Validity of Wearable Activity Monitors for Estimation of Resting Energy Expenditure in Adults

Zachary Motz
University of Nebraska at Omaha, zmotz@unomaha.edu

Yang Bail
Iowa State University

Youngwon Kim
Iowa State University

Danae M. Dinkel
University of Nebraska at Omaha, dmdinkel@unomaha.edu

Jung-Min Lee
University of Nebraska at Omaha, junominlee@unomaha.edu

Follow this and additional works at: https://digitalcommons.unomaha.edu/pahppresentations

Part of the Health and Physical Education Commons

Please take our feedback survey at: https://unomaha.az1.qualtrics.com/jfe/form/SV_8cchtFmpDyGfBLE

Recommended Citation

https://digitalcommons.unomaha.edu/pahppresentations/19

This Poster is brought to you for free and open access by the Physical Activity in Health Promotion Lab at DigitalCommons@UNO. It has been accepted for inclusion in Research Presentations by an authorized administrator of DigitalCommons@UNO. For more information, please contact unodigitalcommons@unomaha.edu.
Validity of Wearable Activity Monitors for Estimation of Resting Energy Expenditure in Adults

Zachary Motz¹, Yang Bai², Youngwon Kim², Danae Dinkel¹ Jung-Min Lee¹
¹ School of Health, Physical Education, and Recreation, University of Nebraska at Omaha, Omaha, NE
² Department of Kinesiology, Iowa State University, Ames, IA

ABSTRACT

The purpose of this study was to evaluate the validity of Resting Energy Expenditure estimates from Fitbit Flex and SenseWear Mini in adults.

METHODS

Table 1: Participant demographics

<table>
<thead>
<tr>
<th></th>
<th>Females (N=30)</th>
<th>Males (N=30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Mean ± SD</td>
<td>Range</td>
</tr>
<tr>
<td></td>
<td>24.2 ± 4.1</td>
<td>18.0 - 38.0</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>166.0 ± 7.0</td>
<td>154.2 - 187.0</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>60.3 ± 8.5</td>
<td>47.6 - 85.2</td>
</tr>
<tr>
<td>Body Fat (%)</td>
<td>20.4 ± 5.8</td>
<td>8.3 - 35.6</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>21.3 ± 2.1</td>
<td>18.1 - 31.2</td>
</tr>
</tbody>
</table>

Procedures

- Participants signed an informed consent
- Participants fasted for 10 hours before coming into lab the next morning
- Resting energy expenditure was measured using open-circuit indirect calorimetry following previously published guidelines [4]
- Estimates of REE from the Fitbit Flex and the SenseWear Mini were obtained from the corresponding software and website

RESULTS

Table 2: REE (kcal/day) from each method of measure measurement

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measured Resting (IC)</td>
<td>1554.2 ± 249.3</td>
<td>1189.0 - 2500.2</td>
</tr>
<tr>
<td>SenseWear Mini</td>
<td>1587.1 ± 247.7</td>
<td>1239.8 - 2101.3</td>
</tr>
<tr>
<td>Fitbit Flex</td>
<td>1528.0 ± 213.0</td>
<td>1152.0 - 1920.0</td>
</tr>
<tr>
<td>Institute of Medicine</td>
<td>1559.1 ± 217.7</td>
<td>1218.5 - 1986.8</td>
</tr>
<tr>
<td>World Health Organization</td>
<td>1598.3 ± 246.0</td>
<td>1180.1 - 2099.8</td>
</tr>
</tbody>
</table>

- ANOVA and post-hoc analyses showed no significant effects of gender for any of the comparisons with REE from IC

CONCLUSIONS

- The estimates of REE from the Fitbit Flex, SenseWear Mini, Institute of Medicine, and World Health Organization are consistent with IC REE measurement
- The derived REE value from the two wearable devices as well as the equations from the Institute of Health and World Health Organization provide reasonable estimates of REE

REFERENCES

UNIVERSITY OF NEBRASKA AT OMAHA, SCHOOL OF HEALTH, PHYSICAL EDUCATION AND RECREATION | PHYSICAL ACTIVITY IN HEALTH PROMOTION