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Phase transition of Boolean networks

with partially nested canalizing functions

Kayse Jansen, Mihaela Teodora Matache∗

University of Nebraska at Omaha, Mathematics

Durham Science Center 237, Omaha, NE, 68182, USA

∗corresponding author, dmatache@unomaha.edu

Abstract:We generate the critical condition for the phase transition of a Boolean net-

work governed by partially nested canalizing functions for which a fraction of the inputs

are canalizing, while the remaining non-canalizing inputs obey a complementary threshold

Boolean function. Past studies have considered the stability of fully or partially nested

canalizing functions paired with random choices of the complementary function. In some of

those studies conflicting results were found with regard to the presence of chaotic behavior.

Moreover, those studies focus mostly on ergodic networks in which initial states are assumed

equally likely. We relax that assumption and find the critical condition for the sensitivity

of the network under a non-ergodic scenario. We use the proposed mathematical model

to determine parameter values for which phase transitions from order to chaos occur. We

generate Derrida plots to show that the mathematical model matches the actual network

dynamics. The phase transition diagrams indicate that both order and chaos can occur,

and that certain parameters induce a larger range of values leading to order versus chaos.

The edge-of-chaos curves are identified analytically and numerically. It is shown that the

depth of canalization does not cause major dynamical changes once certain thresholds are

reached; these thresholds are fairly small in comparison to the connectivity of the nodes.

1. Introduction

Boolean Networks (BN) are used for modeling networks in which the node activity, or

state of the cell, can be described as a binary value: on-off, active-non active, 1-0, etc.

This type of network model has been used to examine the connections among diverse phys-

ical and engineered networks such as genetic regulatory or signal transduction networks

(Kauffman [1], Shmulevich et.al. [2], [3], [4], Helikar et.al. [5], Kochi and Matache [6]),

biological networks (Klemm and Bornholdt [7], Raeymaekers [8]), social networks (Flache

and Hegselmann [9], Green et.al. [10], Moreira et.al. [11]), economic/prediction market
1
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networks (Jumadinova et.al. [12]), neural networks (Huepe and Aldana [13]), complex net-

works in general (Wolfram [14]), and more. Studying these network representations leads

to predictive models of real occurrences. For example, specific biological problems stud-

ied include cell differentiation, immune response, regulatory networks and neural networks.

For cell differentiation and immune response, the basic binary element might be a chemical

compound, while in neural networks it might be the state of firing of a neuron.

Recently, there has been an interest in understanding the structure and dynamics of

Boolean networks governed by canalizing/nested canalizing rules in which at least one of

the inputs can determine the output regardless of the values of the other variables. These

types of networks are encountered in many biological/genetic systems (Kauffman [1]). For

example, in (Kauffman et.al. [15]) it is shown that stability prevails in genetic networks

with nested canalizing Boolean rules. Similar results are obtained for other types of biolog-

ical networks in (Nikolajewa et.al. [16], Rämö et.al. [17]). As indicated in (Just et.al. [18])

canalizing functions also play an important role in the study of phase transitions in random

Boolean networks (Kauffman [1], Shmulevich et.al. [4]). Conflicting results are discovered

by Peixoto in (Peixoto [19]), whose phase diagram for nested canalizing functions (NCF)

shows large ranges of parameter values where the system appears to be in the chaotic phase.

A study of the literature on transcriptional regulation in eukaryotes demonstrates a bias

towards canalizing rules (Harris et.al. [20]). As shown in (Layne et.al. [21]) NCFs as typ-

ically used in the literature can be somewhat artificial, since biologically relevant rules do

not necessarily obey a fully canalized structure. Then it becomes important to understand

the dynamics of partially nested canalizing functions (PNCF) that are more realistic mod-

els for a variety of real networks. In particular, PNCFs have been observed in (Kochi and

Matache [6]) where the Boolean functions corresponding to the signal transduction network

of a generic fibroblast cell developed in (Helikar et. al. [5]) are grouped in eleven classes.

Three of those classes represent PNCFs, while a fourth class which incorporates a num-

ber of functions not identified in detail in that paper are an additional source of PNCFs.

Those individual classes are shown to have distinct impacts on the overall activity level of

the network, but that they mainly lead to an ordered behavior of the signal transduction

network. On the other hand, the class of canalizing functions with exactly two canalizing

inputs such that if at least one of the inputs is active/on than the output turns on, is shown

to lead to chaos that can be stabilized under certain mutations. This can be of importance

in identifying the types of Boolean functions that could be targeted in drug therapies in

order to shift the dynamics of a disease from one dynamical regime to another. Although
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for NCFs it has been shown that order may prevail, PNCFs could lead to a more complex

evolution of the system. Thus, the study of PNCFs can improve our means for finding the

effect of altering certain types of nodes that could be essential for the functionality of a

biological network.

In this paper, we extend some of the results in (Layne et.al. [21]) under the assumption

of non-ergodicity, by taking into account the long run activity of the network in establishing

the likelihood of the states of the network. We find the critical condition that separates

order from chaos using an approach similar to (Peixoto [19]).

As mentioned in (Layne et.al. [21]), NCFs are very restrictive in structure. It is possible

that some nodes do not exhibit the canalizing behavior at all, thus a need to relax the

structure is necessary. The authors consider functions that have a partially nested canalizing

structure rather than a fully nested canalizing structure. They define the nested canalizing

depth as the degree to which a function exhibits a canalizing structure in comparison to its

number of inputs. The NCFs are a special case of PNCFs when all inputs are canalizing.

It is shown that the average sensitivity to small perturbations of a PNCF increases as the

canalizing depth increases; however the difference in sensitivity between PNCFs of sufficient

depth and NCFs is very slight. Additionally, it is shown that the dynamics of networks with

PNCFs rapidly approach the critical regime, whereas networks with functions of relatively

few nested canalizing variables can remain in the chaotic phase as was found in (Peixoto

[19]). In (Layne et.al. [21]), the average sensitivity is computed assuming ergodicity of the

network, that is all inputs can arise with the same probability during evolution, and the

time average over the states visited by the network yields the same result as the average

over the whole phase space. This is an implausible assumption that is unlikely to hold

for the dynamics of arbitrary BNs as noted in (Moreira and Amaral [22]). In general, the

dynamics of BNs converge to limiting cycles that occupy only a fraction of the entire phase

space. In this work we take into account the states composing the limiting cycles of PNCF

networks and find the average sensitivity and the corresponding phase transitions using a

complementary threshold function for the PNCFs. Our analytic results are supported by

the numerical simulations.

The paper is structured as follows. In Section 2 we present the partially nested canaliz-

ing function model with detailed computations for significant quantities in Subsection 2.1,

followed by numerical results in Subsection 2.2. Once our model is explained, we focus on
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sensitivity of the network in Section 3, by finding the analytic results for the average sen-

sitivity and the critical condition in Subsection 3.1, followed by phase diagram simulations

in Subsection 3.2. We end this work with conclusions and further directions in Section 4.

2. Boolean Network Model with Partially Nested Canalizing Functions

2.1. The Model. In this section we construct the PNCF network model in order to analyze

the parameters that cause phase transitions from stability to chaos. The procedure used

here is based on some ideas from (Peixoto [19]) and (Layne [21]).

Consider a random Boolean network under the ensemble E of PNCFs given as follows.

Each function F : {0, 1}k → {0, 1} in E has the following formula

(1) F (σ1, σ2, . . . , σu, . . . σk) =



s1 if σ1 = c1

s2 if σ1 = 1− c1, σ2 = c2

s3 if σ1 = 1− c1, σ2 = 1− c2, σ3 = c3

. . . . . . . . . . . . . . . . . . . . .

su if σ1 = 1− c1, . . . , σu−1 = 1− cu−1, σu = cu

G(σu+1, . . . , σk) otherwise

where si, ci ∈ {0, 1}, ∀i = 1, 2, . . . u. Here ci represents the canalizing value of the i-th

input, and si the corresponding canalized output value. If si = 1, then σi is called an

activator. If si = 0 then σi is a deactivator or inhibitor. An input at its canalizing value

is called canalized. If none of the canalizing inputs are at their respective canalizing value,

the output is given by a default totalistic Boolean function G with k − u input, for which

the output only depends on the sum of the values of the inputs, not on the individual

inputs; thus it is the aggregation of the inputs that governs the node evolution. If u = k,

we obtain the classical NCF case studied in (Kauffman et.al. [23]) or (Peixoto [19]). On

the other hand, in (Layne [21]), some properties of PNCFs are analyzed and an algorithm

for identifying u from the truth table of a Boolean function is generated, while the choice

of G in simulations is given by a random bit generator.

In Figure 1 we show sample pattern formation plots and corresponding densities of ones

(activity level) or the fraction of active nodes for three networks with the parameters indi-

cated in the figure and explained below. The bottom graphs correspond to a NCF in which

all inputs are canalizing. The dynamics reach stability rather quickly. We note here that



5

the density of ones is an estimate for the probability of finding a node in an active state at

any given time.

PNCF, N=256, k=5, u=1
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Figure 1. Pattern formation plots and density of ones for PNCF (top and middle) and NCF

(bottom) networks where the nodes are ordered horizontally in the left figures, and each node has

k = 5 inputs: itself and the two nearest neighbors on each side, so it is a cellular automaton. There

are N = 256 cells, each obeying a PNCF with the indicated canalization depths. The function

G that is applied when the canalizing inputs are not on their canalizing values is a generalized

elementary cellular automata rule 126: if all inputs are either zero or one, the node becomes zero

(yellow) at the next time step, otherwise it becomes a one (black). Only one of the 256 cells is

initially black, representing an active node. The automata are evolved 50 time steps (downward)

in the left column; the time evolves horizontally in the right column with the corresponding

activity levels. Notice that all three networks reach stability with a fixed state for the PNCF with

canalization depth u = 1 and periodicity for the the others. Also note that the cases u = 3, u = 5

are fairly similar with a small decrease in the overall activity level, so the canalization depth does

not have a significant impact once it reaches a threshold value (3 in this case).

The parameters and quantities that determine the distribution of the ensemble of PNCFs

from which we choose our functions are as follows:

a = P (si = 1) = the probability that an arbitrary input is an activator

c = the probability that the canalizing value of an input is 1

pt = the probability that the function G takes on value 1
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bt = the density of ones for the network

We start by deriving a formula for bt using a mean-field approximation, in which correla-

tions among inputs are ignored. For large networks this assumption has almost no bearing

on the overall dynamics. So we consider the function

γ(bt) = P (an arbitrary input for an arbitrary node of the network is at its canalizing value)

= P (the input is canalizing) · P (its canalizing value is 1 | the input is canalizing)

·P (the input = 1 | its canalizing value is 1 and the input is canalizing)

+P (the input is canalizing) · P (its canalizing value is 0 | the input is canalizing)

·P (the input = 0 | its canalizing value is 0 and the input is canalizing)

=
u

k
· c · bt +

u

k
· (1− c) · (1− bt) =

u

k
[cbt + (1− c)(1− bt)].

We obtain the density of ones at time t + 1 as the probability that at least one canalizing

input is canalized and is an activator, or no canalizing input is canalized and the output of

G is 1. More precisely,

bt+1 = P (at least one input is canalized) · P (the canalizing input is an activator)

+P (no canalizing input is canalized) · P (the output of G = 1)

= [1− (1− γ(bt))
u] · a+ (1− γ(bt))

u · pt = a+ (pt − a)(1− γ(bt))
u.

Observe that for k → ∞, which implies u → ∞, we have that bt → a.

Now, of all the Boolean functions one could consider for G, let us focus on threshold

functions which are typical for neural or genetic networks, and which have been studied for

example in (Anthony [24], Beck and Matache [25]), Raeymaekers [8]). We define

(2) G(σu+1, . . . , σk) =

1 if d1 ≤ 1
k−u

∑k
i=u+1 σi ≤ d2

0 if otherwise

where 0 ≤ d1 ≤ d2 ≤ 1 and k are fixed parameters. The probability that the output of (2)

is 1 at time t + 1, denoted pt+1, is obtained under a mean-field approximation (Beck and

Matache [25]). Then

pt+1 = P (G(σu+1(t), . . . , σk(t)) = 1) = P

(
d1 ≤

1

k − u

k∑
i=u+1

σi(t) ≤ d2

)

=
∑

d1(k−u)≤s≤d2(k−u)
s∈N

(
k − u

s

)
bst (1− bt)

k−u−s,
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since bt is an estimate for the probability of finding a node in state 1 at time t.

Now, by combining the two formulas found in this section and replacing γ(bt), we obtain:

(3) bt+1 = a+ (pt − a)
[
1− u

k
[cbt + (1− c)(1− bt)]

]u
and

(4) pt+1 =
∑

d1(k−u)≤s≤d2(k−u)
s∈N

(
k − u

s

)
bst (1− bt)

k−u−s.

By solving the system bt+1 = bt, pt+1 = pt we get the fixed points which indicate the long-

term dynamics of our model. We will denote by b∗, p∗ the fixed points, or the average of

the fixed points or limiting cycles as in (Peixoto [19]).

2.2. Numerical Results. In this section we explore the influence of parameters on the

dynamics of bt and pt using bifurcation diagrams, to have a graphical view of the estimates

b∗, p∗. After considering a variety of parameter combinations for simulations, we select

some typical graphs that basically clarify the dynamics of the two dimensional map given

by equations (3) and (4). All numerical investigations in this paper are performed with

MATLAB. In Figure 2 we plot bifurcation diagrams along the probability a that an arbitrary

input is an activator (horizontal axis) for k = 6, u = 2, 3, 5, c = 0.5, 1, d1 = 0, 0.3, 0.5, 0.8,

and d2 = 1 (corresponding to a simple threshold function typical for neural networks). This

way we can assess the impacts of u, c, d1 as well. Plots for other parameter combinations

when k = 6 yield similar results. The plots for pt and bt are graphed on the same figure

for an easy comparison. The diagrams for pt ∈ [0, 1] are plotted in [0, 1], while those for

bt ∈ [0, 1] are presented in the interval [1, 2] above pt. The canalization depth has little

impact once a certain value of u is reached: the cases u = 1, 2 are similar, and a more

significant modification occurs at u = 3, while the cases u = 3, 4, 5 are rather similar. This

situation has been analyzed also in (Layne et.al. [21]), and it is to be expected since every

extra (nested) canalizing input “freezes” at least half of the remaining truth table of the

Boolean function.

Based on a variety of simulations that yield more or less the same type of behavior seen

in Figure 2, we conclude that the two-dimensional map (3)-(4) exhibits mostly stability

with periodic orbits, and period doubling/halving bifurcations may occur. The canalization

depth has no impact once it reaches a certain threshold value. The period of orbits may

change with increased bias towards inhibition. Thus the density of ones for the network
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and the probability that the function G takes on value 1 generate either unique fixed points

b∗, p∗, or averages over periodic orbits.

We note here that it is possible that other parameter combinations may yield chaos for

pt or bt, whose bifurcation diagrams are quite similar as seen in Figure 2. However, we

have not observed that phenomenon in our simulations. Regardless, p∗, b∗ are computed

as the long term average of the pt, bt values, respectively. Although chaos is not observed

in simulations for the two-dimensional map pt, bt, we will observe chaotic behavior for the

network dynamics in what follows.

We now turn to the computation of the sensitivity of the network to perturbations and

critical conditions for a phase transition from order to chaos in the network.

3. Sensitivity and Criticality

3.1. Theoretical Results. Recall from (Moreira and Amaral [22], Peixoto [19], Shmule-

vich and Kauffman [2]) that the average influence of the variables of a Boolean function

F : {0, 1}k → {0, 1} belonging to an ensemble of Boolean functions E is

(5) I(F ) =
1

k

k∑
i=1

Ii(F ), Ii(F ) = P (F changes value when input i is changed)

The quantity Ii(F ) is the influence of the i-th variable on F . By averaging this quantity

over the entire ensemble E one obtains the average influence of E , denoted I(E). The critical

condition that separates order from chaos is

(6) kI(E) = 1.

Note that I(E) depends on k as well and that the value of k for which this condition

holds is usually denoted by kc, the critical connectivity. The quantity λ = kI(E) is called

the network sensitivity.

In order to determine the critical condition for the PNCF network we will consider a

generic PNCF as described in Section 2.1. Observe that the influence of the i-th variable

depends on its canalizing versus non-canalizing property, therefore let us look at the possible

cases which are explained in sufficient detail.

Case 1. i ≤ u, meaning that the input σi is canalizing.
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Figure 2. Bifurcation diagrams for pt, the probability that the function G takes on value 1

(presented with blue in the interval [0, 1] on the y-axis), and bt, the density of ones of the network

(presented with red in the interval [1, 2] on the y-axis), along the probability a that an arbitrary

input is an activator (x-axis in all plots, not labeled). The parameters are: connectivity k = 6,

upper threshold for the function G set to d2 = 1, and combinations of the other parameters as

specified in the titles. The parameters c = 0.5, 1 (the probability that the canalizing value of an

input is 1) and the canalization depth u = 2, 3, 5 change by rows (1 and 2, 3 and 4, 5 and 6,

respectively), while the lower threshold of the function G takes on values d1 = 0, 0.3, 0.5, 0.8 and

changes by columns. Observe stability for all parameter values with fixed points or periodic orbits.

As expected, an increased canalization depth does not produce significant modifications.
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Observe that in this case, the first i−1 inputs cannot be on their canalizing input values,

since those would fix the output of F regardless of the i-th input value, so no changes can

occur when this one is flipped. Now P (the first i − 1 inputs are not on their canalizing

values) = [1− γ(b∗)]i−1. Then there are two ways to get a flip in the output of F when the

i-th input is flipped. More precisely, we have two sub-cases.

Case 1(a). None of the remaining canalizing inputs is on its canalizing value. The

probability of this happening is given by [1 − γ(b∗)]u−i. In this case the function G will

determine the output of F . Thus we want the output of G to be different than the canalized

output of σi. The probability of this event is 1 − η0, where η0 = P (G(σu+1, . . . , σk) = si).

Thus, we obtain the final probability as follows:

[1− γ(b∗)]i−1 · [1− γ(b∗)]u−i · (1− η0).

To determine η0, we take into account if the canalized output is a 1 or a 0, and the

probability that G will produce the same output (in the long term). More precisely,

η0 = P (si = 1)P (G(σu+1, . . . , σk) = 1) + P (si = 0)P (G(σu+1, . . . , σk) = 0)

= ap∗ + (1− a)(1− p∗).

Case 1(b). At least one of the remaining canalizing inputs j > i is on its canalizing

value. The probability of this happening is given by 1 − [1 − γ(b∗)]u−i. If this is the case,

then a flip in the output of F occurs when the canalized output of j is different than the

canalized output of i. This happens with probability 1− η where η = P (any two canalizing

inputs have the same canalized output value). Thus, we obtain the final probability as

follows:

[1− γ(b∗)]i−1 · (1− [1− γ(b∗)]u−i) · (1− η).

Here

η = P (si = 1)P (sj = 1) + P (si = 0)P (sj = 0) = a2 + (1− a)2

accounting for the fact that the two inputs could be both 1 or 0.

In conclusion, Case 1 leads to the following final formula:

(7) Ii(F ) = [1− γ(b∗)]i−1
{
[1− γ(b∗)]u−i(1− η0) + (1− [1− γ(b∗)]u−i)(1− η)

}
.

Observe that if i = u the term obtained from Case 1(b) does not exist anymore. In this

case the formula is Iu(F ) = [1− γ(b∗)]u−1(1− η0).

Case 2. i > u, that is σi is not a canalizing input.
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In this case none of the canalizing inputs should be on its canalizing value in order to

have a possible change in the output. This happens with probability [1 − γ(b∗)]u. Then a

flip in the output of F occurs if the output of G is flipped. If τ is the probability that the

output of G is flipped when input i is flipped, the formula is:

(8) Ii(F ) = τ [1− γ(b∗)]u.

To find τ we use conditional probability on the actual value of node σi, namely

τ =

= P (output of G is flipped from 0 to 1 when σi is flipped from 0 to 1|σi = 0) · P (σi = 0)

+P (output of G is flipped from 1 to 0 when σi is flipped from 0 to 1|σi = 0) · P (σi = 0)

+P (output of G is flipped from 0 to 1 when σi is flipped from 1 to 0|σi = 1) · P (σi = 1)

+P (output of G is flipped from 1 to 0 when σi is flipped from 1 to 0|σi = 1) · P (σi = 1).

Here we need to consider several cases, depending on the quantities d1(k − u), d2(k − u)

being integer values or not, since this has influence on the output of G according to the

formula (2).

Case 2(a) 0 < [d1(k−u)] < d1(k−u) < [d2(k−u)] ≤ d2(k−u) < k−u, where [d]

represents the integer part of d. This means that d1(k − u) /∈ N and d2 < 1. Let us denote

s =
∑k

j=u+1 σj where σi is at its original value before being flipped. Then

P (output of G is flipped from 0 to 1 when σi is flipped from 0 to 1|σi = 0) · P (σi = 0)

= P (s < d1(k − u), d1(k − u) ≤ s+ 1 ≤ d2(k − u)) · (1− b∗)

= P (s = [d1(k − u)])(1− b∗) =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)](1− b∗)k−u−[d1(k−u)]

since a change of σi from 0 to 1 will add one unit to s.

Similarly,

P (output of G is flipped from 1 to 0 when σi is flipped from 0 to 1|σi = 0) · P (σi = 0)

= P (d1(k − u) ≤ s ≤ d2(k − u)), d2(k − u) < s+ 1) · (1− b∗)

= P (s = [d2(k − u)])(1− b∗) =

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−[d2(k−u)];

P (output of G is flipped from 0 to 1 when σi is flipped from 1 to 0|σi = 1) · P (σi = 1)

= P (d1(k − u) ≤ s− 1 ≤ d2(k − u)), d2(k − u) < s) · (b∗)

= P (s = [d2(k − u)] + 1)(b∗) =

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)]+1(1− b∗)k−u−1−[d2(k−u)];
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where in the binomial coefficient we use [d2(k − u)] since σi = 1 and only the other nodes

need to be considered. Finally,

P (output of G is flipped from 1 to 0 when σi is flipped from 1 to 0|σi = 1) · P (σi = 1)

= P (s− 1 < d1(k − u), d1(k − u) ≤ s ≤ d2(k − u)) · (b∗)

= P (s = [d1(k − u)] + 1)(b∗) =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)]+1(1− b∗)k−u−1−[d1(k−u)].

Then τ is the sum of these individual probabilities, so that

τ =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)](1− b∗)k−u−[d1(k−u)]

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−[d2(k−u)]

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)]+1(1− b∗)k−u−1−[d2(k−u)]

+

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)]+1(1− b∗)k−u−1−[d1(k−u)]

which leads to

(9) τ =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)](1− b∗)k−u−1−[d1(k−u)]

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−1−[d2(k−u)]

Case 2(b) 0 < [d1(k − u)] = d1(k − u) ≤ [d2(k − u)] ≤ d2(k − u) < k − u. Here

d1(k − u) ∈ N and d2 < 1. Using a similar procedure as in Case 2(a), we obtain

τ = P (s = [d1(k − u)]− 1)(1− b∗) + P (s = [d2(k − u)])(1− b∗)

+P (s = [d2(k − u)] + 1)(b∗) + P (s = [d1(k − u)])(b∗)

=

(
k − u− 1

[d1(k − u)]− 1

)
(b∗)[d1(k−u)]−1(1− b∗)k−u−[d1(k−u)]+1

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−[d2(k−u)]

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)]+1(1− b∗)k−u−1−[d2(k−u)]

+

(
k − u− 1

[d1(k − u)]− 1

)
(b∗)[d1(k−u)](1− b∗)k−u−[d1(k−u)]

which leads to

(10) τ =

(
k − u− 1

[d1(k − u)]− 1

)
(b∗)[d1(k−u)]−1(1− b∗)k−u−[d1(k−u)]

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−1−[d2(k−u)]
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Observe that the second term of the sum is the same in both cases, since the fact that

d2(k − u) is natural or not does not make a difference in the formula.

Case 2(c) 0 ≤ [d1(k − u)] < d1(k − u) < [d2(k − u)] = k − u, so that d2 = 1 and

d1(k − u) /∈ N. Then

τ = P (s = [d1(k − u)])(1− b∗) + P (s = [d1(k − u) + 1])(b∗)

(11) =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)](1− b∗)k−u−1−[d1(k−u)]

since two of the four possibilities in the sums of the previous two cases are not valid anymore.

Case 2(d) 0 < [d1(k − u)] = d1(k − u) < [d2(k − u)] = k − u, so that d2 = 1 and

d1(k − u) ∈ N. Then

τ = P (s = [d1(k − u)]− 1)(1− b∗) + P (s = [d1(k − u)])(b∗)

(12) =

(
k − u− 1

[d1(k − u)]− 1

)
(b∗)[d1(k−u)]−1(1− b∗)k−u−[d1(k−u)]

Case 2(e) 0 = [d1(k−u)] = d1(k−u) < [d2(k−u)] = k−u, so that d1 = 0, d2 = 1.

Then the function G is constant equal to 1 so τ = 0.

This covers all the possibilities for τ and we can now put together formulas (7) and (8)

to obtain the influence of the (generic) i-th variable:

(13) Ii(F ) =
(u
k

)
[1− γ(b∗)]i−1

{
[1− γ(b∗)]u−i(1− η0) + (1− [1− γ(b∗)]u−i)(1− η)

}
+

(
k − u

k

)
τ [1− γ(b∗)]u.

Then the average influence of the generic function F (which is equivalent to I(ϵ)) is given

by

λ = kI(F ) =

k∑
i=1

Ii(F ) =

k∑
i=1

(u
k

)
[1− γ(b∗)]i−1

{
[1− γ(b∗)]u−i(1− η0) + (1− [1− γ(b∗)]u−i)(1− η)

}
+

k∑
i=1

(
k − u

k

)
τ [1− γ(b∗)]u

which leads to the critical condition for sensitivity, λ = kI(F ) = 1, as follows:
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(14)
(u
k

)
(1− η)

1− [1− γ(b∗)]k

γ(b∗)
+ u(η − η0)[1− γ(b∗)]u−1 + (k − u)τ [1− γ(b∗)]u = 1

Since λ represents the response to small perturbations, if λ < 1 the network is in a stable

phase. On the other hand, if λ > 1 the network is in a chaotic phase.

Now, let us denote by α the fraction of canalizing nodes, that is α = u/k. Then equation

(14) becomes

(15) λ = α(1− η)
1− [1− γ(b∗)]k

γ(b∗)
+ kα(η − η0)[1− γ(b∗)]u−1 + k(1− α)τ [1− γ(b∗)]uτ.

We note here that when we restrict these formulas to the case of a NCF network, that

is when G(σu+1, . . . , σk) = sd with sd ∈ {0, 1} being a default fixed output, we obtain the

results of (Peixoto [19]).

3.2. Numerical Results. First let us summarize the information needed to compute the

sensitivity of the network and the critical condition in the form of an algorithm. Although

we are repeating previous formulas, it is useful to have an overview of the procedure and

the necessary parameters.

Algorithm 1:

(i) Initialize parameter values a, c, k, u, d1, d2.

(ii) Find the fixed points b∗, p∗ (or average values of fixed points if more than one) of the following

system: b = a+ (p− a)(1− γ(b))u

p =
∑

s∈N

(
k−u
s

)
bs(1− b)k−u−s, d1(k − u) ≤ s ≤ d2(k − u)

where

γ(b) =
u

k
[cb+ (1− c)(1− b)].

(iii) Compute

η0 = ap∗ + (1− a)(1− p∗) and η = a2 + (1− a)2

(iv) Compute τ according to one of the five cases:

(a) 0 < [d1(k − u)] < d1(k − u) < [d2(k − u)] ≤ d2(k − u) < k − u

τ =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)](1− b∗)k−u−1−[d1(k−u)]

+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−1−[d2(k−u)]

(b) 0 < [d1(k − u)] = d1(k − u) ≤ [d2(k − u)] ≤ d2(k − u) < k − u

τ =

(
k − u− 1

[d1(k − u)]− 1

)
(b∗)[d1(k−u)]−1(1− b∗)k−u−[d1(k−u)]
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+

(
k − u− 1

[d2(k − u)]

)
(b∗)[d2(k−u)](1− b∗)k−u−1−[d2(k−u)]

(c) 0 ≤ [d1(k − u)] < d1(k − u) < [d2(k − u)] = k − u

τ =

(
k − u− 1

[d1(k − u)]

)
(b∗)[d1(k−u)](1− b∗)k−u−1−[d1(k−u)]

(d) 0 < [d1(k − u)] = d1(k − u) < [d2(k − u)] = k − u

τ =

(
k − u− 1

[d1(k − u)]− 1

)
(b∗)[d1(k−u)]−1(1− b∗)k−u−[d1(k−u)]

(e) 0 = [d1(k − u)] = d1(k − u) < [d2(k − u)] = k − u

τ = 0

(v) Find the sensitivity as in (14)

λ = kI(F ) =(u
k

)
(1− η)

1− [1− γ(b∗)]k

γ(b∗)
+ u(η − η0)[1− γ(b∗)]u−1 + (k − u)τ [1− γ(b∗)]u.

(vi) Repeat this procedure for different parameter values.

Using this algorithm we can generate phase transition diagrams to identify the stable

phase, the chaotic phase, and the critical transition in terms of parameter values. However,

before we do that, let us analyze the accuracy of our model in comparison to an actual

network obeying the PNCF scenario. To do that, we compare the formula for sensitivity

(15) to the outcome of applying perturbations to an actual PNCF network.

More precisely, we can construct Derrida plots (Derrida and Pomeau [26], Kauffman [1],

Shmulevich and Kauffman [2]) which map the average Hamming distance at time t + 1,

H(t + 1), against the average Hamming distance at time t, where H(t) = 1
k

∑k
i=1 |σi(t) −

σ′
i(t+1)|, and (σ1, σ2, . . . , σk) and (σ′

1, σ
′
2, . . . , σ

′
k) are two states of the network. The result

of plotting these values as t increases to t + 1 and averaging over many initial states and

networks is the so-called the Derrida curve. If the curve is above the main diagonal, for

which H(t) = H(t+ 1), it reflects instability in the sense that a small disturbance tends to

increase during the next time steps, so that the network is sensitive to initial conditions.

Derrida curves below the main diagonal indicate the tendency to overcome the disturbance

and correspond to stability. Derrida curves along the diagonal indicate the most complex

behavior at the edge-of-chaos, where the system is flexible in face of perturbations.

We can compare the Derrida plots for some given parameters with a line having slope

λ obtained from (15) with the same parameters. For small initial perturbations the plots

should be similar. We show a few examples in Figure 3. Note that the Derrida plots

(with dots or markers) follow the line plots of our model fairly closely especially for small
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Figure 3. Derrida plots and corresponding model results for various parameter combinations.

Our model should match the Derrida plot for small perturbations (H(t) close to zero), while for

bigger perturbations (H(t) away from zero) the curves could separate. However, given that λ

corresponds to changes when a single input is flipped, we only need to take into account small

values of H(t). The parameter combinations are specified in the legend, and their values range

as follows: connectivity k = 4, 8, 10, 20, the probability that an arbitrary input is an activator

a = 1/10, 1/3, 1/2, 9/10, the probability that the canalizing value of an input is 1 takes on values

c = 0.1, 0.2, 0.5, 1, the lower threshold of the function G is d1 = 0, 0.5 and the upper threshold is

d2 = 1, while the canalization depth takes on values u = 1, 6, 11. These parameters are chosen

in order to present curves that lie below, as well as above the main diagonal. Other parameter

combinations lead to similar graphs.

values of H(t), representing small perturbations. The graphs are quite similar for various

parameter combinations and therefore are not included here. The matches improve for

larger networks and for an increased number of initial states and randomly chosen PNCFs

for the computation of the average Hamming distance. We conclude that we can use our

model to predict the behavior of the system in a variety of parameter settings.

Now, we use our model to generate phase transition diagrams in order to understand

the impact of the parameters on the sensitivity of the network to small perturbations.

We choose to generate three dimensional plots of λ against parameters a and k which are

varied freely. These parameters will show us the impact the number of inputs, k, has on the
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stability of the network and also how the probability a canalizing input is an activator, a,

impacts stability. We also plot the plane at λ = 1 which separates order from chaos. The

intersection of this plane with the mesh generated with our model is the critical condition,

or the edge of chaos. In Figures 4-5 we show several typical graphs that contain some of the

parameter combinations shown in the Derrida plots. We can see the parameter values that

lead to order versus chaos, as well as the intersection of the two meshes which is the critical

condition. In all cases we note again that an increase in the number of canalizing inputs

does not generate significant qualitative modifications in the overall shapes of the graphs.

We include four different values for α = u/k in each figure. Note that for d1 = 0, d2 = 1

the graphs indicate stability for a wide range of values, mostly for large values of a. This

is expected since lower values of a indicate a higher probability of inhibition, which means

more 0 outputs. However, when d1 = 0, d2 = 1, the probability of activation increases for

G. Therefore the increased inhibition corresponding to small a ends up conflicting with the

large activation likelihood of G. Additionally, we note in simulations that as c increases,

the chaos range of a is shifted towards left so that the chaos region becomes smaller.

A similar impact of c is noted for the case d1 = 0.5, d2 = 1, however the graphs indicate

larger parameter ranges that lead to chaos. At the same time, the graphs are more visually

complex, and the case α = 0.25 is clearly different than the other values of α > 0.25 in

each case considered in simulations. Thus we can see again that once a certain threshold

of α is reached, the depth of canalization does not induce major changes. This threshold is

fairly small in comparison to the connectivity level of the nodes, and we note that it slightly

increases as the total number of inputs, k, increases.

Other cases considered in simulations have a similar behavior, although the exact shape of

the meshes may differ. A comprehensive account of the impact of all parameters is subject

for further research, together with analytical and numerical investigations of the threshold

of α over which the dynamics are fairly similar.

4. Conclusions and Directions for Future Work

In this paper we consider Boolean networks governed by PNCFs. Given a certain canal-

izing depth u we complete the PNCF using a simple threshold function. We construct a

model for finding the sensitivity of the network to perturbations and identify the critical

condition between order and chaos. We provide Derrida plots indicating that the model

matches the network behavior for a wide range of parameter values. The match is improved

with larger networks and increased number of PNCFs and initial conditions. The phase
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Figure 4. Phase diagram and critical plane for the sensitivity λ versus the probability a that

an arbitrary input is an activator and the connectivity k. The other parameters are fixed as

follows: the probability that the canalizing value of an input is 1 is set to c = 0.5, the thresholds

of the function G are d1 = 0, d2 = 1, and the canalization depth u expressed as a fraction of

the connectivity is set to α = u/k = 0.25, 0.5, 0.6, 0.7 corresponding to each subplot in the figure.

Small values of a induce chaos, while larger values lead to a transition to order. An increase in α

does not generate significant qualitative changes in the graphs once a threshold is reached. Chaos

can occur for mostly low values of a. An increase in α induces more stability.

transition diagrams show both stability and chaotic behavior for varying parameter values.

Our model confirms that the canalizing depth seems to have little impact after a certain

value of u is reached; this threshold seems to be fairly low in comparison to the connectivity,

k. The threshold value of u slightly increases as the total number of inputs, k, increases.

Areas for future research include providing an in-depth numerical analysis of the param-

eters that generate a phase transition from order to chaos and generating analytical results

regarding the importance of the canalizing depth, as well as its threshold value. Further-

more, it would be interesting to combine these types of Boolean functions with other types

encountered in real applications and generate a heterogeneous model of mixed functions
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Figure 5. Phase diagram and critical plane for the sensitivity λ versus the probability a that

an arbitrary input is an activator and the connectivity k. The other parameters are fixed as

follows: the probability that the canalizing value of an input is 1 is set to c = 0.5, the thresholds

of the function G are d1 = 0.5, d2 = 1, and the canalization depth u expressed as a fraction of

the connectivity is set to α = u/k = 0.25, 0.5, 0.6, 0.7 corresponding to each subplot in the figure.

This figure is the analog of Figure 4 for the indicated parameters. An increase in α induces more

stability, and a wider range of values of λ close to the phase transition.

that can be used in applications such as neurological and biological networks. In particular,

as mentioned in the introduction, in (Kochi and Matache [6]) the authors identify several

different classes of Boolean functions in a signal transduction network of a fibroblast cell.

Some of those classes encompass PNCFs and are shown to have a significant impact on

the dynamics of the network. At the same time we note that in (Szejka et.al. [27]), the

authors offer a somewhat similar study as in this paper for random threshold networks with

a particular type of updating rule that does not change the state of a node when the sum of

its inputs gives exactly the threshold value. In that paper it is found that threshold values
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close to zero can lead to chaos or criticality, while threshold values away from zero lead

mostly to order. Criticality is reached for only one small connectivity value. In comparison,

PNCFs seem to exhibit a wider range of parameter values that lead to criticality or chaos.

The authors of (Szejka et.al. [27]) also explore the potential differences in phase diagrams

obtained with annealed networks versus quenched networks; noticeable differences are ob-

tained for integer thresholds. We plan on aggregating PNCFs, NCFs, threshold functions,

as well as simple biased functions in a heterogeneous network whose phase diagram would

depend on a variety of parameters. Such a model could serve as a way of identifying the

effect of changes/mutations within one class of Boolean functions on the overall network dy-

namics. In particular, using the information in (Kochi and Matache [6]) and (Helikar et.al.

[5]) we could identify various types of proteins that could be targeted in drug therapies for

a most effective impact on the network behavior.
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