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ABSTRACT 
The United States has the largest and most diverse general aviation (GA) 

community in the world, with more than 220,000 aircraft, flying almost 23 million 

hours annually. Accurate and economic estimating the exhaust emissions of 

general aviation will effectively support the practice of mitigating the environmental 

impacts from general aviation. Fuel flow rate in each phase of the Landing and 

Takeoff Cycle is one of the necessary factors recommended by the International 

Civil Aviation Organization to be used to estimate the exhaust emissions. This paper 

explores statistical models of predicting the fuel flow rate of piston- engine aircraft 

using general aviation flight operational data, including the aircraft altitude, the 

ground speed, and the vertical speed. A machine learning technique is applied to 

adapt the variability of flight operational data due to flexible operations of general 

aviation and random errors in flight data. The Classification and Regression Trees 

(CART) and the Smoothing Spline ANOVA (SS-ANOVA) are adopted as the 

modeling approaches. The modeling results are compared and interpreted from the 
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standpoint of general aviation phases of flight in the Landing and Takeoff Cycle. 

Both models demonstrate good accuracy in predicting the fuel flow rate. The CART 

model provides intuitive outputs by the phases of flight, and is more robust to flight 

data outliers. The SS-ANOVA model is relatively more accurate in predicting the 

fuel flow rate, and is better at explaining the interaction between variables. A robust 

fuel flow rate prediction model of predicting the fuel flow rate of piston- engine 

aircraft is believed to be practical and economic for GA exhaust emissions 

estimation. 

 

 

Introduction 
With the rapid development of aviation technology during the past decades, both 

global and regional economies have benefited from the fast, efficient, and worldwide air 

transportation. While commercial air transport services carry large portion of 

passengers and freight, general aviation (GA) is sharing a considerable part of the air 

transportation market with an estimated annual shipment billings of 24,120 million U.S. 

dollars (General Aviation Manufacturers Association, 2016). While people are enjoying 

the convenience of modern air transport, aviation also generates remarkable 

environmental impacts. To mitigate the impact on the environment from aviation 

activities, the Committee on Aviation Environment Protection (CAEP) was established in 

1983 as a technical committee of the International Civil Aviation Organization (ICAO) to 

assist the council in formulating policies and adopting Standards and Recommended 

Practices (SARPs) related to aircraft noise and emissions, and more generally to 

aviation environmental impact (International Civil Aviation Organization, 2016a,b). 

Following the ICAO, government agencies and other organizations, such as the 

International Air Transport Association (IATA), Federal Aviation Administration (FAA), 

EUROCONTROL, Swiss Federal Office of Civil Aviation (FOCA), National Aeronautics 

and Space Administration (NASA), and the U.S. Environmental Protection Agency 

(EPA) also conducted a series of practices to alleviate the environmental impact from 

different perspectives (International Air Transport Association, 2013; Federal Aviation 

Administration, 2005; European Union, 2008; Swiss Federal Office of Civil Aviation, 



2007; U.S. Environmental Protection Agency, 1985). 

With the goals of reducing the impact of aviation emissions on local air quality, 

and reducing the impact of aviation greenhouse gas emission on the global climate, 

IATA proposed the four-pillar strategy to neutralize the carbon emission from aviation, 

which includes the development of advanced technology, adopting more efficient 

aircraft operations, improving present infrastructure, and economic measures 

(International Air Transport Association, 2016). ICAO also proposed the standards for 

emission certification of aircraft turbine engines which currently cover carbon monoxide 

(CO), unburned hydrocarbons (HC), oxides of nitrogen (NOx) and smoke (SN) 

(International Civil Aviation Organization, 2008, 2011). In order to measure the 

effectiveness of approaches to reducing aviation emissions, various tools have been 

developed to measure the volume of different types of aviation emissions. Early in mid-

1980s, the Emissions and Dispersion Modeling System (EDMS) was developed. EDMS 

was used by the US EPA to evaluate aviation emissions, which was replaced by a more 

sophisticated tool – the Aviation Environment Design Tool, Version 2c (AEDT, V.2c) as 

of December 2016 (U.S. Federal Aviation Administration, 2017). The Advanced 

Emissions Model (AEM), the Airport Local Air Quality Studies (Open-ALAQS), the 

IMPACT are examples of other modeling tools for aircraft noise and emissions 

assessments (EUROCONTROL, 2016). 

The ICAO recommended concept of Landing and Takeoff Cycle (LTO) is widely 

used in environmental modeling tools to measure and estimate aviation emissions by 

phases of flight. The LTO cycle consists of four phases of flight – taxi, takeoff, climb-out, 

and approach, under the mixing height altitude, which is generally 3000 ft (915 m) 

above the ground level (AGL) (International Civil Aviation Organization, 2008). Based 

on the engine mode in each phase of flight, the exhaust emissions are calculated with 

the function (1) (International Civil Aviation Organization, 2008). 

Total Emissions of pollutant j = ∑�𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 ∗ 𝐹𝐹𝐹𝐹𝐹𝐹𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖�            (1) 

where EIi,j = aircraft engine emission index for a specific pollutant of j in the phase of 

flight of i (kg-exhaust chemical/kg-fuel burned), FFRi = the average fuel flow rate in the 

phase of flight of i (kg-fuel/s), i = phase of flight (taxi/idle, takeoff, climb-out, approach), 

DURi = the duration of the phase of flight of i (s), LTOi = the number of the phase of 



flight of i per aircraft type during a time period, and R = the sum of each phase of 

flight in LTO cycle. 

As an important part of aviation sector, the general aviation community has 

greatly supported and contributed to the fast growth of entire aviation industry. Today, 

there are more than 362,000 general aviation aircraft worldwide, of which 204,000 are 

registered in the United States flying almost 23 million hours annually across more than 

5000 U.S. airports (General Aviation Manufacturers Association, 2016). General aviation 

activities have an environmental impact. Unlike the Commercial Air Transport, which is 

generally consists of turbine-engine aircraft, more than 82% of General Aviation aircraft 

are piston- engine aircraft (U.S. Federal Aviation Administration, 2014). Because of the 

diverse aircraft types in the GA fleet, the different flight performance of piston-engine 

aircraft from turbine-engine aircraft, and the operational flexibility, the aviation emissions 

assessment methods and procedures recommended by ICAO are not likely able to 

directly output accurate evaluation on GA emissions. In addition, GA operators and GA 

airports usually have very limited resources to be spent on emission assessment 

compared to commercial airlines and commercial service airports. Therefore, 

developing a feasible low-cost method to accurately estimate the exhaust emissions is 

believed to be practical for sustainable development of general aviation. 

Among different aviation emissions assessment approaches, fuel flow rate is 

crucial for estimating emission volume. Currently, fuel flow rate could be obtained in 

many ways, such as the real-time fuel flow rate recorded by flight data recorder (FDR), 

and the aircraft engine specifications provided by original equipment manufacturers. 

However, obtaining fuel flow rate in those methods is typically time-consuming, 

inconvenient, inaccurate, and not quite practical in estimating GA exhaust emissions. 

An inexpensive and convenient way to acquire the fuel flow rate of GA piston-engine 

aircraft is more likely to meet the characteristics and demand of general aviation. 

Modeling the fuel flow rate as a function of other aircraft parameters is believed to be a 

good approach because there might be convenient and inexpensive ways to obtain 

other aircraft parameters as the explanatory variables. In 2014, Baklacioglu developed a 

fuel flow rate model for the climbing phase of flight using genetic algorithm method 

(Baklacioglu, 2016a,b). Later in 2016, Baklacioglu proposed a genetic algorithm- 



optimized neural network topology to predict the fuel flow rate (Baklacioglu, 2016a,b). In 

the same year, Chati and Balakrishnan modeled the fuel flow rate in the airborne 

phases of flight with turbofan aircraft operational data from Flight Data Recorders (FDR) 

(Chati and Balakrishnan, 2016). 

Different from commercial flights which are operating with clear phases of flight 

and prescribed flight procedures, most GA operations are not based on regular 

schedules, and many of GA aircraft are flying in Visual Flight Rules (VFR) (Huang and 

Johnson, 2016). What’s more, aircraft piston engine demonstrates remarkable 

different performance from aircraft turbine engine. The previous studies are based on 

the flight data of commercial turbofan-engine aircraft, which may not be applicable for 

GA piston-engine aircraft. Therefore, predicting the fuel flow rate of fix-wing 

reciprocating-engine GA air- craft with those models may result in errors. This paper 

presents research on modeling the fuel flow rate of GA piston-engine aircraft which 

could be used in estimating the gaseous and particulate matters emissions of aircraft 

with the same type of piston engine. The methods are expected to be references for 

modeling the fuel flow rate of other types of aircraft piston engines. 

 

Methodology 
This section describes the collection of data used in the modeling method, and 

explains the variable selection and modeling methods. The modeling methods explored 

in this paper are the Classification and Regression Trees (CART) and the Smoothing 

Spline ANOVA (SS-ANOVA) models. 

 

Data collection 

General aviation piston-engine aircraft operational data were used in statistical 

modeling. Flight data were collected from the Cirrus SR-20 aircraft, all of which are 

equipped with Garmin G1000 system. G1000 system records 66 types of aircraft 

operational parameters every one second on average, such as 4-dimensional aircraft 

location, air speed, ground speed, vertical speed, and engine revolution per minute. In 

order to reflect the flexibility of GA operations, the flight missions were selected that 

include cross-country flights and local traffic pattern training flights. A total 22 flight 



missions were selected and had flight durations from 77 min to 198 min. Each 

parameter has 176,370 observations in the dataset. All aircraft in this sample are based 

at Purdue University Airport, West Lafayette, Indiana. 

 

Variables selection 

The onboard flight data recorder (FDR) of Garmin G1000 provides many aircraft 

operational records which could be used to explore the model of estimating the fuel flow 

rate of GA piston-engine aircraft in all phases of flight. However, there are many factors 

that could affect the fuel flow rate of piston-engine aircraft; therefore, there is no 

standard to select explanatory variables to predict the fuel flow rate. Based on the 

physics of aircraft power plant operations, the fuel flow rate depends on the engine 

parameters, true airspeed, aircraft mass, the ambient atmospheric density, wing 

reference area, extra thrust for ascending, etc. (Collins, 1982). To simplify, we could 

assume that the ambient atmospheric density is primarily related to the altitude, and the 

ascent could be explained by positive vertical speed. Additionally, aircraft in this study 

are used for flight training that have no significant change in terms of the aircraft mass; 

therefore, the aircraft mass could be assumed as a constant value. Based on above 

simplification and assumptions, the aircraft ground speed, the altitude, and the vertical 

speed are initially selected as the predictors to explain the fuel flow rate in modeling. 

One of the crucial benefits of selecting the above explanatory variables is that there are 

many sources to obtain those parameters. Especially, with mandatory installation of the 

Automatic Dependent Surveillance – Broadcast Out (ADS-B Out) on all aircraft 

operating in assigned airspace by January 1, 2020, ADS-B technology is believed to be 

a feasible and available future data source for the model of the fuel flow rate estimation 

because of its capability of feeding those three explanatory variables (Part 91, 41 C.F.R. 

§ 91.227; Part 91, 41 C.F.R.§ 91.225). The variable selection of this model is believed 

to satisfy the requirement of ‘‘low cost” of GA operations. 

 

Modeling methods 

Plot of selected parameters from the set of G1000 data from 22 flights are shown 

to better understand the nature of GA flight. Because of the brakes, temporary stops, 



and the acceleration when aircraft is taxiing on the surface, aircraft engine output is 

changing frequently and rapidly (Khadilkar and Balakrishnan, 2012), shown as Fig. 1. 

Also, GA operations are relatively flexible in terms of altitude and speed, shown as Fig. 

2. Generic regression methods may not be suitable for building a general model to 

include all phases of flight. Therefore, a machine learning technique is explored as a 

potential approach for future study scenario. 

With the objective of discovering the relationship between the response variable 

and the three explanatory variables to predict the fuel flow rate from other flight data, 

supervised data mining algorithms are explored as possible candidates for modeling. 

Although, in a specific phase of flight, some of the explanatory variables might 

demonstrate linear relationship with the fuel flow rate based on physics of aircraft 

engine operation, separate models need to be fitted in different phases. In that case, 

simple linear models are excluded from candidate methods. In addition, the collected 

flight data could be regarded as continuous values; therefore, models for discrete 

data are excluded. 

Aircraft vertical speed measures the ascent and descent rate of aircraft, which 

may demonstrate fluctuation within a short timespan for many reasons, such as system 

errors, sensor misreading, and turbulence, shown as Fig. 3. The nature of the vertical 

speed data indicates that the candidate method has to be robust for outliers. Based on 

these considerations, the Classification and Regression Trees (CART) is selected for 

modeling the fuel flow rate. 

The CART was introduced by Leo Breiman to refer to a type of Decision Tree 

algorithms, which can be used for classification or regression predictive modeling 

problems (Breiman et al., 1984). The visual representation of the CART model is a 

binary tree, whose leaf node is determined by an if-then statement based on a split 

point of a variable. Starting from the root node which containing all data points, the 

CART algorithm recursively split the data with a splitter. The if-then statement is in the 

form of X < s where s is the splitter and X is a specific explanatory variable. If point 

satisfies the criteria of X < s, it goes to the left side child node, otherwise point goes to 

the right side child node. The splitting point is selected to minimize the node impurity, 

which is the heterogeneity of the points within a node. For classification problem, 



the Gini index, cross-entropy, and misclassification error are three common criteria of 

determining the split point. For regression predictive modeling, the least square is used 

to measure the node impurity. This splitting procedure is to be conducted on 

explanatory variables until a suitable tree is constructed. The nodes which do not split 

further are leaf nodes. The value of the leaf node is the predicted value given a set of 

explanatory variables. A stop criteria is adopted to stop the recursive splitting, which 

is either when the improvement in mean squared error drops due to further splitting, 

or when the number of observations in a node reach the predetermined value, or 

when there is only one observation in the node, or other possible criteria. The 

recursive partition procedure normally generates very complex trees in terms of 

nodes and depth which overfits the data. So, a simple tree is preferred as it is easier 

to interpret. Pruning is widely used to elevate the performance of the tree model. The 

simplest way of pruning the tree is to work through each leaf node in the tree and 

evaluate the effect of removing it using out-of-sample data. Leaf nodes are removed if 

the pruning decreases the mean squared error. Based on the advantages of CART 

and the features of target data, there are four reasons to use CART in this study 

case: 

1) The nonlinear relationship between the explanatory variables do not 

affect the model performance; 

2) The CART generates a nonparametric model for the variables without 

knowledge on the complex relationship between the variables; 

3) The CART is resistant to the outliers; 

4) The tree model is easy to interpret and apply in further study. 

 
Fig. 1. Aircraft engine performance by revolutions per minute. 



Fig. 2. (a) Flight profiles by altitude of two flight missions. (b) Distributions of explanatory variables 

– aircraft barometric altitude and aircraft ground speed in 22 flight missions. 

 

 
Fig. 3. Aircraft vertical speed. 



The CART algorithm helps to predict the fuel flow rate in each phase of flight; 

however, CART cannot explain the relation- ship between variables. Analyzing the 

interaction between variables helps understand the rationality of explanatory variable 

selection. The Smoothing Spline ANOVA (SS-ANOVA) is adopted to further analyze the 

flight data to understand the selection of variables, the interaction between variables, 

and the prediction of fuel flow rate. 

The SS-ANOVA provides a flexible alternative to the parametric methods for 

analyzing the relationship of explanatory variables to the response variable, and are 

now commonly used in many areas such as epidemiology (Gu, 2002). The SS- ANOVA 

model can capture interactions between variables and the nonlinear relationship 

between explanatory variables and response variables. On the other hand, the SS-

ANOVA model can reduce to a linear model if the data fail to suggest a nonlinear 

model. The SS-ANOVA models incorporate the ANOVA decomposition for the 

estimation of a multivariate function as sums of main effect function (of one variable), 

two-factor interaction functions (of two variables), etc. Especially for regression with 

Gaussian responses, the problem reduces to be a penalized least squares problem. 

The general form of penalized least squares functional in a reproducing kernel Hilbert 

space H = ⊕𝛽𝛽=1
𝑝𝑝 𝐻𝐻𝛽𝛽 can be written as 1

𝑛𝑛
∑ (𝛾𝛾𝑖𝑖 −  𝜂𝜂(𝑥𝑥𝑖𝑖)² +𝜓𝜓(𝜂𝜂),𝑛𝑛
𝑖𝑖=1  where J(f) = 

∑ 𝜃𝜃𝛽𝛽−1
𝑝𝑝
𝛽𝛽=1  (𝑓𝑓,𝑓𝑓)β  and (f, g)β are inner products in Hβ with reproducing kernels Rβ (x,y)  

(Gu, 2002). The smoothing parameters (λ, θβ) together control the trade-off between 

fidelity to the data and roughness of the function estimate. The generalized cross-

validation (GCV) score is used to select the smoothing parameters (λ, θβ). Based on 

the advantages of SS-ANOVA and the features of target data, there are four reasons to 

use SS-ANOVA in this study case: 

1) The SS-ANOVA models can fit the nonlinear relationship. 

2) The SS-ANOVA models can capture the interaction between explanatory 

variables, thus give a good interpretation of the data. 

3) The SS-ANOVA models have a rich statistical literature, giving a well-

studied model selection procedure. 

4) The SS-ANOVA models provide Bayesian Confidence Interval, yielding an 

assessment of the estimation precision in addition to point estimation. 



Modeling 
This section presents the modeling setup, and the models constructed from the 

data using the CART and the SS-ANOVA respectively. 

 

Modeling using the CART 

From the data retrieved from the same type of aircraft, 65% of observations are 

randomly set as the model training partition set and the remaining 35% are the test 

partition set. Using the CART modeling method, the model of estimating the fuel flow 

rate is built using the explanatory variables of the aircraft altitude, the ground speed, 

and the vertical speed. As afore- mentioned, GA aircraft do not always have clear 

delimitations between phases of flight. In addition, the ICAO engine data- bank does not 

have complete normalized fuel flow rate for GA reciprocating engines (International Civil 

Aviation Organization, 2016a,b). In this study, the instantaneous values of explanatory 

variables are used as input to predict the instantaneous fuel flow rate. The 

instantaneous fuel flow rate is expected to be valuable on relevant study and 

applications of GA emissions estimation. 

 

Results of the CART modeling 

After partition training with 114,546 observations, a regression tree was 

generated as shown in Fig. 4. The tree shows that the predicted value depends a series 

of conditions, which direct the input to different leaf node to be assigned the fuel flow 

rate. If the input satisfies the condition, it goes to the left side node, otherwise it goes to 

the right-side node, until the leaf node is reached. For example, when aircraft has 

ground speed greater than 68.12 knots, vertical speed greater than 352.22 feet per 

minute but less than 507.60 ft/min, the fuel flow rate at this point is 14.29 gallons per 

hour. The predictive value of fuel flow rate is believed to be very close to the average 

fuel flow rate in the particular phase of flight, which will be presented in the section of 

Output Analysis and Discussion. The tree is not symmetric. The CART fits the data with 

separate models for each homogenous region of data. This feature improves the 

accuracy of the model compared to a single regression model. 

Also, the model indicates the importance of each explanatory variable/predictor 



on predicting the fuel flow rate. As shown in Fig. 5, from the data used in this analysis, 

the ground speed has the greatest influence on the fuel flow rate, the vertical speed has 

the median influence on the fuel flow rate, and the aircraft altitude has little influence on 

fuel flow rate, which is roughly accordant to the characteristics of actual GA operations. 

The mean absolute error (MAE), shown as Eq. (2), is used to measure the 

average magnitude of the errors in the set of the predicted values. The final developed 

model has an MAE of 1.244, the lowest of the candidate models. 

MAE = 𝑆𝑆𝑆𝑆𝑆𝑆
𝑁𝑁

 =  ∑ |𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖|𝑁𝑁
𝑖𝑖=1

𝑁𝑁
     (2) 

where xi is the observations time series, ^xi is the predicted time series, N is the 

number of data points, SAE is the sum of the absolute errors (or deviations). 

 

Modeling using the SS-ANOVA 

The Smoothing Spline ANOVA is used to model the fuel flow rate to explore the 

relationship between selected explanatory variables using the same datasets as the 

CART algorithm. A new sample of 65% of total observations (104,863 observations) are 

randomly selected as the model training partition set and the remaining 35% are the test 

partition set. The aircraft altitude, the ground speed, and the vertical speed are the 

explanatory variables in the SS-ANOVA as in the CART. 

The fuel flow rate is modeled as (VSpd, GndSpd, AltB) + ε where f is a function of 

VSpd – the aircraft vertical speed, GndSpd – the aircraft ground speed, and AltB – the 

aircraft altitude by barometric altimeter, and the noise ε~N(0, σ2). Basically, f(VSpd, 

GndSpd, AltB) could be illustrated as β0 + βvVSpd + βGGndSpd + βAAltB, where β0 

βv βG βA are the coefficients, which is actually a linear model. In our case, an ANOVA 

decomposition can be defined as f = (I- Aγ + Aγ)f, where I is the identity operator, Aγ s 

are averaging operators acting respectively on arguments VSpd; GndSpd and AltB. 

An example of Aγ could be A1 = f(0, GndSpd, AltB), A2 = f(VSpd, GndSpd, 0).  

Thus , one has f = f + fv +fG + fA + fv,G + fv,A + fG,A + fv,G,A, where 

f = f (0, 0, 0), 

fv – f(VSpd, 0, 0) – f(0,0,0), fG = f(0, GndSpd, 0) – f(0,0,0) fA =f(0,0,AltB) – f(0,0,0),  

fv,G = f(VSpd, GndSpd,0) + f(0,0,0) – f(VSpd, 0,0) – f(0, GndSpd, 0),  



 
Fig. 4. The CART regression tree for predicting the fuel flow rate of Cirrus SR-20 aircraft. Note, 
GndSpd: aircraft ground speed, VSpd: aircraft vertical speed, AltB: aircraft altitude by barometric 
altimeter. 

 

Fig. 5. Predictor importance on predicting the fuel flow rate. 

fv,A = f(VSpd,0,AltB) + f(0,0,0) – f(VSpd,0,0) – f(0,0,AltB), 

fG,A = f(0, GndSpd, AltB) = f(0,0,0) – f(0, GndSpd,0) – f(0,0,AltB), 

fv,G,A = f(VSpd, GndSpd, AltB) – f(0,0,0) + f(VSpd,0,0) + f(0,GndSpd,0) + 

 f(0,0,AltB) – f(VSpd, GndSpd, 0) – f(VSpd,0,AltB) – f(0,GndSpd, AltB). 

Note that it is straightforward to obtain similar results with different averaging 

operators. 

 

Modeling selection 

ANOVA structures provide a better understanding of the model; however, it 

brings about a new question: can redundant terms be eliminated by a selection 

procedure? The classical testing like a t test relies on the determined sampling 

distribution. However, due to the infinite dimension of the nulls space, it is hard to 

VSpd<=352.22 ft/m 

 
 

  

    
 

  
  

  
  

  
  

GndSpd<=68.12 kt 



determine the sampling distribution for SS- ANOVA. Thus, it is difficult to adapt the 

classical testing to the modeling situation in this study. However, an approach based on 

the Kullback-Leibler geometry was developed in Gu is expected to be applicable in 

this case (Gu, 2002). For example, H0 : f  ϵ H0 ⊕ H1 , where H0 = {f : f = f + fv + fG + fA 

+ fV,G + f V,A + fG,A} and H1 = {f : F = FV,G,A}. One calculates an estimate 𝑓𝑓ϵ H0 ⊕ H1,  

obtains its Kullback-Leibler projection 𝑓𝑓 ϵ H0 by minimizing a setting-specific KL(𝑓𝑓, f) 

over f ϵ H0  then an ‘‘entropy decomposition”, KL(𝑓𝑓,fc) = KL(𝑓𝑓 , 𝑓𝑓 ) + KL( 𝑓𝑓, fc), can be 

inspected, where fc is a degenerate fit, such as a constant regression function or a 

uniform density. When the ratio of KL(𝑓𝑓, 𝑓𝑓)/KL( 𝑓𝑓, fc) is small, one loses little by cutting 

out H1. Note that cutting out H1 is equivalent to elimination of the interaction fV,G,A. 

 

Results of the SS-ANOVA modeling 

The basic data analysis indicates that the distribution of the dependent variable – 

the Fuel Flow Rate (FFlow) is very skewed, therefore, the FFlow is transformed as 

log10ðFFlow þ 1Þ. After model selection, the final model is shown as Eq. (3), and the 

MAE = 1.086. 

FFlow�  = C + fv(VSpd) + fG (GndSpd) + fVG(VSpd, GndSpd)    (3) 

where C is a constant, FFlow is the fuel flow rate, VSpd is the aircraft vertical speed, 

GndSpd is the aircraft ground speed, fV(.) represents the main effect of VSpd on FFlow, 

fG(.) represents the main effect of GndSpd on FFlow, and fV,G(.) represents the interaction 

effect of VSpd and GndSpd. 

The main effect of aircraft vertical speed on the fuel flow rate is shown as Fig. 6. 

The effect increases as aircraft vertical speed increases. The aircraft vertical speed 

demonstrates the largest contribution to the fuel flow rate when aircraft is rapidly 

ascending, which could be the phase of takeoff or during the ascending in the phase of 

cruise, and has the smallest contribution to the fuel flow rate during the phase of landing 

or descending in cruise. It is notable that the main effect could be negative in this case, 

because the FFlow is transformed as log10(FFlow +1), and there is a constant C in the 

model log10(FFlow�  +1) = C +fV(VSpd) + fG(GndSpd) + fVG (VSpd, GndSpd) to make 

sure that FFlow�  is always positive. Essentially, the negative effect of vertical speed in 



this model only indicates less contribution of vertical speed to the fuel flow rate 

compared to the positive effect of vertical speed. 

The main effect of aircraft ground speed on the fuel flow rate is shown as Fig. 

7. The main effect increases as aircraft ground speed increases. The graph shows 

that the curve is almost linear with a narrow confidence band from 20 knots of 

GndSpd to 140 knots of GndSpd. But when the ground speed is below 20 knots or 

above 140 knots, the confidence band becomes wider, and the main effect of 

GndSpd fG(.) is almost a horizontal line. The lack of data at the two edges results in 

a large standard deviation. There are two possible explanations: The first possibility 

could be the lack of data at the two edges results in large standard deviation. The 

second possibility might be explained from the aircraft operations. Actually, when the 

ground speed is below 20 knots, the aircraft was most likely taxiing on the ground, that 

is to say aircraft was moving with or without temporary stops, like holding still at 

somewhere on the runway or taxiway. During that phase, the performance of aircraft 

engine is extremely irregular, therefore, the confidence band is relatively wider than 

the medium part of this curve. On the other hand, when aircraft ground speed is 

above 140 knots, the effect could be determined by the actual operational 

environment. For example, if the aircraft of Cirrus SR-20 in this study was flying with 0 

head wind, when the aircraft ground speed was above 140 knots, aircraft airspeed 

was getting close to the maximum cruise airspeed of 155 KTAS (Cirrus Design, 2011). 

Assuming pilots kept aircraft true airspeed below the maximum cruise airspeed, the air- 

craft was more likely flying with tail wind when the ground speed was getting much 

higher than 140 knots. In that case, the tail wind might help explain the reduce of the 

effect of the ground speed. 

The interaction effect of aircraft vertical speed and aircraft ground speed is 

described as Fig. 8; Fig. 9 shows the standard deviation of the interaction effect. Three 

cases of the interaction effect are illustrated here. 

First, the color of blue3 represents that the interaction has a strong and negative 

effect on log10(FFlow+ 1). The up-right corner of Fig. 8 describes the flight status with  

 
3 For interpretation of color in ‘Figs. 8 and 9’, the reader is referred to the web version of this 
article. 



extremely large positive vertical speed and high ground speed. Dark blue in this area 

indicates that the coherent contribution of aircraft vertical speed and ground speed does 

not contribute to the fuel flow rate. Theoretically, the aircraft type analyzed in this study 

is not able climb with that vertical speed while flying over 150 knots in ground speed. 

The occurrence of this area is very likely to be noisy data or caused by upwash or air 

turbulence since violent air turbulence could rapidly increase vertical speed and ground 

speed. The negative influence in this area compensates the large positive main effect on 

log10(FFlow + 1) from vertical speed and ground speed. This could be explained by the 

situation that an aircraft engine throttles back to descend and maintain the flight level. 

The left side blue area describes the flight status with negative vertical speed and slow 

ground speed, which is very likely during the phase of approach or landing. Second, the 

green area describes the case when the interaction effect is around 0, which means the 

sum of two main effects could well model the fuel flow rate, the interaction effect of 

vertical speed and ground speed does not contribute to the fuel flow rate. Third, the lower 

right-side yellow triangular area very likely describes the opposite situation of the upper 

right-side blue area. The aircraft was possibly experiencing downwash or air turbulence, 

which could rapidly cause a loss of altitude. To maintain the flight level, the aircraft 

engine is throttled up and has an increased fuel flow rate. For the upper-left corner area 

in yellow reasonably describes the phase of takeoff with positive vertical speed and 

small ground speed. The interaction effect of these two variables positively contribute 

the fuel flow rate. 

 

Output analysis and discussion 
Two modeling techniques were explored to develop a model of fuel flow rate of 

GA piston engine aircraft. First, the model developed using the CART was interpreted 

from the standpoint of phases of flight of GA Landing and Takeoff (LTO) cycle (Huang 

and Johnson, 2016; Katsaduros et al., 2014). Because the working mode of piston 

engines in the takeoff phase has no significant difference from that in the phase of 

climb-out, the phases of takeoff and climb-out are merged. In that case, the original four 

phases of flight of the LTO cycle for turbine engine aircraft is simplified into three 

phases of flight: Taxi/Idle, Takeoff, and Approach (Huang and Johnson, 2016; Swiss 



Federal Office of Civil Aviation, 2007). 

 
Fig. 6. Main effect of VSpd with 90% confidence interval. 

 

Aircraft targeted in this study are based at the Purdue University Airport. In the 

data, the elevations of airports involved in these flight missions are around 625 ft. The 

LTO only considers operations under 3000 ft above the ground level (AGL). Based on 

above conditions and the aircraft attitude in each phase of flight, for example, aircraft 

has negative vertical speed when descending, and the aircraft altitude should be less 

than 3000 ft AGL. The leaf nodes of the regression tree are classified into each phase 

of flight. Shown as Table 1. The leaf nodes of 10.89 gallons per hour and 14.29 gallons 

per hour are assumed to be more fit the out of LTO operations in regards to the 

corresponding partition conditions. Generally, the CART model provides a very 

straightforward outcome of the fuel flow rate for each phase of flight in the LTO 

cycle. 

To further examine the performance of the CART model, descriptive statistical 

analysis was conducted on the original dataset. The t-test was used to compare the 

average fuel flow rate in each phase of flight manually calculated from the original 

dataset with the outputs of the CART model. We assume in the null hypothesis that the 

mean of the model outputs of the FFR is not significantly different from the mean of the 

FFR manually calculated from the original data for a particular phase of flight. If the p-

value for the t-test is less than a critical a = 0.05, then the average fuel flow rate in a 

particular phase of flight determined by the CART model is significantly different from 



the mean of fuel flow rate defined by the general aviation LTO cycle, thus we reject the 

null hypothesis (H0). 

The original flight data were classified into the same three phases of flight of the 

LTO cycle based on the phases of flight of the GA LTO cycle (Huang and Johnson, 

2016; Katsaduros et al., 2014). The results of t-test are shown as Fig. 10 and Table 2.  

The one-sample t-test indicates that the average fuel flow rate of the phase of 

taxi and takeoff predicted by the regression model is not significantly different from the 

average fuel flow rate derived from the original flight data. However, the predicted 

average fuel flow rate of the phase of approach is significantly different from the 

corresponding value derived from the original flight data. Possible explanations for the 

difference could originate from the flight data source, the method of deriving the 

average value of the original flight data, or the inaccuracy of the regression tree. 

Because the flight data come from training flights, it is understandable that student 

pilots may not be generally capable of smoothly adjusting the aircraft status for 

approaching and landing. In that case, the fuel flow rate would be very hard to predict 

by the regression model. Further study is need to exclude other possible influence 

on predicting the fuel flow rate in the phase of approach. Still, the developed 

regression model demonstrates a good performance on predicting the fuel flow rate 

of the phases of takeoff and taxi/idle in the LTO cycle. 

Shown as Fig. 5, explanatory variables demonstrate different influence on fuel 

flow rate. Aircraft ground speed has the greatest influence on fuel flow rate, vertical 

speed has less influence, and aircraft altitude has little influence on fuel flow rate. The 

SS-ANOVA helps to explore the relationship between variables. The model developed 

using the SS-ANOVA eliminates the explanatory variable of the aircraft altitude, 

because the model developed using the SS-ANOVA is in accordance with the result of 

the CART model that the aircraft altitude has little contribution to the response variable 

of fuel flow rate. Possible explanation for that phenomenon could be that: Unlike the 

turbine engine aircraft operating in a large range of altitude, piston-engine aircraft are 

more likely flying below 10,000 ft. The flight altitudes in this study are primarily between 

3500 ft and 5500 ft. In that case, the difference of atmospheric density in that range of 

flight altitude is not as large as that faced by turbine engine aircraft; therefore, aircraft 



altitude might not cause significant influence on the fuel flow rate of air- craft piston 

engine. 

Fig. 7. Main effect of GndSpd with 90% confidence interval. 

 
Fig. 8. Interaction effect of VSpd and GndSpd. 

Fig. 9. Standard deviation interaction effect of VSpd and GndSpd. 
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Table 1: Leaf node classification by phases of flight. 
Phase of flight Leaf nodes Average FFR 

Taxi/idle  2.65 gallon/h 

Takeoff  16.23 gallon/h 

Approach  7.88 gallon/h 

Out of the LTO  NA 

  

Fig. 10. The graphical description of one-sample t-test results of the fuel flow rate of each 

phase of flight. 



Table 2: The t-test result of the fuel flow rate by phases of flight. 
Phase of flight Predicted FFR (gallon/h) FFR from original data 

(gallon/h) 
P-value (for t-test μ1 = μ2 vs μ1 ≠ 
μ2) 

Taxi/idle 2.65 2.87 0.138* 
Takeoff 16.23 16.61 0.130* 
Approach 7.88 7.01 0.047* 
*Significant at α = 0.05. 

 

In addition to the description of the interaction between explanatory variables, the 

developed model using the SS-ANOVA can also predict the instantaneous fuel flow rate 

based on aircraft ground speed and vertical speed with the MAE = 1.086 smaller than 

1.244 of the MAE of the CART model, indicating the SS-ANOVA model has better 

accuracy than the CART model. Although SS-ANOVA has the assets of better 

describing the interaction between variables, and being more flexible for the distribution 

of data and the relationship between variables, the SS-ANOVA is not as robust to 

outliers as the CART model. On the contrary, the CART model well fit the 

characteristics of irregular flight data due to the flexible operations of general aviation. 

Also, the output of the CART model is more intuitive to interpreted by the phases of 

flight, so that is more easy to be applied in quick prediction of the fuel flow rate. 

 

Conclusion 
This study explores two nonparametric models to predict the fuel flow rate of GA 

piston-engine aircraft in each phase of flight of the LTO cycle. By applying the machine 

learning technique, the CART model is believed to be robust for flight data outliers 

caused by the flexible GA operations, random system errors, and other unknown 

factors. The operational flight data from Purdue University Cirrus SR-20 fleet was used 

in training and testing the CART model. The CART model intuitively describes the fuel 

flow rate by phases of flight, and demonstrates straightforward logic of predicting the 

fuel flow rate. That feature is expected to help simplify the procedure of predicting the 

fuel flow rate quickly and accurately. In addition, the Smoothing Spline ANOVA was 

adopted to remodeling the fuel flow rate and further explore the relationship between 

variables. Both models demonstrate good accuracy in predicting the fuel flow rate and 

reflect that aircraft altitude has less influence on the fuel flow rate of piston engine 



aircraft used in this study. The analysis results are believed to be reasonable from the 

perspective of actual flight operations. 

However, for the phase of approach, it is noticeable that the predicted fuel flow 

rate by the CART model is significantly different from the derived value based on the 

GA LTO cycle. Possible reasons could be: (1) flight data comes from flight training 

aircraft which were operated by pilot students; inexperience operations in approach 

phase might generate large amount of noisy data; (2) the method of deriving the 

average fuel flow rate from the original flight data could generate errors; (3) 

inaccuracy of the CART model. In the meantime, the SS-ANOVA model is not easy 

to be interpreted by the phases of flight while giving more information about the 

interaction between variables. These two models are still subject to further 

evaluation and validation before being applied in industry, and are expected to provide 

references for further study on practical approaches of exhaust emissions estimation 

of general aviation. 
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