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Abstract

University class structure is changing. To accommodate working students, pro-
grammes are increasing their offerings of long night classes – some lasting as long as
six hours. While these long classes may be more convenient for students, they have
unintended consequences as a result of cognitive load (Van Merrienboer and Sweller,
2005). Using a panel of 124 students (372 observations) and a differencing approach
that controls for student characteristics, we show that student exam performance de-
creases by approximately one-half letter grade on content taught in the second half of
a long class (significant at the 5% level).



1 Introduction and Review of Literature

Starting in the 1990s, a number of U.S. universities began offering part-time programmes. These

part-time programmes allowed [potential] students who worked during the day to take classes at

night, and were quick to gain popularity. Using the most popular master’s degree programme

as an example (MBA), half of all programmes are part-time and 50% of those have experienced

applicant growth since 2011 – double that of the full-time programmes (Rafferty, 2013).

This growth of U.S. part-time programmes has resulted in an increase in multi-hour class of-

ferings – usually scheduled at night. For the convenience of both students and administrators,

these classes often meet a single time per week; requiring each class session to be at least twice as

long as their daytime counterparts. If the term has been shortened as well, as is common in MBA

programmes, the length of each class session is increased further. This practice seems to be most

pronounced on urban campuses.

Amongst the 90 members of the Coalition of Urban and Metropolitan Universities (CUMU)

84 offered publicly available schedules1. Of the 76 members with MBA programmes, 91% offer

classes where each session lasts at least two hours and 30% offer class sessions that last three hours

or more. 52% offer undergraduate economics classes with sessions in excess of two hours; 15%

offer undergraduate classes with sessions that last three hours or more.

While one might assume this practice is limited to regional universities, the evidence suggests

otherwise. For instance, the economics departments of New York University, Georgetown, and

American University offer applied masters degree programmes that can be completed by part-time

working students at night; these prestigious programmes are not an anomaly, but a reflection of

a trend on urban campuses. Of the 54 institutions in the Coalition that offered an MA or MS in

economics, 79% offered classes with sessions of two hours or more and 19% of institutions offered

1Six members of CUMU require users to log in with an institution account to see course schedules. In all cases, we
collected class length from the Fall 2016 schedule.
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class sessions lasting three hours or more.

This growth in long night classes unfortunately runs counter to the cognitive load literature

– a field concerned with implications of working memory. Numerous studies (Karpicke, 2012;

Karpicke and Grimaldi, 2012; Karpicke and Smith, 2012; Roediger and Butler, 2011) have found

that retention is a function of recalling information (retrieval) repeatedly. Both the spacing and

repeated nature of the process can impact retention with studies showing the importance of retrieval

events occurring over spaced intervals (Cepeda et al., 2006, 2008).

Mental resources, such as working memory and processing, are limiting factors when a student

is learning a new topic. Building on the work of Baddeley and Hitch (1974), studies have shown

that a trade-off exists between mental processing and storage whereby performance decreases when

the subject is attending to more than one task – described in the literature as concurrent memory

load (Anderson et al., 1996; Case et al., 1982; Conway and Engle, 1994). This condition is further

exacerbated if the subject is ‘overwhelmed’ by the difficulty of understanding the new information.

Anderson et al. (1996) has shown that as mental processing increases in difficulty, information can

be lost from short-term memory.

With the development of cognitive load theory (Sweller, 1988), instructors have been given

tools to better allocate their students’ cognitive resources during learning tasks. From an instruc-

tor’s point of view, one can allocate a student’s mental resources to cognitive tasks that are helpful

(germane load) while attempting to reduce unnecessary load (extraneous load). Much of the cog-

nitive load literature focuses on the reduction of extraneous load (Cierniak et al., 2009; Sweller

et al., 1998; Ward and Sweller, 1990). For example, there are a number of studies that look at

different mechanisms instructors can use to reduce in-class cognitive load (Sweller, 1994; Sweller

et al., 1998), such as the use of pre-lecture resources (Seery and Donnelly, 2012). Rather than

addressing components of pedagogy under the control of the instructor, our study focuses on the

impact of longer classes on the available mental resources of the student.

2



With longer classes (such as those that meet once per week), resource availability can be im-

pacted by path dependence and mental fatigue. Many times in a course an instructor will introduce

a concept and then build on that concept in a later section. For the student, using this new concept

requires a great deal of working memory, but with sufficient practice many tasks can become au-

tomated (Kotovsky et al., 1985; Schneider and Shiffrin, 1977; Shiffrin and Schneider, 1977). For

instance, suppose an instructor is teaching a concept that requires the student to graph points of

data. The instructor might first dedicate some class time to the graphing technique itself then move

on to the economics problem in the next hour of class. In short classes (such as those that meet

multiple times per week), the student would have the ability – and often the requirement – to study

(practice) the graphing technique multiple times before the economics concept is taught, reducing

the amount of necessary working memory (Kalyuga et al., 2001). This underscores a fundamental

issue with longer class sessions. In long classes, the student must study both the graphing tech-

nique and the path dependent economic concept at the same time as both concepts were taught in

the same class period. This requires the student to work harder, as he/she engages their working

memory to learn each new topic that builds upon the previous.

While the issue of concentrated learning has been studied in the context of K-12 (primary and

secondary education) and medical education, no previous study shows the impact of long classes

in a university classroom setting. The work of Anderson and Walker (2015), Hewitt and Denny

(2011), and Yarbrough and Gilman (2006) show little to no evidence of a detrimental learning

impact due to K-12 districts adopting four day school weeks. However, K-12 is very different

from college; studying (practice) often occurs in the classroom in a K-12 environment while it

generally occurs at home at the university level. In contrast, Raman et al. (2010) shows that long-

term learning of medical residents is improved when material is presented over multiple sessions

and Pope and Fillmore (2015) finds that students who take multiple Advanced Placement exams

score better when they have more time between exams to prepare.
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With the prevalence of curriculum and programme redesigns taking place in urban universi-

ties, this salient topic is of possible interest to administrators, department chairs and instructors

– especially those teaching long classes or serving on programme committees. Our findings also

might encourage universities to investigate solutions where long classes are shortened by some

administrative mechanism. This manuscript proceeds as follows. In section 2, we discuss our

quasi-experimental method. In section 3 we discuss the results from two different courses (sub-

sections 3.1 and 3.2). In subsection 3.3, we pool the entirety of the dataset (124 individuals with a

total of 372 observations) and show our results are significant at the 5% level. This is followed by

robustness checks of our result (subsection 3.4). Finally, in section 4, we conclude.

2 Method

There is an inherent selection problem in comparing two sections of the same course. Working

students, who are often older, are more likely to take the longer night classes. Further, course load,

work and family obligations are not likely to be independent of students’ class selection. In this

manuscript, we use a differencing method where we use each students’ performance on half of the

course content as the control. This approach allows us to control for the aforementioned selection

issues without the need for a long list of demographic characteristics.

During this experiment, one of the authors taught at ‘College A.’ College A is a small private

liberal arts institution offering both ‘short’ daytime and ‘long’ evening classes2. Daytime classes

are offered either twice or three times a week (‘short’ classes). Evening courses have class sessions

that run two or three times as long as their daytime equivalents, but only meet once per week (‘long’

classes). As College A operates on ten week terms, each long class is three and a half hours in

length.

2Our study was conducted at College A for experimental design reasons. For our experiment to be valid we needed
two sections of the same course taught by the same instructor in two different formats: one during the day and one
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The economics faculty at College A routinely teach three or four classes. However, some classes

may be multiple sections of the same course offered at different times of day. In the Fall of 2015

and the Spring of 2016, the author taught two short/long class pairs: Money and Banking and

Intermediate Macroeconomics. These two courses are quite different from one another. The for-

mer is an elective for economics majors, requires many relatively straightforward mathematical

calculations, and (anecdotally) is considered relatively easy. The latter course is required, con-

tains more complex mathematical calculations, incorporates many graphical elements, and (again,

anecdotally) is considered to be more difficult by the student body.

Both sections of each course received the same exams and assignments. Furthermore, they were

taught in a nearly identical manner. As a way of reducing workload, the instructor kept the classes

in sync such that the i’th hour of class was the same regardless of format. Put another way, content

taught on the first day of the week in the short daytime class would be taught in the first half of the

long nighttime’s class period. Equivalently, content taught on the last day of the week of the short

daytime class would be taught in the second half of the long nighttime class lecture. Throughout

this manuscript, we will use the term ‘first half of the week’ to refer to the first 1.75 hours of class

time in a week – half of the 3.5 weekly total – regardless of whether the class is delivered over

multiple sessions per week (daytime) or a long single session (nighttime). We will similarly define

the term ‘second half of the week’ as the last 1.75 hours of class time in a week.

Although approximately half of each class was of the traditional lecture format, the instructor

incorporated numerous other pedagogical techniques. For example, the instructor frequently used

videos, podcasts, and websites (especially for primary source data of relevant information such as

the unemployment rate), and often followed these up with a class discussion. Additionally, coop-

erative learning exercises were utilised during many class periods to provide practice for complex

at night. For this reason, we could not conduct our experiment using a multi-hour MBA or similar course. While
our results are relevant to part-time master’s degree programmes, most universities do not offer both a short and
long version of such courses.
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topics. As such, estimates of the impact of the longer class period should be attenuated by these

active learning strategies.

Throughout the semester, the instructor tracked what content was taught in which half of the

week. This content was then mapped to exam questions – which were identical in both classes.

Using this information, we can control for student abilities and selection issues. Our dependent

variable is the difference between performance on content taught in the second half of the week

(back) and performance on content taught in the first half of the week (front). We use the following

empirical model to aid in our investigation.

SieB−SieF = βL+ γe + εie (1)

where SieB is student i’s percent correct score [0-1] on exam e on content taught in the second half

of any given week. SieF is student i’s percent correct score on exam e on content taught in the first

half of any given week. γe is exam e’s fixed effects and εie is the error term. As L takes a value of

one for any student in the long (night) class, β is our coefficient of interest.

Our identification strategy is akin to a difference-in-difference method where we control for

individual ability through one difference and for dissimilar content difficulty through another3.

Our dependent variable is the difference in performance between content taught in the second half

of the week versus the first half of the week for each student/exam observation. As each student’s

performance on the second half of the material is differenced from their own performance on

the first half of the week material, all time-invariant characteristics, such as student quality, are

removed. In our study, time-invariant factors are characteristics common to both the first and

second half of the week of a given exam. Time-variant factors, such as content difficulty, differ

from the first to the second half of the week of a given exam. Another advantage of this approach

3A general explanation of methodology can be found in Angrist and Pischke (2008), pp. 227–243. For a practical
example see Card (1992).
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is it allows the student control to vary by exam. For instance, if a student did poorly on the first

exam but then implemented better study habits for exams two and three, this method would control

for this change, while standard student fixed effects would not.

Each difference in performance (second half of the week versus first half of the week) can be

explained by a few factors: differential difficulty of the material, time-variant idiosyncratic factors

and a difference in the length of the class. To control for the difference in material difficulty, we

have a difference in difficulty fixed effect (γe) for each of the exams. These difficulty fixed effects

are identified by the short (daytime) class students as they have been exposed to the difference in

difficulty of the two sections of the exam but have not been exposed to the structural difference (i.e.

the class length). The remaining variation can be explained by the length of the class and time-

variant idiosyncratic factors. Assuming the time-variant idiosyncratic factors and class structure

are uncorrelated, then our estimation of β is accurate.

While an unobserved time-variant idiosyncratic factor shared by the treatment group is always a

concern, it seems unlikely in this study. Our treatment (the structure of the class) was administered

six times in the form of an exam (three exams in Money and Banking and three exams in Inter-

mediate Macroeconomics). With each of those exams, the treatment was the same: class length.

But, the time-variant component (exam content) differed. Thus, the primary potential source of a

common time-variant idiosyncratic factor was different with each treatment. Therefore, it is un-

likely that this common time-variant idiosyncratic factor would exist with each administration of

the treatment; if a common time-variant idiosyncratic factor existed it would likely result in differ-

ences in the estimated impact of the class structure across treatment administrations. However, we

show in section 3.4 that our point estimates are consistent across students and exams.

In the following section we discuss the results of this quasi-experiment for both Money and

Banking (section 3.1) and Intermediate Macroeconomics (section 3.2). We then pool the data for

our main result (section 3.3) – which is significant at the 5% level. Section 3.4 demonstrates that
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our result is driven by the entirety of the dataset and not a common subgroup.

3 Results

3.1 Money and Banking

The two paired sections of Money and Banking were given three exams ranging from 23 to 26

multiple choice questions. Each of the 29 short class daytime students and 35 long class nighttime

students took every exam. Scores are coded from zero to one representing the percent of questions

the student answered correct. Table 1 provides the exam summary statistics for both sections of

the course.

[Table 1 about here.]

In both sections of Money and Banking, exams accounted for 75% of the final grade (25%

each). Traditionally, academic grading in the United States maps the overall weighted percentage

of exams and other assignments to a letter grade by 10 percentage point increments. That is,

final weighted percentages between 90-100% would receive an A range grade (A+, A, A-), those

between 80-89.9% would receive a B range grade (B+, B, B-) and so on. Overall, the median final

grade in Money and Banking was a B-, the maximum grade was an A and the minimum grade was

an F.

Roughly 43% of exam questions were taught in the first half of the week with the remainder be-

ing taught in the second half of the week. However, while there were slightly more exam questions

pertaining to content taught in the second half of the week, both sections received the same exam

and the content was taught during the same portion of the week.

[Figure 1 about here.]
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As a first test, we examine the mean difference of exam performance based on which part of the

week the material was taught. As shown by Figure 1, the short (daytime) class performed about

0.052 points better on material taught in the second half of the week than the first (S̄BS − S̄FS).

However, the long (nighttime) class performed only 0.020 points better on material taught in the

second half of the week (S̄BL− S̄FL). This suggests that the impact of the treatment is approximately

−0.031 – what we refer to in our table as the mean difference of differences ((S̄BL− S̄FL)− (S̄BS−

S̄FS)). Please note, in calculating the difference of differences presented in Figures 1, 2 and 3, the

authors do not round the mean values to three digits first. Therefore, our values may differ slightly

from the reader’s calculation based on the values presented in the table.

Additionally, we provide a t-test (Welch, 1947) of the mean short class difference (S̄BS − S̄FS)

versus the long class difference (S̄BL − S̄FL). Due to the independence assumption of a t-test, we

grouped and averaged the differences for each student before performing the t-test. This has no

impact on the mean value, but is a more conservative method of testing significance. While we do

not consider this t-test our primary method, it hints at the results we will obtain when we move to

a formal regression model.

[Table 2 about here.]

Using ordinary least squares (OLS) and our empirical specification in section 2, we are able to

provide the regression results shown in Table 2. With a difference in performance on the exam as

the dependent variable (SieB−SieF ), we show that the long (night) class’s difference in performance

is about three percentage points worse than the short class’s difference. Using White’s Lagrange

Multiplier test (White, 1980) and a Shapiro-Wilk test (Shapiro and Wilk, 1965), we cannot reject

the null hypotheses of homoscedastic and normally distributed errors. Nonetheless, we report

cluster-robust standard errors (Williams, 2000) as there is a potential lack of independence across

the three observations per student. Further, a bootstrap procedure4results in a similar p-value to our
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cluster-robust approach (0.209). While these results are not statistically significant by themselves,

we ask the reader to take note of the point estimate. In the upcoming subsections we will find

nearly identical results in the Intermediate Macroeconomics and the pooled model – both of which

are statistically significant.

3.2 Intermediate Macroeconomics

Similar to Money and Banking, the two paired Intermediate Macroeconomics sections were given

three exams. All three exams were taken by all 29 short (day) class and 31 long (night) class

students. The first two exams consisted of 25 questions each; 12 of which related to content taught

in the first half of a given week (48% of each exam). The final exam contained 25 questions, 20 of

which were taught in the same hour of class for both sections – the remaining five questions were

excluded from our analysis due to the time mismatch. Of those 20 questions, 10 related to content

taught in the first half of the week. Table 3 shows the exam summary statistics for both sections of

Intermediate Macroeconomics.

[Table 3 about here.]

Like Money and Banking, exams accounted for 75% of the Intermediate Macroeconomics final

grade (25% each). Similarly, final grades were assigned using the same academic norms described

for Money and Banking. Overall, the median final grade in Intermediate Macroeconomics was a

C+, with a maximum grade of an A and a minimum grade of an F.

4Throughout this manuscript, we use a bootstrapping procedure such that we randomly select individual students,
not rows, in the panel with replacement. Then using the randomly selected individuals (which may appear more
than once and some may not appear at all), we select the corresponding rows – some of which may be duplicated if
a particular student was randomly selected multiple times. This block bootstrap (Künsch, 1989) is an appropriate
method for panel data where errors could be correlated to the individuals. However, we also performed a pair-
wise bootstrap where we resampled the rows. These procedures produced nearly identical p-values for our dataset
and in all cases the pair-wise p-value was smaller than the reported value produced by resampling the individual
students. We run all bootstrap procedures at 10,000 repetitions.
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In an identical fashion to Money and Banking, both sections received exactly the same exam.

However, unlike Money and Banking where the short class appeared to be a slightly stronger group,

the Macroeconomic long (night) class seems to dominate the short (day) section. Nonetheless, our

method should control for these differences in characteristics.

[Figure 2 about here.]

Figure 2 shows the performance of the two Intermediate Macroeconomics classes based on

when the content was taught. Like Money and Banking we will compare the means of the sections

by when the content was taught as a first pass. The short (daytime) section performed about

0.001 points better on material taught in the second half of the week than the first (S̄BS − S̄FS).

Nonetheless, the long (nighttime) class performed 0.048 points worse on the second half of the

week material than they did on the first half (S̄BL − S̄FL). This would imply that the impact of the

long class (mean difference of differences) is about −0.049 ((S̄BL− S̄FL)− (S̄BS− S̄FS)).

As in the previous section, we provide a simple t-test (Welch, 1947) of the short class mean

difference (S̄BS − S̄FS) from the long class mean difference (S̄BL − S̄FL). Due to the independence

assumption of a t-test, we group and then average each student’s three observations before per-

forming this operation. While we do not consider this t-test to be our primary way of determining

significance, it suggests that we will find our results significant at the 10% level when we move to

a formal regression model.

[Table 4 about here.]

Using OLS and our specification in section 2, we provide the regression results in Table 4. With

a difference in performance on the two halves of the exam as the dependent variable, we show

that the long (night) class’s difference in performance on second half of the week material is about

four and a half percentage points worse than the short (day) class; this result is significant at the
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10% level. Using White’s Lagrange Multiplier test (White, 1980) we can reject the null hypothesis

of homoscedastic errors. Therefore, due to the potential lack of independence within the panel,

we have reported the cluster-robust (and heteroscedasticity-consistent) standard errors (Williams,

2000). Using a Shapiro-Wilk test (Shapiro and Wilk, 1965), we cannot reject the null hypotheses

of normally distributed errors. However, using the same bootstrap procedure as before, the long

dummy p-value is 0.063.

3.3 Pooled Model

Finally, we pool the datasets from the Money and Banking and Intermediate Macroeconomics

classes, which yields a total of 124 students and 372 observations. We examine the pooled data in

a similar manner to Figures 1 and 2, then move to a full regression model.

[Figure 3 about here.]

In Figure 3 we present the adjusted differences of the short and long classes. Due to the dis-

similar difference in difficulty of Money and Banking and Intermediate Macroeconomics, we have

re-centred the distributions at zero (for the purposes of Figure 3 only; we have not modified the

data for our regressions). That is, we have added 0.051 to each Money and Banking student’s

performance difference by part of the week. Similarly, we have added 0.001 to the performance

differences in the Intermediate Macroeconomics courses. This moves the distributions such that

both the short (daytime) Money and Banking and Intermediate Macroeconomics are centred on

zero but maintain their original distance to their long (nighttime) counterparts. This allows us

to treat both short classes as a single set of observations and similarly treat both long classes as

another set of observations.

As in sections 3.1 and 3.2, we perform a t-test (Welch, 1947) as a first step in our analysis.

Using the data in Figure 3, we group our observations by student and calculate the mean. We then
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compare the short class distribution mean to the long class distribution mean – the difference is

significant at the 5% level.

In Table 5, we present the results of our OLS regression. Like the results in sections 3.1 and 3.2,

the dependent variable is the difference in performance of student i on exam e. However, we create

separate exam fixed effects for each of the two courses. In this specification, γeMB is the Money

and Banking exam e fixed effect and γeIM is the Intermediate Macroeconomics exam e fixed effect.

[Table 5 about here.]

Similar to the individual class results, the point estimate for β is approximately -4%. This result

is significant at the 5% level. Using White’s Lagrange Multiplier test (White, 1980), we reject the

null hypothesis of homoscedastic errors. Therefore, we report cluster-robust (and heteroscedasticity-

consistent) standard errors (Williams, 2000). Like the individual course results, using a Shapiro-

Wilk test (Shapiro and Wilk, 1965), we cannot reject the null hypothesis of normally distributed

errors. However, the p-value of β using a bootstrap reveals a p-value of 0.033.

3.4 Robustness of Results

In this subsection, we analyse portions of our observations to determine if our results are anoma-

lous. Two possibilities exist that we wish to test. First, our main pooled result (section 3.3) could

be driven by a single exam during the semester. For instance, perhaps students are more suscepti-

ble to path dependence later in the semester. Second, we will determine if our results depend on

overall exam performance.

To determine if our point estimates vary throughout the semester, we have augmented our orig-

inal empirical model with two additional variables: LFE and LSE . LFE has a value of one if the

student is both in the long (night) class and this is the first exam of the semester. Similarly, LSE has

a value of one if the student is both in the long class and this is the second exam of the semester.
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As L continues to take a value of one for all exams in the semester, the third exam is our baseline.

Therefore, the point estimates generated from LFE and LSE will show the difference in impact

of the long class for the first and second exam in comparison to the third. We can restate our

regression equation as follows:

SieB−SieF = βL+βFELFE +βSELSE + γe + εie (2)

Using equation 3, we obtain the results in Table 6. Our variable of interest (β ) is very close to

our point estimate in section 3.3. In comparison to the third exam (the baseline), long class students

performed slightly better on second half of the week material on the first exam and slightly worse

on the second exam. Nonetheless, both point estimates are extremely small indicating that exam

order is not substantively impacting our results.

[Table 6 about here.]

A second possibility is that our point estimates are related to performance on the exam. It is well

known that better students have better metacognition (Coutinho, 2008). Therefore, it is possible

that better long (night) students are aware that their understanding of material in the back half of

the week is slightly worse and adjust their studying accordingly.

For each exam of the four sections, we split the observations into two groups: those with an

overall exam score above the mean for a given exam and those with an overall exam score below

the mean. We then coded all below the mean observations with a value of one and stored it as

the variable B (zero otherwise). This method of splitting the observations ensured that each of the

exams were roughly equally weighted in the two subgroups. We then performed a OLS regression

using the following modified empirical model:

SieB−SieF = βL+βLBL×B+βBB+ γe + εie (3)
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The results in Table 7 suggest that the difference in the dependent variable in the long (night)

class is driven by both the low performing exams and high performing exams. If our results were

driven by the low performing students, we would expect to see βLB capturing most of the effect

and β moving towards zero. Conversely, if our results were driven by the high performing students

β would be more negative and βLB would be an offsetting positive number. However, we find βLB

to be near zero. Splitting the data using the median or splitting the students (as opposed to exams)

with their average exam score produces similar conclusions.

[Table 7 about here.]

4 Conclusion

In this paper we show that there is approximately a three to four percentage point decrease in per-

formance in the second half of a long class. Our results are statistically significant for both the

pooled sample and the Intermediate Macroeconomics class. Further, the point estimates are con-

sistent across both courses we tested and the individual exams. Therefore, our results demonstrate

a consistent effect not driven by a single exam or class anomaly. Our results are strengthened by

the differences between the two courses taught, since each caters to a different subset of the student

body.

The observed performance difference is not the result of different choices made by the long

(nighttime) versus the short (daytime) student, but rather is a difference in mental capacity due to

the current cognitive load of the student. Therefore, we expect our results to be generalisable to

other courses and subjects, but more study is needed. While the two courses in this study are very

different, they are both economics courses – a field with a high degree of concept path dependance.

Courses that are more focused on memorisation may be more immune to this phenomenon. Even

if all courses are negatively impacted by extended class sessions, the point estimates are unlikely to
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be the same in a different field. As there are administrative advantages to longer night classes, the

precise ‘cost’ of longer classes would be of interest to administrators, department chairs, instructors

and programme committees.

Despite these limitations, our results suggest the length of class sessions should be considered

when redesigning programmes. In some cases, longer classes are unavoidable. Therefore, in-

structors teaching longer classes should mitigate the structural difference as much as possible and

prepare their students to study more than their daytime counterparts.
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Figure 1: Money and Banking – Exam Score Differences
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(a) Kernel density estimation (KDE) plot of
student exam score differences, the mean
value of each class is plotted as a vertical
line

Mean St. Dev. 25% 75% Obs.

First Half of Short (SFS ) 0.759 0.166 0.636 0.889 87
Second Half of Short (SBS ) 0.811 0.151 0.692 0.923 87
First Half of Long (SFL ) 0.706 0.203 0.571 0.857 105
Second Half of Long (SBL ) 0.726 0.175 0.615 0.846 105
Mean Difference of Differences ((S̄BL − S̄FL )− (S̄BS − S̄FS )) −0.031
T-Test of Long vs. Short Differences (P-Value) 0.226
Before performing a KDE or t-test, we first group, then average the differences by
the individual student. This has no impact on the mean difference of differences.
However, it is a more conservative approach to determining significance given the
potential lack of independence across the three observations per student.

(b) Exam scores sorted by when content was taught
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Figure 2: Intermediate Macroeconomics – Exam Score Differences
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(a) Kernel density estimation (KDE) plot
of student exam score differences, the
mean value of each class is plotted as a ver-
tical line

Mean St. Dev. 25% 75% Obs.

First Half of Short (SFS ) 0.650 0.197 0.500 0.775 87
Second Half of Short (SBS ) 0.651 0.163 0.600 0.769 87
First Half of Long (SFL ) 0.729 0.166 0.600 0.833 93
Second Half of Long (SBL ) 0.681 0.142 0.600 0.769 93
Mean Difference of Difference ((S̄BL − S̄FL )− (S̄BS − S̄FS )) −0.049
T-Test of Long vs. Short Differences (P-Value) 0.081
Before performing a KDE or t-test, we group then average the differences by the
individual student. This has no impact on the mean difference of differences. How-
ever, it is a more conservative approach to determining significance given the poten-
tial lack of independence across the three observations per student.

(b) Exam scores by when content was taught
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Figure 3: Pooled Exam Score Differences
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(a) Kernel density estimation (KDE) plot
of adjusted student exam score differences.

Mean St. Dev. 25% 75% Obs.

Adjusted Short Differences 0.000 0.173 −0.116 0.100 174
Adjusted Long Differences −0.039 0.166 −0.142 0.080 198
Mean Difference of Differences −0.039
T-Test of Long vs. Short Differences (P-Value) 0.037
For the purposes of this table, we have added approximately 0.051 to all Money
and Banking difference observations and approximately 0.001 to all Intermediate
Macroeconomics difference observations. This re-centres the distributions such that
the short class’s mean is at zero while maintaining the original differences. This
allows us to pool all class data and compare the mean difference between the short
versus long class when the two courses experienced a dissimilarity in the difference
in content difficulty.

Before performing a KDE or t-test, we group and then average the differences by
the individual student. This has no impact on the mean difference of differences.
However, it is a more conservative approach to determining significance given the
potential lack of independence across the three observations per student.

(b) Exam scores by when content was taught
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Table 1: Money and Banking – Summary Statistics

Mean St. Dev. 25% 75% Obs.

Exam 1 (Short) 0.876 0.084 0.800 0.950 29
Exam 2 (Short) 0.779 0.147 0.700 0.900 29
Exam 3 (Short) 0.712 0.119 0.609 0.783 29
Exam 1 (Long) 0.824 0.117 0.750 0.904 35
Exam 2 (Long) 0.754 0.152 0.673 0.885 35
Exam 3 (Long) 0.636 0.159 0.522 0.761 35
Exam summary statistics for each of the three Money and Banking
exams. ‘Short’ is in reference to the daytime section while ‘long’ is
in reference to the evening section. Scores are reported as percentage
correct [0-1].
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Table 2: Money and Banking – OLS Estimation

Coefficient
Cluster-Robust
Standard Errors P-Value

β (Long Dummy) −0.031 0.024 0.225
γ1 (Exam 1 FE) 0.060 0.023 0.010
γ2 (Exam 2 FE) 0.052 0.024 0.036
γ3 (Exam 3 FE) 0.042 0.022 0.066
White’s LM Test (P-Value) 0.310
Shapiro-Wilk Test (P-Value) 0.589
F-Statistic (P-Value) 0.552
R2 0.011
Observations 192
The dependent variable is the difference between student i’s performance on
material taught in the second half of the week and the material taught in the
first half of the week (SieB− SieF ). As the long dummy is coded as one for
every student in the long (night) class, the coefficient of interest is β .
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Table 3: Intermediate Macroeconomics – Summary Statistics

Mean St. Dev. 25% 75% Obs.

Exam 1 (Short) 0.703 0.122 0.600 0.760 29
Exam 2 (Short) 0.670 0.137 0.600 0.760 29
Exam 3 (Short) 0.629 0.157 0.560 0.720 29
Exam 1 (Long) 0.708 0.153 0.600 0.840 31
Exam 2 (Long) 0.751 0.109 0.720 0.840 31
Exam 3 (Long) 0.688 0.109 0.620 0.760 31
Exam summary statistics for each of the three Intermediate Macroe-
conomics exams. ‘Short’ is in reference to the daytime section while
‘long’ is in reference to the evening section. Scores are reported as
percentage correct [0-1].
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Table 4: Intermediate Macroeconomics – OLS Estimation

Coefficient
Cluster-Robust
Standard Errors P-Value

β (Long Dummy) −0.049 0.027 0.081
γ1 (Exam 1 FE) 0.058 0.024 0.020
γ2 (Exam 2 FE) −0.064 0.025 0.014
γ3 (Exam 3 FE) 0.008 0.034 0.806
White’s LM Test (P-Value) 0.005
Shapiro-Wilk Test (P-Value) 0.222
F-Statistic (P-Value) 0.000
R2 0.099
Observations 180
The dependent variable is the difference between student i’s performance on
material taught in the second half of the week and the material taught in the
first half of the week (SieB− SieF ). As the long dummy is coded as one for
every student in the long (night) class, the coefficient of interest is β .
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Table 5: Pooled OLS Estimation

Coefficient
Cluster-Robust
Standard Errors P-Value

β (Long Dummy) −0.040 0.019 0.035
γ1MB (Exam 1 MB FE) 0.064 0.020 0.002
γ2MB (Exam 2 MB FE) 0.057 0.024 0.018
γ3MB (Exam 3 MB FE) 0.046 0.022 0.034
γ1IM (Exam 1 IM FE) 0.053 0.021 0.014
γ2IM (Exam 2 IM FE) −0.069 0.022 0.002
γ3IM (Exam 3 IM FE) 0.004 0.031 0.902
White’s LM Test (P-Value) 0.006
Shapiro-Wilk Test (P-Value) 0.460
F-Statistic (P-Value) 0.000
R2 0.083
Observations 372
The dependent variable is the difference between student i’s performance on
material taught in the second half of the week and the material taught in the
first half of the week (SieB− SieF ). As the long dummy is coded as one for
every student in the long (night) class, the coefficient of interest is β .
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Table 6: Exam Order Pooled OLS Estimation

Coefficient
Cluster-Robust
Standard Errors P-Value

β (Long Dummy) −0.039 0.034 0.263
βFE (Long First Exam Dummy) 0.005 0.045 0.911
βSE (Long Second Exam Dummy) −0.008 0.040 0.850
γ1MB (Exam 1 MB FE) 0.061 0.023 0.009
γ2MB (Exam 2 MB FE) 0.060 0.026 0.024
γ3MB (Exam 3 MB FE) 0.046 0.026 0.084
γ1IM (Exam 1 IM FE) 0.050 0.023 0.034
γ2IM (Exam 2 IM FE) −0.065 0.026 0.036
γ3IM (Exam 3 IM FE) 0.003 0.036 0.925
White’s LM Test (P-Value) 0.006
Shapiro-Wilk Test (P-Value) 0.462
F-Statistic (P-Value) 0.000
R2 0.084
Observations 372
The dependent variable is the difference between student i’s performance on material taught in
the second half of the week and the material taught in the first half of the week (SieB− SieF ).
As the long dummy is coded as one for every student in the long (night) class, the coefficient
of interest is β . βFE and βSE represent the difference in impact from the long class on the first
and second exam from the baseline third exam.
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Table 7: Performance Based Pooled OLS Estimation

Coefficient
Cluster-Robust
Standard Errors P-Value

β (Long Dummy) −0.037 0.021 0.076
βLB (Bottom×Long) −0.005 0.037 0.888
βB (Bottom) 0.042 0.026 0.110
γ1MB (Exam 1 MB FE) 0.046 0.022 0.036
γ2MB (Exam 2 MB FE) 0.037 0.025 0.142
γ3MB (Exam 3 MB FE) 0.027 0.024 0.272
γ1IM (Exam 1 IM FE) 0.034 0.022 0.140
γ2IM (Exam 2 IM FE) −0.088 0.020 0.000
γ3IM (Exam 3 IM FE) −0.020 0.030 0.494
White’s LM Test (P-Value) 0.023
Shapiro-Wilk Test (P-Value) 0.675
F-Statistic (P-Value) 0.000
R2 0.096
Observations 372
The dependent variable is the difference between student i’s performance on
material taught in the second half of the week and the material taught in the first
half of the week (SieB− SieF ). As the long dummy is coded as one for every
student in the long (night) class, the coefficient of interest is β . βLB captures the
difference in impact of the long class on students who scored below the mean
on a given exam.
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