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A Novel Multithreaded Algorithm For Extracting Maximal Chordal Subgraphs

Mahantesh Halappanavar1, John Feo1, Kathryn Dempsey3, Hesham Ali2, and Sanjukta Bhowmick2,

E-mail:{mahantesh.halappanavar@pnnl.gov, john.feo@pnnl.gov, kdempsey@unomaha.edu, hali@unomaha.edu and sbhowmick@unomaha.edu}
1 Pacific Northwest National Laboratory. 2 University of Nebraska at Omaha. 3 University of Nebraska, Medical Center.

Abstract—Chordal graphs are triangulated graphs where
any cycle larger than three is bisected by a chord. Many
combinatorial optimization problems such as computing the
size of the maximum clique and the chromatic number are NP-
hard on general graphs but have polynomial time solutions on
chordal graphs. In this paper, we present a novel multithreaded
algorithm to extract a maximal chordal subgraph from a
general graph. We develop an iterative approach where each
thread can asynchronously update a subset of edges that are
dynamically assigned to it per iteration and implement our
algorithm on two different multithreaded architectures – Cray
XMT, a massively multithreaded platform, and AMD Magny-
Cours, a shared memory multicore platform. In addition to
the proof of correctness, we present the performance of our
algorithm using a testset of synthetical graphs with up to half-
a-billion edges and real world networks from gene correlation
studies and demonstrate that our algorithm achieves high
scalability for all inputs on both types of architectures.

I. INTRODUCTION

Computation of many important combinatorial properties
for example, the chromatic number or the size of the
maximum clique is NP-hard on general graphs. However,
efficient polynomial time algorithms for these same set of
problems can be developed on a special type of graph known
as the chordal graph [1], [2]. A chord is an edge in a
graph that connects two non-adjacent vertices in a cycle.
Chordal graphs are graphs where any cycle larger than three
is bisected by a chord, i.e. the largest unbroken cycle in
a chordal graph is a triangle [3]. An alternative approach
to solving NP-hard combinatorial optimization problems
would therefore be to solve these problems on the maximum
chordal subgraph of the larger graph. It has also been shown
that extracting chordal subgraphs can be used as a sampling
technique for large-scale biological networks [4], [5].

Finding a maximum chordal subgraph is an NP-hard
problem, but finding a maximal chordal subgraph is not [1].
A maximal chordal subgraph cannot be trivially extended
into a maximum chordal subgraph by adding new edges to
it. Dearing et al. provided an efficient serial algorithm for
finding a maximal chordal subgraph [1]. In this paper, we
present a novel parallel algorithm for extracting maximal
chordal subgraphs from large graphs. We retain the key
idea of testing whether an edge is chordal from Dearing et
al. However, our algorithm is targeted for shared-memory
multithreaded platforms. Our implementation is based on
fine grained parallelism where each vertex identifies the

edges that should be retained in the chordal subgraph as
per its connections with a selected group of its neighbors.
At each iteration the group of neighbors is refined until all
the edges are marked as to whether (or not) they belong to
a chordal subgraph.

We have implemented our algorithm on (i) a server with
four sockets of 12-core AMD Magny-Cours (amounting to
a total of 48 threads) and (ii) a massively multithreaded
platform, Cray XMT, with 128 processors Our tests on a
suite of synthetical as well as real world networks from
gene correlation studies show that our algorithm is scalable;
although the running time is influenced by the structure and
size of a network. From an application perspective, with
the exception of the extraction of spanning trees and imple-
mentations of breadth first search [6], [7], there exist few
multithreaded algorithms for sampling networks. Extracting
chordal graphs adds a new level of complexity, in that the
traversal pattern is dependent on previously selected vertices.
We use the data flow approach to restrict the pattern in which
the vertices are selected. To the best of our knowledge, this is
the first multithreaded implementation of extracting chordal
subgraphs. Our main contributions in this paper are:

1) Design and implementation of a novel multithreaded
algorithm to extract maximal chordal subgraphs.

2) A proof of correctness and evaluation of the runtime
complexity this algorithm

3) Experimental evaluation on two multithreaded plat-
forms using synthetic and biological networks.

The paper is organized as follows. In Section II we
briefly describe the serial algorithm of Dearing et al. and
an earlier parallel implementation targeted for distributed-
memory systems. In Section III we present the iterative
parallel algorithm for extracting maximal chordal graphs. In
Section IV we describe our experimental setup – platforms
and test suite. We present and analyze the experimental
results in Section V.

II. BACKGROUND AND RELATED WORK

A graph G = (V,E) is a pair of a set of vertices V and
a set of edges E. An edge e ∈ E is associated with two
vertices u and v which are called its endpoints. A vertex u
is a neighbor of v if they are joined by an edge. The degree
of a vertex is the number of edges incident on it. A walk, of
length l, is an alternating sequence of v0, e1, v1, e2, . . . , el, vl

vertices and edges, such that for j = 1, ..., l; vj−1 and vj



are the endpoints of edge ej . A cycle is a walk that starts
from and ends with the same vertex and does not visit any
edge twice. We refer you to [3] for more details in graph
theoretic terminology.

A chord is an edge connecting two non-adjacent ver-
tices in a cycle. A chordal subgraph of a general graph
G = (V,E) is defined as G

′
= (V,EC), where EC ⊆ E

is a set of edges such that any cycle of length longer than
three has a chord. A chordal subgraph is maximum when the
number of edges in EC is as large as any other maximum
chordal subgraph of G. A chordal subgraph is maximal when
an addition of a new edge to EC will destroy the chordal
property.

A sequential algorithm for extracting a maximal chordal
subgraph is given by Dearing et al. [1]. This algorithm
is based on a modified version of graph traversal. An
initial vertex is marked as selected. This vertex and all its
associated edges are marked as part of the chordal subgraph.
Subsequent steps in the traversal select an yet unmarked
vertex that is part of the chordal graph and has the highest
number of edges to the partly formed chordal subgraph.
Additional edges of this vertex are added to the subgraph if
they maintain the chordal property. The algorithm ends once
all vertices have been traversed. The algorithmic complexity
of this method is O(|E|Δ), where Δ is the maximum degree
of the graph. Since the selection of vertices depends on prior
execution, this algorithm is inherently sequential.

A distributed algorithm for extracting nearly chordal sub-
graphs is described in [5], [4]. The graph is first partitioned
and distributed across processors. If both the endpoints of
an edge lie within the same processor then it is associated
with that processor. Otherwise, it is marked as a border edge,
indicating that its end points are stored in the memory of
two different processors. The maximal chordal subgraphs
from partitions that lie completely within a single processor
are computed concurrently using the serial algorithm of
Dearing et al. The edges that are part of these chordal graphs
are termed as chordal edges. Then the border edges across
two processors are added to the subgraph if they form a
triangle with a chordal edge. The border edges can be sent
through message passing across processors. Scalability of
this communication is proportional to (b2/Δ), where b is
the average number of border edges and Δ is the maximum
degree. A faster version of this algorithm has been developed
where communication is not necessary [8]. The cost of
communication is reflected in that some of the border edges
might be duplicated in EC and these duplicates need to be
removed. In both the versions addition of border edges can
sometimes cause the inclusion of cycles larger than three.

Since only the border edges can create cycles, an approach
to eliminating larger cycles is to copy the subgraph induced
by the border edges to a single processor and delete ap-
propriate edges. However, this process in turn can create
other cycles, and the cycle elimination process has to be
repeated. Therefore, complete elimination of large cycles is

challenging for this implementation and in the worst case the
algorithm becomes sequential. Given that many networks are
hard to partition the distributed algorithm is not suitable for
a multithreaded implementation.

Current multithreaded network (graph) analysis research
include methods for finding connected components [9],
clustering coefficients [10], community detection [11] and
distance-1 graph coloring [12].

III. A PARALLEL ALGORITHM

We now describe our multithreaded algorithm, illustrated
in Algorithm 1, for extracting a maximal chordal subgraph.
Every vertex is associated with a unique identification (id)
number from 1 to n, where n is the number of vertices
in the graph. Each vertex identifies its lowest parent (LP),
which is its neighbor with the smallest id and is also smaller
than itself. If no lowest parent exists then its lowest parent
is set to 0. Each vertex is associated with a set of chordal
neighbors – those neighbors that will remain as its neighbors
in a maximal chordal subgraph. Initially this list is empty.
The initialization is shown in Lines 4 to 10 in Algorithm 1.

A chordal subgraph is gradually built per iteration (of the
while loop on Line 11), by adding to the set of chordal
neighbors of each vertex. We start with an initial queue of
vertices that are LP to at least one other vertex in the graph.
At every iteration, we check if a vertex, v in the queue is
an LP of one of its neighbors, w. If v is an LP of w, then
we check if the set of chordal neighbors of w is a subset of
the chordal neighbors of v (Line 15). This indicates that, in
the current version of the chordal subgraph, all neighbors of
vertex w are also connected to the vertex v. Additionally, v
and w are also connected. Combining these two observations
it follows that v, w and all the chordal neighbors of w form
triangular relationships. Therefore, if the subset condition is
satisfied then the v is included as a chordal neighbor of the
vertex w (Line 16), and the LP of w is set to its next lowest
parent (Line 20).

Note that, over the sequence of iterations, every vertex
v, except the vertex with the highest id, will be the LP of
all its neighbors numbered higher than itself. Once all the
neighbors of v have been processed, v will not be added to
the queue again. Iterations of the while loop terminate when
the queue becomes empty. A maximal chordal subgraph
is formed by connecting every vertex with its chordal
neighbors (EC). Figure 1 provides a sample execution of
Algorithm 1 on a small graph.

Since our parallel implementation is fine-grained, the
execution time per iteration is bounded by the time for each
vertex to identify its next chordal edges Lines 15 to 17.
This process is achieved by comparing the set of neighbors
of two connected vertices v and w, and is a function of the
maximum number of chordal neighbors of these vertices. If
the vertices in the neighbor sets are arranged in increasing
order, as in our implementation, then the complexity is linear
to the size of the smallest set of chordal neighbors. The



Algorithm 1 Maximal Chordal Subgraph Algorithm. Input:
A graph G. Output: A maximal chordal edge set EC . Data
structures: A vector LP of size |V | to store the lowest
parent of each vertex. A vector C of size |E| to track the
chordal set of each vertex.

1: procedure MAX-CHORDAL(G(V, E))
2: Q1 ← ∅
3: Q2 ← ∅
4: for all v ∈ V in parallel do
5: w ← lowest parent of v
6: if w �= ∅ then
7: LP [v]← w
8: if w /∈ Q1 then
9: Q1 ← Q1 ∪ {w}

10: C[v]← ∅
11: while Q1 �= ∅ do
12: for all v ∈ Q1 in parallel do
13: for all w ∈ adj[v] do
14: if LP [w] = v then
15: if C[w] ⊆ C[v] then
16: C[w]← C[w] ∪ {v}
17: EC ← EC ∪ {ev,w}
18: x← the next lowest parent of w
19: if x �= ∅ then
20: LP [w]← x
21: if x /∈ Q2 then
22: Q2 ← Q2 ∪ {x}
23: Q1 ← Q2

24: Q2 ← ∅
25: return EC

upper bound per iteration would therefore be O(Δ), with
Δ being the maximum degree of the graph. The iterations
continue until the vertices have compared their edges with
all their LPs. If we assume that the vertex with the highest
degree is assigned the highest id, then the maximum number
of iterations would be O(Δ). Therefore an upper bound
to Algorithm 1 is O(Δ2). Note that this is a conservative
upper bound, because it is unlikely that both the number
of chordal neighbors, as well as the number of iterations
reach their maximum limit. The memory usage is O(|V |)
for storing the vertices and their LPs plus the number of
chordal neighbors which would be proportional to O(EC),
the number of chordal edges.

Also note that, each vertex determines the chordality of an
unique set of edges–the ones that connect it to the associated
LP. No edge is checked more than once, and since each
vertex processes a different set, the only synchronization
required is to store the set of chordal neighbors as an
atomic process. However, for densely connected subgraphs
such as cliques of size k, our algorithm would have to
compare (k − 1) LPs, and therefore require k − 1 steps.
Thus, densely connected components might lead to loss of
parallel efficiency. We are exploring alternative approaches
to address this issue.

Proof of Correctness: We provide the proof of correctness
of Algorithm 1 in two parts: (i) a proof that the extracted
subgraph is indeed chordal, and (ii) a proof that the ex-
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Figure 1. Example of how maximal chordal subgraph can be extracted
from a general graph.

tracted subgraph is maximal.
Theorem 1: The subgraph extracted by Algorithm 1,

G′ = (V,EC), where EC ⊆ E, is chordal.
Proof: We will prove this theorem by induction. Before the
execution of the first iteration, the chordal neighbor set of
each vertex is empty. Thus, the subgraph consists only of
disjointed vertices and is trivially chordal. Let a new edge
(vj , vi) be added to EC . We will show that the addition of
this edge maintains the chordality conditions.

The edge (vj , vi) can be added to EC only if: (i) vi and
vj are connected (Line 13) and (ii) Ci is a subset of Cj

(Line 15). This implies that every neighbor vk of vi will
also be a neighbor of vj according to the chordal subgraph
induced by EC . Note that if v ∈ Cw, then (v, w) ∈ EC (Line
17). Therefore (vk, vi) and (vk, vj) are already in EC . Since
vj and vi are connected, the cycle formed by vi, vj and vk

would be at most a triangle. Therefore, adding (vjvi) to EC ,
if permitted, will maintain chordality.

Thus, at each iteration only edges that maintain chordality
are added to EC . It follows that when the algorithm termi-
nates, the graph induced by edges in EC will be chordal.

Theorem 2: If the subgraph extracted by Algorithm 1,
G

′
= (V,EC), where EC ⊆ E, is a connected graph, then

G
′

is also a maximal chordal subgraph of G = (V,E).
Proof: We assume that EC produces a connected subgraph.
To prove maximality we will show that if an edge in E \EC

(any non-chordal edge as identified by Algorithm 1) is added
to EC , then the chordal property will no longer hold. We
will prove this theorem by contradiction.

Let us assume that we can add an edge (vj , vi) ∈ {E \
EC} to EC after the final iteration of Algorithm 1, and
the subgraph so formed still maintains the chordal property.
We assume without loss of generality that vj has a smaller
identification number than vi. Therefore, there existed some
iteration p, where vj was set to be the LP of vi. Since edge
(vj , vi) is not part of EC obtained from Algorithm 1, it



means that Ci was not a subset of Cj when the edge (vj ,
vi) was processed. As a consequence, there existed at least
one vertex vk that was in Ci but not in Cj . By the design of
Algorithm 1 we derive that all chordal neighbors of a vertex
have lower identification numbers than itself (Line 16).

Also note that only LPs of vi are added to Ci (Line 14).
Therefore, vk was a former LP of vi and since vj is the
current LP, it follows that the identification number of vk is
less than that of vj .

If vk was a neighbor of vj , then vk would have already
been considered as part of Cj and would have been rejected.
Therefore, (vk, vj) was not in EC (Line 17). However, since
EC is connected, there exists at least one path from vk to vj

in the subgraph induced by EC . This path would include at
least one more vertex vt. Therefore, adding the edge (vj , vi)
will create a cycle larger than a triangle (vj , vi, vk, vt, vj)
that will destroy the chordal property. Thus, our earlier
assumption was wrong and the chordal subgraph obtained
is indeed maximal.

If EC has disjoint components, then based on Theorem
2 each component itself is maximal. We can assign an
identification number to each component and combine pairs
of successively numbered components (lower to higher) by
adding any one edge from the original graph G whose
endpoints lie across the components. Since we are only
combining successively numbered components in a low to
high order, i.e. (1 and 2) (2 and 3) (3 and 4), but not (4 and
1) or (2 and 4); and with only one edge per component pair,
there will be no cycles and the resultant subgraph will still
be chordal. Additionally, if the original graph G is itself
connected then numbering the vertices in the order they
appear in a breadth first search will ensure that at the end
of Algorithm 1, EC will produce a connected subgraph.

IV. EXPERIMENTAL SETUP

In this section we provide details of the hardware plat-
forms and the testsets.

A. Hardware Platforms

The first platform is a Cray XMT system comprising
of 128 Threadstorm (MTA-2) processors that are inter-
connected via a high bandwidth 3D Torus network (Cray
SeaStar2). Each MTA-2 processor consists of 128 streams
(hardware threads) and a very-long instruction pipeline
with 21 stages. The processor uses a policy of interleaved
scheduling – at each cycle, an instruction is chosen from a
different thread that is ready for execution. The virtual global
address space on XMT is built from physically distributed
memory modules of 8 GBytes of DDR-1 memory on each
processor. Thus, the total system memory 1 TBytes. A
unique feature of XMT is the hardware hashing mechanism
to make memory accesses uniform. This mechanism maps
the data randomly to memory modules in block sizes of
64 Bytes. The average latency of a memory access is 600
cycles with a worst-case latency of about 1000 cycles. A

128-processor system has a sustained bandwidth of 86.4
GB/s. Further details on XMT can be found in [13].

The second platform is AMD Opteron (Magny-Cours)
based system comprising of 48 cores (4 sockets with 12 core
processors) with 256 GB of globally addressable memory.
Each 12-core processor is a multi-chip module consisting
of two 6-core dies with independent memory controllers.
Each processor has three levels of caches: 64 KB of L1
(data), 512 KB of L2, and 12 MB of L3. While L1 and
L2 are private to each core, L3 is shared between the six
cores of a die. Each socket has 64 GB of memory that is
globally addressable by all the four sockets. The sockets
are interconnected via AMD HyperTransport-3 technology.
Further details on Opteron can be found in [14].

Algorithm 1, like many graph algorithms, is characterized
by irregular memory access patterns that results in poor
utilization of resources. The two platforms chosen in this
study have contrasting architectural features that provide
for a thorough evaluation of this algorithm. The principal
tool for tolerating latency on the XMT is the use of
massive multithreading. The processor is capable of context
switching in a single clock cycle, and can therefore tolerate
latencies arising from memory stalls and thread synchro-
nizations. In contrast, an Opteron processor relies mostly
on memory caches to tolerate latency, and consequently
the performance suffers for irregular applications. A faster
clock speed and smaller instruction pipeline makes single-
thread performance on Opteron relatively faster. But, lack of
concurrency results in a large penalty on the XMT. In our
experiments we observe situations when the two platforms
outperform each other under different circumstances. We
present results on Opteron to demonstrate the suitability of
our algorithm on modern multicore processors, and on XMT
to demonstrate potential suitability for emerging massively
multithreaded (manycore) architectures.

B. Test Suites

We perform our experiments on synthetically generated
networks as well as datasets obtained from microarray anal-
ysis of the hypothalamus of mice. Table 1 gives the structural
description of the networks used in our experiments.

Synthetic Networks: Our synthetic networks (graphs) were
generated using the R-MAT algorithm [15]. The input pa-
rameters for R-MAT include the size of graph in terms of the
number of vertices and edges, and a set of four probabilities
that sum to one. We specified the number (SCALE) of
vertices as powers of two and set the number of edges
to eight times the number of vertices. Depending on the
probabilities specified, R-MAT can generate graphs with a
wide range of characteristics.

For our experiments we generated the following three
types of networks; RMAT-ER (with probabilities of
{0.25, 0.25, 0.25, 0.25}) which belongs to the class of
Erdős-Rényi random graphs and exhibits normal degree
distribution; RMAT-G {0.45, 0.15, 0.15, 0.25}) and RMAT-



B {0.55, 0.15, 0.15, 0.15}) which exhibit a large variation
in degree distribution similar to graphs popularly known as
scale free small world networks. RMAT-G and RMAT-B also
have contain local subcommunities. The degree distribution
of RMAT-B is much wider than that of RMAT-G

Biological Networks: The biological data represents
gene correlation networks downloaded from NCBI’s GEO
database [16]. We used two datasets: (i) GSE5140 that
contains results of age related changes in the hypothalamus
tissue of creatine supplemented mice and untreated mice,
and (ii) GSE17072 that contains results of cancer-related
mutations from normal breast tissue to non-familial breast
cancerous tissue. The network was built by comparing
the Pearson correlation coefficients (ρ ≤ 0.0005) of all
gene-pairs in each dataset; genes with high correlations
(0.95 ≤ ρ ≤ 1.00) were connected to form the network.
The biological networks, also exhibit a power law degree
distribution and form communities, but their size is much
smaller than the synthetically generated ones due to the
limitations in experimental data. However the ratio of edges
to vertices of the biological networks is much higher.

Comparison Between Biological and Synthetic Networks:
We observe that there exist difference in the structural
characteristics of the synthetic versus biological networks.
Notably, the average clustering coefficient distributions for
the synthetic networks reveal that most nodes have from 2 to
100 neighbors and a very low average clustering coefficient
- ranging from 0.00 to 0.20 coefficient distribution reveals
neighbors in the range of 2 to 150, and a much wider
range of clustering coefficients; with high average clustering
coefficients having a smaller number of neighbors. Nodes
with the highest degree tend to have the smallest average
clustering coefficients. In fact as the degree of a node rises,
its clustering coefficient tends to decrease. This reflects the
theory that biological networks tend to be assortative [17],
i.e. two hubs are unlikely to be connected. It is not beneficial
for hub nodes in biological networks to be connected to
each other, or even for their neighbors to be well con-
nected, because such connections introduce vulnerability in
a network for intelligent attacks. In contrast no consistent
pattern of clustering coefficient can be identified in the
synthetic networks. This observation reflects the fact that
networks obtained from different domains exhibit different
characteristics.

The contrasting characteristics of the two kinds of inputs
will help explain the differences in the performance of our
algorithm, as presented in Section V.

V. RESULTS AND DISCUSSION

We now present the experimental results. We use a
compressed storage format to store the graphs in memory,
where the neighbors of each vertex are stored contiguously.
We run two different versions of the algorithm, an unop-
timized version where the neighbors for each vertex is in
an unordered format, and an optimized version where the

neighbor lists are ordered, which allows a vertex to find its
current lowest parent quickly. The run times presented for
optimized versions do not include the sorting time. In our
implementation, we exploit the fact that the chordal edge
set of a vertex automatically gets built in an orderly manner
because it considers its parents in an order. Therefore, testing
set intersections is efficient, linear in terms of the size of
the smallest set. We provide performance results on the
two platforms separately, and then consider the relative
performance for two instances. We further evaluate the
performance of our algorithm by considering the distinct
characteristics of these two kinds of inputs, synthetical and
biological.

Performance on XMT: The first set of results are based
on executing Algorithm 1 on the Cray XMT platform. The
results are presented in Figure 4 for synthetical graphs,
and Figure 5 for biological graphs. The plots for XMT are
on the left side of these figures. The figures present both
strong scaling (the same problem on different number of
processors) and weak scaling (different sizes of problems
on the same number of processors) results. We observe good
scalability of our algorithm on the XMT for both classes of
input. Weak scaling experiments are done for the synthetic
graph by considering different scales (powers of two): 24,
25, and 26. At each scale the graph approximately doubles
in size in terms of the number of vertices and edges. We
plot compute time in seconds on a log (base two) scale
along the vertical axis, and the number of processors along
the horizontal axis. Note that the number of processors is
doubled at each data point, and therefore, the scaling plots
are log-log plots.

In Figure 4, we plot performance on XMT on synthetic
graphs: RMAT-ER, RMAT-G and RMAT-B. Among these
graphs, which are of roughly the same size, RMAT-B graphs
require the most time to complete, because they have higher
maximum degree, the largest variation in vertex degrees,
as well as the most densely connected components. These
characteristics aggravate the performance of the unoptimized
algorithm. However, the two algorithm variants show similar
performance on RMAT-ER and RMAT-G. Note that the
optimized version (Opt) is nearly twice as fast as the unopti-
mized (Unopt) version for RMAT-B. We also observe that we
lose efficiency at full machine utilization (128 processors)
for many cases. We request for about 100 thread-streams
on each processor. Thus, the total number of threads could
reach up to 12, 800 on the entire system.

In Figure 5, we show performance of four gene correlation
networks, GSE5140-CRT, GSE5140-UNT, GSE17072-CTL,
and GSE17072-NON. These graphs are considerably small
for XMT, and therefore, we only show performance for up
to 16 processors. We observe that the optimized version of
the algorithm is much faster than the unoptimized version
on these inputs.

Performance on Opteron: Our second set of results are
on execution of synthetic and biological graphs on the AMD



Group Vertices Edges Avg Max Variance Edges by
Degree Degree Vertices

RMAT-ER(24) 16,777,216 134,217,654 8 42 16 7.99
RMAT-ER(25) 33,554,432 268,435,385 8 41 16 7.99
RMAT-ER(26) 67,108,864 536,870,837 8 48 16 7.99
RMAT-G(24) 16,777,216 134,181,095 8 1,278 416 7.99
RMAT-G(25) 33,554,432 268,385,483 8 1,489 442 7.99
RMAT-G(26) 67,108,864 536,803,101 8 1,800 469 7.99
RMAT-B(24) 16,777,216 133,658,229 8 38,143 8,086 7.99
RMAT-B(25) 33,554,432 267,592,474 8 54,974 9,539 7.99
RMAT-B(26) 67,108,864 535,599,280 8 77,844 11,214 7.99

GSE5140(CRT) 45,023 714,628 16 690 630 15.87
GSE5140(UNT) 45,020 644,651 14 315 421 14.31
GSE17072(CTL) 48,803 949,094 19 365 1702 19.44
GSE17072(NON) 48,803 1,109,553 23 463 2537 22.73

Table I
PROPERTIES OF THE TEST SUITE OF GRAPHS. THE NUMBERS IN PARENTHESIS FOR THE RMAT GRAPHS DENOTES THE SCALE, WHICH DETERMINES

THE NUMBER OF VERTICES(2SCALE ) OF THE GRAPH.THE GENE CORRELATION NETWORKS GSE5140 ARE GROUPED INTO CREATINE TREATED

(CRT) AND UNTREATED (UNT) MODELS, AND THE GSE1702 ARE GROUPED INTO NORMAL (OR CONTROL) TISSUES (CTL) AND NON-FAMILIAL

CANCEROUS TISSUES (NON).
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Figure 2. Average Clustering Coefficient Vs. Number of Neighbors. RMAT-ER and RMAT-B with SCALE=10 (1024 vertices), and GSE5140(UNT).
In the biological networks nodes with high average clustering coefficients have fewer neighbors, indicating the assortative nature of the networks.
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Figure 3. Distribution of Shortest Paths. RMAT-ER and RMAT-B with SCALE=10 (1024 vertices), and GSE5140(UNT). The biological networks have
a much wider distribution of shortest paths than the synthetically generated ones.
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(e) RMAT-B on XMT
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Figure 4. Performance of Synthetic Graphs on Cray-XMT and Opteron: The Y-axis gives execution time in seconds (log scale), and the X-axis gives
number of processors on XMT and number of cores on Opteron. We request for 100 threads per processor on the XMT; only one thread is executed per
core on the Opteron. A solid black trend line is provided for plots on XMT, and black dashed lines for Opteron. Plots for optimized version are marked
Opt, and those for unoptimized are marked Unopt.
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Figure 5. Performance of Biological Networks on Cray-XMT and Opteron: The Y-axis gives execution time in seconds (log scale), and the X-axis
gives number of processors on XMT and number of cores on Opteron. We request for 100 threads per processor on the XMT; only one thread is executed
per core on the Opteron. A solid black trend line is also provided.

Opteron platform. These results are presented in Figure 4 for
synthetical graphs, and Figure 5 for biological graphs. The
plots for Opteron are on the right side of these figures. Our
goal is to demonstrate suitability of Algorithm 1 for standard
multicore platforms that are increasingly becoming available
to researchers. The synthetic graphs are generated separately
on the two platforms. However, the graphs have very minor
differences in size and quality.

Algorithm 1 scales well on the Opteron platform. The dif-
ferences between optimized and unoptimized algorithms was
insignificant. We believe that the differences in the memory
system of the two architectures – caches in particular –
are the reason for this similarity. Setting aside the minor
differences in inputs, execution on synthetic graphs took
considerably more time on the Opteron for RMAT-ER and
RMAT-G, but not RMAT-B. While Opteron was relatively
insensitive to the differences in the three inputs, XMT was
more sensitive. However, for biology networks Opteron was
the faster of the two.

Relative Performance: In order to perform a uniform
comparison between the two platforms, we also experi-
mented with a set of synthetic graphs for Scale 24 that
were generated on the XMT and used on both the platforms
(Figure 6). As can be seen from this figure, RMAT-ER
runs faster, and scales better, on the XMT. In contrast,

execution of RMAT-B on Opteron is faster for smaller
number of processors. As the number of processors increase,
the optimized version of the code on XMT gives the smallest
running time. However, performance on Opteron is still
stronger than the unoptimized version on XMT. We also
observe that there is very little difference in the performance
of optimized and unoptimized versions on the Opteron.

Our results indicate that Opteron is a better platform for
networks that have densely connected components – RMAT-
B and the biological networks. Densely connected compo-
nents take more iterations to resolve, and might lead to
loss of parallel efficiency. Therefore, a combination of faster
clock speeds and a hierarchical cache system makes Opteron
a better system. On the other hand, inputs like RMAT-ER
and RMAT-G have fewer densely connected components and
resolve quickly with large amounts of concurrency at every
iteration. As a result, they perform much better on the XMT,
which is better equipped to handle memory latencies via
parallelism. Table II summarizes the speedup of Algorithm
1 for different networks. The speedup is much higher on
XMT (as much as 47 for RMAT-G(with SCALE=26) ) as
compared to AMD (6 for RMAT-ER(SCALE=25)). How-
ever, the biological networks, because of their small size
show much lower values.

Queue Sizes and Iteration Counts: Figure 7 gives the
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Figure 6. Relative Performance on XMT and Opteron: The Y-axis gives the execution time in logarithmic scale and the X-axis gives the number of
processors on XMT and cores on Opteron. While we request for about 100 threads per processor on the XMT, only one thread is executed per core on
the Opteron. RMAT-ER and RMAT-B with scale 24 were generated on the XMT and used on both the platforms.
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Figure 7. Queue Sizes and Number of Iterations: Number of iterations in the while loop and sizes of queue (Q1) at each iteration are plotted on the
Y-axis (refer Algorithm 1). Different test instances are plotted on the X-axis. The results shown here are from the execution on XMT. Numbers on Opteron
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Group XMT XMT AMD
(UnOpt) (Opt) (UnOpt)

RMAT-ER(24) 32.34 31.70 6.38
RMAT-ER(25) 40.29 29.57 6.96
RMAT-ER(26) 32.25 28.0 7.9
RMAT-G(24) 41.08 41.29 5.33
RMAT-G(25) 44.17 45.97 5.75
RMAT-G(26) 47.35 47.97 6.24
RMAT-B(24) 33.61 35.08 4.80
RMAT-B(25) 21.37 36.16 4.86
RMAT-B(26) 16.70 34.09 5.13
GSE5140(CRT) 1.40 1.22 3.54
GSE5140(UNT) 1.43 1.14 2.85
GSE17072(CTL) 1.52 1.25 3.41
GSE17072(NON) 2.05 1.65 3.12

Table II
Speedup for different networks on XMT and Opteron. SPEEDUP ON

XMT IS PROVIDED FOR 128 PROCESSORS, AND ON OPTERON IT IS FOR

32 PROCESSORS, RELATIVE TO SINGLE PROCESSOR PERFORMANCE ON

EACH PLATFORM RESPECTIVELY.

number of iterations required to process all the edges, and
the number of vertices designated as lowest parent (LP) per
iteration. Note that we consider one iteration of the while
loop as an iteration and the size of Q1 as LP. The number of
elements in the queue represent the amount of parallel work

available at each iteration. For all three synthetic graphs, a
chordal subgraph was obtained in roughly three iterations.
Most of the LPs were processed in the first and second
iterations (slightly more in the second iteration), and the
third iteration had 2 to 3 LPs. The number of edges identified
as chordal were proportional to the size of the graph – larger
the size, bigger was the chordal edge set.

In contrast, the biological networks required about 10
iterations to complete although they are much smaller in
size and have smaller maximum degrees than RMAT-G and
RMAT-B. Similar to synthetic graphs, most of the LPs were
processed in the second iteration. These results indicate that
not only the degree distribution, but also the assortative
nature of the graph, as discussed in Section IV, is an
important factor in determining the execution time.

We observe that only a small portion of the graphs in
our test suite are chordal. The RMAT-ER graphs have about
11%, RMAT-G graphs have about 10% and the RMAT-
B graphs have about 6% chordal edges. Although we are
finding a maximal chordal subgraph, and not the maximum
chordal subgraph, these values remain nearly constant across
all the three scales. The biological graphs also have a small
percentage of chordal edges – 8%(for untreated), 4%(for



creatine), 7% (for control) and 6% (for cancerous). These
values suggest that although RMAT-B and biological graphs
have densely connected components, the distance between
these components, which form the non-chordal portions
of a network, form a larger portion. This observation is
also corroborated by the distribution of shortest paths as
shown in Figure 3. RMAT-B has a slightly wider distribution
of shortest paths than RMAT-ER indicating well separated
densely connected components. The biological networks
present the widest distribution of shortest paths.

VI. CONCLUSIONS AND FUTURE PLANS

We presented a novel multithreaded algorithm for extract-
ing maximal chordal subgraphs and demonstrated scalable
performance on two multithreaded platforms. Using a set
of inputs from synthetically generated as well as from
biological experiments, we demonstrated how some of the
graph properties influence performance on multithreaded
platforms. In the near future, we plan to conduct experi-
ments with a broader set of inputs, develop implementations
on other multithreaded platforms such as general purpose
graphics processing units (GPUs). We will also explore
datasets from several classes of applications and how they
might benefit from the graph sampling technique based on
maximal chordal subgraphs.
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