does not offer a full point of 

view on the performance of the convergence approach as some of 

the proteins are contained in the marker set. Combining the 

marker and target sets, we find that using as few as 50% of the 

markers in the original marker set will yield at least 80% of the 

total proteins in the pathway; even using 25% of the pathway 

markers finds at least half of the proteins in the yeast MPR 

pathway. This reflects the power of the convergence approach.  

Table 3. Target set: Targets only or Markers+Target Set. % 

Total Markers/Markers: The number of markers used in the 

original marker set. # Targets in MPR pathway: The number 

of total markers (of 22 possible) found in the target set in the 

MPR pathway. % Targets in MPR Pathway: The percentage 

of targets found in the yeast MPR pathway (out of possible 

22). 

Target 

Set 

% Total 

Markers 
Markers 

# Targets in 

MPR 

Pathway 

% Targets 

in MPR 

Pathway 

T
a

rg
et

s 
O

n
ly

 100% 26 0 0.00% 

75% 18 7 31.82% 

50% 12 6 27.27% 

25% 6 3 13.64% 

15% 3 0 0.00% 

M
ar

k
er

s 

+
T

ar
g

et
s

100% 26 22 100.00% 

75% 18 20 90.91% 

50% 12 18 81.82% 

25% 6 11 50.00% 

15% 3 3 13.64% 

4.3 Real-world applications 
All results in this section compare Ideal vs. Semi-Real vs. 

Random cases. 

4.3.1 Converged vs. non-converged networks 
To determine if there was a difference between the accuracy of 

converged versus non-converged networks, we compare the 

percentage of yeast Mating Response Pathway genes found in 

converged or final networks versus non-converged, or non-final 

networks. For example, if an experiment had 4 iterations before 

converging, this means that there are 4 sets of markers and 4 sets 

of targets. In this example, this indicates that the subgraph 

induced by the target set of iteration 1 had a better stop parameter 

(e.g. edge density) than the subgraph induced by the marker set of 

iteration 1, and so on. The last iteration would then occur by the 

subgraph induced by target 4 set having a worse stop parameter 

(e.g. edge density) than the subgraph induced by marker set 4, 

which is the same as target set 3. Thus, the converged network in 

this case uses induced subgraph of the proteins in target set 3, and 

the non-converged networks use the induced subgraphs of the 

proteins in target sets 1 and 2. Target set 4 is not included because 

it is not an improvement on target set 3 and thus is not part of the 

converged network. In Figure 4 we show the distribution of the 

percentages of markers found in each converged or non-

converged network. The x-axis represents the percent of pathway 

markers found, or, for all converged or non-converged networks, 

each network is counted as containing 0% of the total pathway 

markers, 1-10%, and so on. Counts were then normalized. The 

percent of pathway markers found represents the total pathway 

markers found out of 22, not 25, pathway markers, as only 22 of 

the original pathway markers were present in the protein-protein 

interaction network used. The y-axis represents the percentage of 

the converged or non-converged networks containing a specific 

range of pathway markers found; for example, 30% of the 

converged networks contained none of the pathway markers (bar 

1, red). 

Figure 3. (Left) The induced subgraph in the Saccharomyces 

cerevisiae protein protein interaction network by the 22 

existing nodes of the 25 in the yeast MPR pathway. (Right) 

The induced subgraph of the 14 markers and targets (4 

markers, 10 targets) ideal 25% dataset found by the shortest 

path convergence function. Triangle nodes represent targets 

and square nodes represent markers. Yellow nodes represent 

those that are in the yeast Mating Pheromone Response 

Pathway. Seven additional non-pathway targets were found: 

YCK2, TAF1, SKS1, AKR1, PRR1, BUD14, TEC1. 



The results of this comparison are interesting. The distinction 

between random, semi-real, and ideal cases in this chart is not 

made, so converged networks with no original pathway proteins in 

their marker sets (random case) are included, which accounts for 

the 30% of converged networks containing 0% of pathway 

markers. However, another 37.5% of the converged networks 

contain 71-100% of original pathway markers as compared to 

10.4% of non-converged networks containing 71-100% of original 

pathway markers. Using a similar comparison, 79.2% of non-

converged networks find 1-70% of original pathway markers 

compared to 32.5% of converged networks. This indicates that the 

convergence method may be key in allowing us to discern 

whether or not a set of proteins are involved in a similar pathway. 

For example, there were 24 converged networks where the 

converged network found 0% of the original pathway proteins. Of 

these 24, 11 found no new targets, and only 1 of these was the 

ideal case using 15% of the original markers. There were 9 cases 

where the ideal case found no yeast MPR pathway targets, and 7 

of these were using the clustering approach. Because clustering is 

not re-run every time an iteration occurs (the input network does 

not change so neither does the clusters) there are often no more 

than 1 iteration of the cluster function convergence, and thus, no 

new markers are found.

4.4 Markers found vs. total targets 
Percent of pathway markers found versus percent of total targets 

in converged networks. Figure 5 shows the comparison of 

performance for the three functions evaluated in the yeast MPR 

pathway: clusters, kNN, and shortest path. The y-axis represents 

the percentage of yeast MPR pathway markers found in the final 

converged target set (out of 22 total) and the x-axis represents the 

percentage of yeast MPR pathway proteins in the final converged 

target set. For example, if a target set is found to have 100 total 

proteins and 11 of those proteins are in the yeast MPR pathway, it 

would be located at (11%,50%). The optimal result would be for 

the method to identify any missing yeast MPR pathway markers 

not in the original dataset; this result would be located in the top 

right corner of the figure (most of the markers found, with those 

markers representing most or all of the total target set). The 

clustering function is the worst performer, never finding more 

than 10% of the pathway markers and the markers found always 

representing less than 5% of the total markers. The k-Nearest 

Neighbor approach performs well in terms of identifying pathway 

markers, but not by identifying non-pathway targets. Pathway 

markers never represent more than 5% of the total target set. The 

shortest path approach is varied in terms of pathway marker 

identification, finding more targets than the clustering function 

and having those markers represent up to 30% of the total targets. 

This however does not reflect the inclusion of markers in the 

original set. For example, if the marker set used is the ideal case at 

100%, the target set will not contain any new targets (they are all 

in the marker set) and the targets will represent 0% of the total 

target set. Thus, the same performance combining the marker and 

target sets is also evaluated in Figure 6. 

4.4.1 k-Nearest Neighbor function vs. Shortest Path 
In real world application, generation of connections between 

markers would not exclude just the new targets; it could be 

assumed that a marker set of proteins includes interesting targets 

due to the inquiring scientists intimate knowledge of the topic or 

an experiment designed to extrapolate markers related to the 

subject at hand. As such, the markers should be considered with 

Figure 4. Pathway Markers found in Converged versus Non-

converged Networks. Shown below is the distribution of the 

percentages of markers found in each converged or non-

converged network. The x-axis represents the percent of 

pathway markers found, or, for all converged or non-

converged networks, each network is counted as containing 

0% of the total pathway markers, 1-10%, and so on. Counts 

were then normalized. The percent of pathway markers found 

represents the total pathway markers found out of 22, not 25, 

pathway markers, as only 22 of the original pathway markers 

were present in the protein-protein interaction network used. 

The y-axis represents the percentage of the converged or non-

converged networks containing a specific range of pathway 

markers found; for example, 30% of the converged networks 

contained none of the pathway markers (bar 1, red). 

Figure 5. Percent of pathway markers found versus percent of 

total targets in converged networks. Figure 4 shows the 

comparison of performance for the three functions evaluated 

in the yeast MPR pathway: clusters, kNN, and shortest path. 

The y-axis represents the percentage of yeast MPR pathway 

markers found in the final converged target set (out of 22 

total) and the x-axis represents the percentage of yeast MPR 

pathway proteins in the final converged target set. For 

example, if a target set is found to have 100 total proteins and 

11 of those proteins are in the yeast MPR pathway, it would be 

located at (11%,50%). The optimal result would be for the 

method to identify any missing yeast MPR pathway markers 

not in the original dataset; this result would be located in the 

top right corner of the figure (most of the markers found, with 

those markers representing most or all of the total target set). 



the targets when determining how well the convergence function 

has performed. Figure 6 shows the comparison of performance for 

the three functions evaluated in the yeast MPR pathway: clusters, 

kNN, and shortest path. The y-axis represents the percentage of 

yeast MPR pathway markers found in the combined final target 

set and final marker set (out of 22 total) and the x-axis represents 

the percentage of yeast MPR pathway proteins in the final 

converged target set. For example, a target having 100 total 

proteins, 11 of which are in the yeast MPR pathway and the 

marker set containing 9 original markers, it would be located at 

(11%,90.1%). The optimal result would be for the method to 

identify any missing yeast MPR pathway markers not in the 

original dataset; this result would be located in the top right corner 

of the figure (most of the markers found, with those markers 

representing most or the total target set). 

While the clustering approach can be modified to include 

parameterization that could improve its performance, the clear 

winners between convergent functions are the k-Nearest-Neighbor 

and Shortest Path functions. Previously mentioned, Figures 5 and 

6 suggest that the k-Nearest-Neighbor approach identifies the 

majority of yeast MPR pathway markers but identifies many other 

targets, while the Shortest Path approach indentifies fewer overall 

targets but has varied performance in terms of yeast MPR 

pathway identification. The percent of total targets represented by 

target set pathway markers for kNN (left) and Shortest Path (right) 

is shown in Figure 6. The k-Nearest-Neighbor approach performs 

poorly, where the found markers never rise above 5% of the total 

targets found. With target set sizes reaching up to 5,365 proteins, 

this would not reduce the search space for new targets at all. Even 

with poor performance, it becomes readily apparent that the ideal 

case marker set is the best performer, followed by the semi-real 

marker sets. Additionally, marker plus target sets perform better 

than target sets only for the ideal and semi-real cases, which 

indicates that if a marker set is indeed believed to reflect the 

biological markers of the function at hand, the markers should be 

included and considered with the new targets identified. 

The shortest path approach performs better than the k-Nearest-

Neighbor approach, but does not perform optimally. In the ideal 

datasets, it is the best performer, particularly when combining 

markers plus targets so all markers are hit. Unfortunately, the 

targets identified still represent only around 20% of the total 

targets. For the Semi-Real case, the results plummet to kNN 

levels, as they do with the random case. A comparison of the 

Semi-Real cases in kNN and Shortest Path functions appear in 

Figure 7; there were no targets found for the Semi-Real SP cases 

at 100 and 75%, and the rest of the results in general are poor 

performers in terms of narrowing search space. 

4.4.2 Target Network Size 
Figure 8 shows the sizes of the target sets of the final converged 

networks for the Cluster, kNN, and Shortest Path functions. 

Clusters clearly have the smallest, fewest target sets due to their 

poor performance. The shortest path methods have either very 

high or very low target counts, generally within the 0-1,000 range 

and 3,500-5,000 range. The kNN method has slightly more than 

the shortest path function targets, with target sets ranging in 

between 500-1,500 targets and 4,500 to 5,500 targets.  

5. Discussion
The novel convergence approach described in this work

investigates how to identify the relationships between a set of

marker gene products or proteins, particularly when provided by

experimental studies. Particularly, given a set of markers, the goal

of the proposed approach is how to identify the relationship

between them, and which additional markers or proteins need to

be added to complete the picture describing their common

functions, if they exist. Using a protein-protein interaction

network, it is possible to find relationships between models and

determine if those relationships constitute the framework for a

Figure 5. Percent of pathway markers found plus targets versus 

percent of total targets in converged networks. Figure 5 shows the 

comparison of performance for the three functions evaluated in 

the yeast MPR pathway: clusters, kNN, and shortest path. The y-

axis represents the percentage of yeast MPR pathway markers 

found in the combined final target set and final marker set (out of 

22 total) and the x-axis represents the percentage of yeast MPR 

pathway proteins in the final converged target set. For example, a 

target having 100 total proteins, 11 of which are in the yeast MPR 

pathway and the marker set containing 9 original markers, it 

would be located at (11%,90.1%). The optimal result would be for 

the method to identify any missing yeast MPR pathway markers 

not in the original dataset; this result would be located in the top 

right corner of the figure (most of the markers found, with those 

markers representing most or the total target set). 

Figure 6. The percent of total targets represented by target set 

pathway markers for kNN (left) and Shortest Path (right). The x-

axis represents the marker size used set as described above, and 

the y-axis represents the percentage of the total final converged 

target set represented by the yeast MPR pathway targets. For 

example, if a target set contained 100 proteins and 10 of them are 

yeast MPR pathway genes, it would be represented at 10%. If a 

target set contained 100 proteins and 10 of them are yeast MPR 

pathway genes and addition of a marker set with 10 yeast MPR 

pathway proteins  was performed, it would be represented at 

(10+10)/(100+10) = 18.18%. 



working cellular subsystem, or otherwise, if the markers are 

related originally via chance or error. Specifically, this work 

explores three major facets of the convergence approach: 1. 

defining the method of identifying targets, 2. defining the method 

of evaluating a final target subset, and 3. defining a stop condition 

or parameter for the convergence approach. The three methods 

used to identify new targets are basic graph theory concepts, first, 

the clustering approach, which adds new targets if they are found 

in the same cluster; second, the k-Nearest-Neighbor approach, 

which adds new targets that are k-step neighbors of the markers, 

and thirdly, the shortest path approach, which adds new targets on 

the shortest paths between markers if they are not directly 

connected. Our conducted experiments show that in terms of 

finding the most markers in a pathway while finding the least 

amount of incorrect proteins, the shortest path approach is 

optimal.  Secondly, the method for identifying the constitution of 

the network induced by the final set of markers and targets or 

targets only was investigated using edge density. In this way, it 

has been shown that edge density can be an indicator of how well 

a target set predicts convergence; typically, a decrease in edge 

density is an indicator of the first non-appropriate iteration of the 

convergence approach. Also discussed was the shortest path 

measure, which takes the average of all shortest paths between 

markers and targets. This method shows theoretical promise and is 

planned for implementation in future work. 

 This convergence approach is a novel concept, and is a 

promising first step in using network analysis to better guide 

decision support for “at the bench” scientists. This work has 

shown that it is a viable approach to identifying new targets 

relating to the observed phenomenon behind designed high-

throughput analyses. Indeed, as network interaction repositories 

continue to grow, it is hoped that so should the ability of 

approaches such as these to predict improved targets and cellular 

responses. 
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Figure 7. The percent of total targets represented by target set 

pathway markers for kNN (left) and Shortest Path (right) at 

Semi-Real only. The x-axis represents the marker size used set as 

described above, and the y-axis represents the percentage of the 

total final converged target set represented by the yeast MPR 

pathway targets. For example, if a target set contained 100 

proteins and 10 of them are yeast MPR pathway genes, it would 

be represented at 10%. If a target set contained 100 proteins and 

10 of them are yeast MPR pathway genes and addition of a 

marker set with 10 yeast MPR pathway proteins  was performed, 

it would be represented at (10+10)/(100+10) = 18.18%. 

Figure 8. Target set sizes for Clusters, kNN, and Shortest Path. 

The y-axis represents the number of targets in the final target set 

of converged networks. 
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